Что такое закон средних чисел. Средние величины

Что такое закон средних чисел. Средние величины


В чем секрет успешных продавцов? Если понаблюдать за лучшими продавцами любой компании, вы заметите, что их объединяет одно общее качество. Каждый из них встречается с большим количеством людей и делает больше презентаций, чем менее успешные продавцы. Эти люди понимают, что продажи - игра чисел, и чем большему количеству людей они расскажут о своих продуктах или услугах, тем больше сделок заключат - вот и все. Они понимают, что если будут общаться не только с теми немногими, кто определенно скажет им "да", но и с теми, чей интерес к их предложению не столь велик, то закон средних чисел сработает в их пользу.


Ваши доходы будут зависеть от количества продаж, но в то же время, они будут прямо пропорциональны количеству презентаций, которые вы делаете. Как только вы поймете и начнете применять на практике закон средних чисел, тревога, связанная с началом нового бизнеса или работы в новой сфере, начнет снижаться. А в результате начнет расти чувство контроля и уверенность в своей способности зарабатывать. Если вы просто будете делать презентации и оттачивать в этом процессе свои навыки, появятся и сделки.

Чем думать о количестве сделок, думайте лучше о количестве презентаций. Нет смысла просыпаться утром или приходить домой вечером и приниматься гадать, кто купит у вас продукт. Вместо этого, лучше всего каждый день планировать, сколько звонков вам необходимо сделать. А потом, несмотря ни на что - сделать все эти звонки! Такой подход упростит вам работу - потому что это простая и конкретная цель. Если вы будете знать, что перед вами стоит вполне определенная и достижимая задача, вам будет легче сделать запланированное количество звонков. Если в этом процессе вы пару раз услышите "да" - тем лучше!

А если "нет", то вечером вы будете чувствовать, что честно сделали все, что могли, и вас не станут мучить мысли о том, сколько денег вы заработали, или как много компаньонов приобрели за день.

Предположим, в вашей компании или в вашем бизнесе средний продавец заключает одну сделку на четыре презентации. Теперь представьте себе, что вы вытаскиваете карты из колоды. Каждая карта трех мастей - пики, бубны и трефы - это презентация, на которой вы профессионально представляете продукт, услугу или возможность. Вы делаете это так хорошо, как только можете, но все равно не заключаете сделку. А каждая червовая карта - это сделка, позволяющая вам получить деньги или приобрести нового компаньона.

В такой ситуации, разве вам не захочется вытащить из колоды как можно больше карт? Предположим, вам предлагают вытащить столько карт, сколько вы хотите, и при этом платить вам или предлагать нового компаньона каждый раз, когда вы вытаскиваете червовую карту. Вы начнете увлеченно тянуть карты, едва замечая, какой масти карту только что вытащили.

Вы знаете, что в колоде из пятидесяти двух карт - тринадцать червовых. А в двух колодах - двадцать шесть червовых карт, и так далее. Будете ли вы разочарованы, вытащив пики, бубны или трефы? Нет конечно! Вы будете думать только о том, что каждый такой "промах" приближает вас - к чему? К червовой карте!

Но знаете что? Вам уже сделали такое предложение. Вы находитесь в уникальной ситуации, позволяющей заработать столько, сколько вам захочется, и вытащить столько червовых карт, сколько вы хотите вытащить в своей жизни. И если вы просто добросовестно " тянете карты ", совершенствуете свои навыки и стойко переносите немного пик, бубен и треф, то станете прекрасным продавцом и добьетесь успеха.

Одна из вещей, делающих процесс продаж настолько увлекательным - то, что каждый раз, когда тасуешь колоду, карты перемешиваются по-разному. Иногда все червы оказываются в начале колоды, и после удачной полосы (когда нам уже кажется, что мы никогда не проиграем!) нас ждет длинный ряд карт другой масти. А в другой раз, чтобы добраться до первой червы, придется пройти через бесконечное количество пик, треф и бубен. А иногда карты разной масти выпадают строго по очереди. Но в любом случае, в каждой колоде из пятидесяти двух карт, в каком-то порядке, всегда есть тринадцать червовых карт. Просто вытаскивайте карты до тех пор, пока их не найдете.



От: Leylya,  

Слова о больших числах относятся к числу испытаний – рассматривается большое число значений случайной величины или совокупное действие большого числа случайных величин. Суть этого закона состоит в следующем: хотя невозможно предсказать, какое значение в единичном эксперименте примет отдельная случайная величина, однако, суммарный результат действия большого числа независимых случайных величин утрачивает случайный характер и может быть предсказан практически достоверно (т.е. с большой вероятностью). Например, невозможно предсказать, какой стороной упадет одна монета. Однако если подбросить 2 тонны монет, то с большой уверенностью можно утверждать, что вес монет, упавших гербом вверх, равен 1 тонне.

К закону больших чисел прежде всего относится так называемое неравенство Чебышева, которое оценивает в отдельном испытании вероятность принятия случайной величиной значения, уклоняющееся от среднего значения не более, чем на заданное значение.

Неравенство Чебышева . Пусть Х – произвольная случайная величина, а=М(Х ) , а D (X ) – ее дисперсия. Тогда

Пример . Номинальное (т.е. требуемое) значение диаметра вытачиваемой на станке втулки равно 5мм , а дисперсия не более 0.01 (таков допуск точности станка). Оценить вероятность того, что при изготовлении одной втулки отклонение ее диаметра от номинального окажется менее 0.5мм .

Решение. Пусть с.в. Х – диаметр изготовленной втулки. По условию ее математическое ожидание равно номинальному диаметру (если нет систематического сбоя в настройке станка) : а=М(Х )=5 , а дисперсия D (Х)≤0.01 . Применяя неравенство Чебышева при ε = 0.5 , получим:

Таким образом, вероятность такого отклонения достаточно велика, а потому можно сделать вывод о том, что при единичном изготовлении детали практически наверняка отклонение диаметра от номинального не превзойдет 0.5мм .

По своему смыслу среднее квадратическое отклонение σ характеризует среднее отклонение случайной величины от своего центра (т.е. от своего математического ожидания). Поскольку это среднее отклонение, то при испытании возможны и большие (ударение на о) отклонения. Насколько же большие отклонения практически возможны? При изучении нормально распределенных случайных величин мы вывели правило «трех сигм»: нормально распределенная случайная величина Х при единичном испытании практически не отклоняется от своего среднего далее, чем на , где σ= σ(Х) – среднее квадратическое отклонение с.в. Х . Такое правило мы вывели из того, что получили неравенство

.

Оценим теперь вероятность для произвольной случайной величины Х принять значение, отличающееся от среднего не более чем на утроенное среднее квадратическое отклонение. Применяя неравенство Чебышева при ε = и учитывая, что D (Х)= σ 2 , получаем:

.

Таким образом, в общем случае вероятность отклонения случайной величины от своего среднего не более чем на три средних квадратичных отклонения мы можем оценить числом 0.89 , в то время как для именно нормального распределения можно гарантировать это с вероятностью 0.997 .

Неравенство Чебышева может быть обобщено на систему независимых одинаково распределенных случайных величин.

Обобщенное неравенство Чебышева . Если независимые случайные величины Х 1 , Х 2 , … , Х n M (X i )= a и дисперсиями D (X i )= D , то

При n =1 это неравенство переходит в неравенство Чебышева, сформулированное выше.

Неравенство Чебышева, имея самостоятельное значение для решения соответствующих задач, применяется для доказательства так называемой теоремы Чебышева. Мы с начала расскажем о сути этой теоремы, а затем дадим ее формальную формулировку.

Пусть Х 1 , Х 2 , … , Х n – большое число независимых случайных величин с математическими ожиданиями М(Х 1 )=а 1 , … , М(Х n )=а n . Хотя каждая из них в результате эксперимента может принять значение, далекое от своего среднего (т.е. математического ожидания), однако, случайная величина
, равная их среднему арифметическому, с большой вероятностью примет значение, близкое к фиксированному числу
(это среднее всех математических ожиданий). Это означает следующее. Пусть в результате испытания независимые случайные величиныХ 1 , Х 2 , … , Х n (их много!) приняли значения соответственно х 1 , х 2 , … , х n соответственно. Тогда если сами эти значения могут оказаться далекими от средних значений соответствующих случайных величин, их среднее значение
с большой вероятностью окажется близким к числу
. Таким образом, среднее арифметическое большого числа случайных величин уже теряет случайный характер и может быть предсказано с большой точностью. Это можно объяснить тем, что случайные отклонения значенийХ i от a i могут быть разных знаков, а потому в в сумме эти отклонения с большой вероятностью компенсируются.

Терема Чебышева (закон больших чисел в форме Чебышева). Пусть Х 1 , Х 2 , … , Х n – последовательность попарно независимых случайных величин, дисперсии которых ограничены одним и тем же числом. Тогда, какое бы малое число ε мы ни взяли, вероятность неравенства

будет как угодно близка к единице, если число n случайных величин взять достаточно большим. Формально это означает, что в условиях теоремы

Такой вид сходимости называется сходимостью по вероятности и обозначается:

Таким образом, теорема Чебышева говорит о том, что если есть достаточно большое число независимых случайных величин, то их среднее арифметическое при единичным испытании практически достоверно примет значение, близкое к среднему их математических ожиданий.

Чаще всего теорема Чебышева применяется в ситуации, когда случайные величины Х 1 , Х 2 , … , Х n имеют одинаковое распределение (т.е. один и тот же закон распределения или одну и ту же плотность вероятности). Фактически это просто большое число экземпляров одной и той же случайной величины.

Следствие (обобщенного неравенства Чебышева). Если независимые случайные величины Х 1 , Х 2 , … , Х n имеют одинаковое распределение с математическими ожиданиями M (X i )= a и дисперсиями D (X i )= D , то

, т.е.
.

Доказательство следует из обобщенного неравенства Чебышева переходом к пределу при n →∞ .

Отметим еще раз, что выписанные выше равенства не гарантируют, что значение величины
стремится ка при n →∞. Эта величина по-прежнему остается случайной величиной, а ее отдельные значения могут быть достаточно далекими от а . Но вероятность таких (далеких от а ) значений с ростом n стремится к 0.

Замечание . Заключение следствия, очевидно, справедливо и в более общем случае, когда независимые случайные величины Х 1 , Х 2 , … , Х n имеют различное распределение, но одинаковые математические ожидания (равные а ) и ограниченные в совокупности дисперсии. Это позволяет предсказывать точность измерения некоторой величины, даже если эти измерения выполнены разными приборами.

Рассмотрим подробнее применение этого следствия при измерении величин. Проведем некоторым прибором n измерений одной и той же величины, истинное значение которой равно а и нам неизвестно. Результаты таких измерений х 1 , х 2 , … , х n могут значительно отличаться друг от друга (и от истинного значения а ) в силу различных случайных факторов (перепады давления, температуры, случайная вибрация и т.д.). Рассмотрим с.в. Х – показание прибора при единичном измерении величины, а также набор с.в. Х 1 , Х 2 , … , Х n – показание прибора при первом, втором, …, последнем измерении. Таким образом, каждая из величин Х 1 , Х 2 , … , Х n есть просто один из экземпляров с.в. Х , а потому все они имеют то же самое распределение, что и с.в. Х . Поскольку результаты измерений не зависят друг от друга, то с.в. Х 1 , Х 2 , … , Х n можно считать независимыми. Если прибор не дает систематической ошибки (например, не «сбит» ноль на шкале, не растянута пружина и т.п.), то можно считать, что математическое ожидание М(Х) = а , а потому и М(Х 1 ) = ... = М(Х n ) = а . Таким образом, выполняются условия приведенного выше следствия, а потому в качестве приближенного значения величины а можно взять «реализацию» случайной величины
в нашем эксперименте (заключающемся в проведении серии изn измерений), т.е.

.

При большом числе измерений практически достоверна хорошая точность вычисления по этой формуле. Это является обоснованием того практического принципа, что при большом числе измерений их среднее арифметическое практически почти не отличается от истинного значения измеряемой величины.

На законе больших чисел основан широко применяемый в математической статистике «выборочный» метод, который позволяет по сравнительно небольшой выборке значений случайной величины получать ее объективные характеристики с приемлемой точностью. Но об этом будет рассказано в следующем разделе.

Пример . На измерительном приборе, не делающем систематических искажений, измерена некоторая величина а один раз (получено значение х 1 ), а потом еще 99 раз (получены значения х 2 , … , х 100 ). За истинное значение измерения а сначала взят результат первого измерения
, а затем среднее арифметическое всех измерений
. Точность измерения прибора такова, что среднее квадратическое отклонение измерения σ не более 1 (потому дисперсияD 2 тоже не превосходит 1). Для каждого из способов измерения оценить вероятность, что ошибка измерения не превзойдет 2.

Решение. Пусть с.в. Х – показание прибора при единичном измерении. Тогда по условию М(Х)=а . Для ответа на поставленные вопросы применим обобщенное неравенство Чебышева

при ε=2 сначала для n =1 , а затем для n =100 . В первом случае получим
, а во втором. Таким образом, второй случай практически гарантирует задаваемую точность измерения, тогда как первый оставляет в этом смысле большие сомнения.

Применим приведенные выше утверждения к случайным величинам, возникающим в схеме Бернулли. Напомним суть этой схемы. Пусть производится n независимых испытаний, в каждом из которых некоторое событие А может появиться с одной и той же вероятностью р , а q =1–р (по смыслу это вероятность противоположного события – не появления события А ) . Проведем некоторое число n таких испытаний. Рассмотрим случайные величины: Х 1 – число появлений события А в 1 -ом испытании, …, Х n – число появлений события А в n -ом испытании. Все введенные с.в. могут принимать значения 0 или 1 (событие А в испытании может появиться или нет), причем значение 1 по условию принимается в каждом испытании с вероятностью p (вероятность появления события А в каждом испытании), а значение 0 с вероятностью q = 1 p . Поэтому эти величины имеют одинаковые законы распределения:

Х 1

Х n

Поэтому средние значения этих величин и их дисперсии тоже одинаковы: М(Х 1 )=0 q +1 р= р, …, М(Х n )= р ; D (X 1 )=(0 2 q +1 2 p )− p 2 = p ∙(1− p )= p q, … , D (X n )= p q . Подставляя эти значения в обобщенное неравенство Чебышева, получим

.

Ясно, что с.в. Х =Х 1 +…+Х n – это число появлений события А во всех n испытаниях (как говорят – «число успехов» в n испытаниях). Пусть в проведенных n испытаниях событие А появилось в k из них. Тогда предыдущее неравенство может быть записано в виде

.

Но величина
, равная отношению числа появлений событияА в n независимых испытаниях, к общему числу испытаний, ранее была названа относительной частотой события А в n испытаниях. Поэтому имеет место неравенство

.

Переходя теперь к пределу при n →∞, получим
, т.е.
(по вероятности). Это составляет содержание закона больших чисел в форме Бернулли. Из него следует, что при достаточно большом числе испытанийn сколь угодно малые отклонения относительной частоты
события от его вероятностир − почти достоверные события, а большие отклонения − почти невозможные. Полученный вывод о такой устойчивости относительных частот (о которой мы ранее говорили как об экспериментальном факте) оправдывает введенное ранее статистическое определение вероятности события как числа, около которого колеблется относительная частота события.

Учитывая, что выражение p q = p ∙(1− p )= p p 2 не превосходит на интервале изменения
(в этом легко убедиться, найдя минимум этой функции на этом отрезке), из приведенного выше неравенства
легко получить, что

,

которое применяется при решении соответствующих задач (одна из них будет приведена ниже).

Пример . Монету подбросили 1000 раз. Оценить вероятность того, что отклонение относительной частоты появления герба от его вероятности будет меньше 0.1.

Решение. Применяя неравенство
приp = q =1/2 , n =1000 , ε=0.1 , получим .

Пример . Оценить вероятность того, что в условиях предыдущего примера число k выпавших гербов окажется в пределах от 400 до 600 .

Решение. Условие 400< k <600 означает, что 400/1000< k / n <600/1000 , т.е. 0.4< W n (A )<0.6 или
. Как мы только что убедились из предыдущего примера, вероятность такого события не менее0.975 .

Пример . Для вычисления вероятности некоторого события А проведено 1000 экспериментов, в которых событие А появилось 300 раз. Оценить вероятность того, что относительная частота (равная 300/1000=0.3) отстоит от истиной вероятности р не далее, чем на 0.1 .

Решение. Применяя выписанное выше неравенство
дляn=1000, ε=0.1 , получим .

Закон больших чисел

Зако́н больши́х чи́сел в теории вероятностей утверждает, что эмпирическое среднее (среднее арифметическое) достаточно большой конечной выборки из фиксированного распределения близко к теоретическому среднему (математическому ожиданию) этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности , и усиленный закон больших чисел, когда имеет место сходимость почти всюду .

Всегда найдётся такое количество испытаний, при котором с любой заданной наперёд вероятностью относительная частота появления некоторого события будет сколь угодно мало отличаться от его вероятности.

Общий смысл закона больших чисел - совместное действие большого числа случайных факторов приводит к результату, почти не зависящему от случая.

На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.

Слабый закон больших чисел

Пусть есть бесконечная последовательность (последовательное перечисление) одинаково распределённых и некоррелированных случайных величин , определённых на одном вероятностном пространстве . То есть их ковариация . Пусть . Обозначим выборочное среднее первых членов:

Усиленный закон больших чисел

Пусть есть бесконечная последовательность независимых одинаково распределённых случайных величин , определённых на одном вероятностном пространстве . Пусть . Обозначим выборочное среднее первых членов:

.

Тогда почти наверное.

См. также

Литература

  • Ширяев А. Н. Вероятность, - М .: Наука. 1989.
  • Чистяков В. П. Курс теории вероятностей, - М ., 1982.

Wikimedia Foundation . 2010 .

  • Кинематограф России
  • Громека, Михаил Степанович

Смотреть что такое "Закон больших чисел" в других словарях:

    ЗАКОН БОЛЬШИХ ЧИСЕЛ - (law of large numbers) В том случае, когда поведение отдельных представителей населения отличается большим своеобразием, поведение группы в среднем более предсказуемо, чем поведение любого ее члена. Тенденция, в соответствии с которой группы… … Экономический словарь

    ЗАКОН БОЛЬШИХ ЧИСЕЛ - см. БОЛЬШИХ ЧИСЕЛ ЗАКОН. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

    Закон Больших Чисел - принцип, согласно которому количественные закономерности, присущие массовым общественным явлениям, наиболее явным образом проявляются при достаточно большом числе наблюдений. Единичные явления в большей степени подвержены воздействию случайных и… … Словарь бизнес-терминов

    ЗАКОН БОЛЬШИХ ЧИСЕЛ - утверждает, что с вероятностью, близкой к единице, среднее арифметическое большого числа случайных величин примерно одного порядка будет мало отличаться от константы, равной среднему арифметическому из математических ожиданий этих величин. Разл.… … Геологическая энциклопедия

    закон больших чисел - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN law of averageslaw of large numbers … Справочник технического переводчика

    закон больших чисел - didžiųjų skaičių dėsnis statusas T sritis fizika atitikmenys: angl. law of large numbers vok. Gesetz der großen Zahlen, n rus. закон больших чисел, m pranc. loi des grands nombres, f … Fizikos terminų žodynas

    ЗАКОН БОЛЬШИХ ЧИСЕЛ - общий принцип, в силу к рого совместное действие случайных факторов приводит при нек рых весьма общих условиях к рез ту, почти не зависящему от случая. Сближение частоты наступления случайного события с его вероятностью при возрастании числа… … Российская социологическая энциклопедия

    Закон больших чисел - закон, гласящий, что совокупное действие большого числа случайных факторов приводит, при некоторых весьма общих условиях, к результату, почти не зависящему от случая … Социология: словарь

    ЗАКОН БОЛЬШИХ ЧИСЕЛ - статистический закон, выражающий связь статистических показателей (параметров) выборочной и генеральной совокупности. Фактические значения статистических показателей, полученные по некоторой выборке, всегда отличаются от т.н. теоретических… … Социология: Энциклопедия

    ЗАКОН БОЛЬШИХ ЧИСЕЛ - принцип, по которому частота финансовых потерь определенного вида может быть предсказана с высокой точностью тогда, когда есть большое количество потерь аналогичных видов … Энциклопедический словарь экономики и права

Книги

  • Комплект таблиц. Математика. Теория вероятностей и математическая статистика. 6 таблиц + методика , . Таблицы отпечатаны на плотном полиграфическом картоне размером 680 х 980 мм. В комплект входит брошюра с методическими рекомендациями для учителя. Учебный альбом из 6 листов. Случайные…

Зако́н больши́х чи́сел в теории вероятностей утверждает, что эмпирическое среднее (среднее арифметическое) достаточно большой конечной выборки из фиксированного распределения близко к теоретическому среднему (математическому ожиданию) этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности , и усиленный закон больших чисел, когда имеет место сходимость почти всюду .

Всегда найдётся такое конечное число испытаний, при котором с любой заданной наперёд вероятностью меньше 1 относительная частота появления некоторого события будет сколь угодно мало отличаться от его вероятности.

Общий смысл закона больших чисел: совместное действие большого числа одинаковых и независимых случайных факторов приводит к результату, в пределе не зависящему от случая.

На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.

Энциклопедичный YouTube

    1 / 5

    ✪ Закон больших чисел

    ✪ 07 - Теория вероятностей. Закон больших чисел

    ✪ 42 Закон больших чисел

    ✪ 1 - Закон больших чисел Чебышёва

    ✪ 11 класс, 25 урок, Гауссова кривая. Закон больших чисел

    Субтитры

    Давайте разберем закон больших чисел, который является, пожалуй, самым интуитивным законом в математике и теории вероятностей. И поскольку он применим ко многим вещам, его иногда используют и понимают неправильно. Давайте я вначале для точности дам ему определение, а потом уже мы поговорим об интуиции. Возьмем случайную величину, например Х. Допустим, мы знаем ее математическое ожидание или среднее для совокупности. Закон больших чисел просто говорит, что, если мы возьмем пример n-ого количества наблюдений случайной величины и выведем среднее число всех этих наблюдений… Давайте возьмем переменную. Назовем ее Х с нижним индексом n и с чертой наверху. Это среднее арифметическое n-ого количества наблюдений нашей случайной величины. Вот мое первое наблюдение. Я провожу эксперимент один раз и делаю это наблюдение, затем я провожу его еще раз и делаю вот это наблюдение, я провожу его снова и получаю вот это. Я провожу этот эксперимент n-ое количество раз, а затем делю на количество моих наблюдений. Вот мое выборочное среднее значение. Вот среднее значение всех наблюдений, которые я сделала. Закон больших чисел говорит нам, что мое выборочное среднее будет приближаться к математическому ожиданию случайной величины. Либо я могу также написать, что мое выборочное среднее будет приближаться к среднему по совокупности для n-ого количества, стремящегося к бесконечности. Я не буду четко разделять понятия «приближение» и «сходимость», но надеюсь, вы интуитивно понимаете, что, если я возьму довольно большую выборку здесь, то я получу математическое ожидание для совокупности в целом. Думаю, большинство из вас интуитивно понимает, что, если я сделаю достаточное количество испытаний с большой выборкой примеров, в конце концов, испытания дадут мне ожидаемые мною значения, принимая во внимание математическое ожидание, вероятность и все такое прочее. Но, я думаю, часто бывает непонятно, почему так происходит. И прежде, чем я начну объяснять, почему это так, давайте я приведу конкретный пример. Закон больших чисел говорит нам, что... Допустим, у нас есть случайная величина Х. Она равна количеству орлов при 100 подбрасываниях правильной монеты. Прежде всего, мы знаем математическое ожидание этой случайной величины. Это количество подбрасываний монеты или испытаний, умноженное на шансы успеха любого испытания. Значит, это равно 50-ти. То есть, закон больших чисел говорит, что, если мы возьмем выборку, или если я приведу к среднему значению эти испытания, я получу... В первый раз, когда я провожу испытание, я подбрасываю монету 100 раз или возьму ящик с сотней монет, тряхну его, а потом сосчитаю, сколько у меня выпадет орлов, и получу, допустим, число 55. Это будет Х1. Затем я снова встряхну ящик и получу число 65. Затем еще раз – и получу 45. И я проделываю это n-ое количество раз, а затем делю это на количество испытаний. Закон больших чисел говорит нам, что это среднее (среднее значение всех моих наблюдений) будет стремиться к 50-ти в то время, как n будет стремиться к бесконечности. Теперь я бы хотела немного поговорить о том, почему так происходит. Многие считают, что если после 100 испытаний, у меня результат выше среднего, то по законам вероятности у меня должно выпасть больше или меньше орлов для того, чтобы, так сказать, компенсировать разницу. Это не совсем то, что произойдет. Это часто называют «заблуждением азартного игрока». Давайте я покажу различие. Я буду использовать следующий пример. Давайте я изображу график. Поменяем цвет. Это n, моя ось Х – это n. Это количество испытаний, которые я проведу. А моя ось Y будет выборочным средним. Мы знаем, что математическое ожидание этой произвольной переменной равно 50-ти. Давайте я это нарисую. Это 50. Вернемся к нашему примеру. Если n равно… Во время моего первого испытания я получила 55, это мое среднее значение. У меня только одна точка ввода данных. Затем, после двух испытаний, я получаю 65. Значит, мое среднее значение будет 65+55, деленное на 2. Это 60. И мое среднее значение немного возросло. Затем я получила 45, что вновь снизило мое среднее арифметическое. Я не буду наносить на графике 45. Теперь мне нужно привести все это к среднему значению. Чему равно 45+65? Давайте я вычислю это значение, чтобы обозначить точку. Это 165 делить на 3. Это 53. Нет, 55. Значит, среднее значение снова опускается до 55-ти. Мы можем продолжить эти испытания. После того, как мы проделали три испытания и получили это среднее, многие люди думают, что боги вероятности сделают так, что у нас выпадет меньше орлов в будущем, что в следующих нескольких испытаниях результаты будут ниже, чтобы уменьшить среднее значение. Но это не всегда так. В дальнейшем вероятность всегда остается такой же. Вероятность того, что у меня выпадет орел, всегда будет 50-ти %. Не то, что у меня изначально выпадает определенное количество орлов, большее, чем я ожидаю, а дальше внезапно должны выпасть решки. Это «заблуждение игрока». Если у вас выпадает несоразмерно большое количество орлов, это не значит, что в определенный момент у вас начнет выпадать несоразмерно большое количество решек. Это не совсем так. Закон больших чисел говорит нам, что это не имеет значения. Допустим, после определенного конечного количества испытаний, ваше среднее... Вероятность этого достаточно мала, но, тем не менее... Допустим, ваше среднее достигло этой отметки – 70-ти. Вы думаете: «Ого, мы основательно отошли от математического ожидания». Но закон больших чисел говорит, что ему все равно, сколько испытаний мы провели. У нас все равно осталось бесконечное количество испытаний впереди. Математическое ожидание этого бесконечного количества испытаний, особенно в подобной ситуации, будет следующим. Когда вы приходите к конечному числу, которое выражает какое-нибудь большое значение, бесконечное число, которое сойдется с ним, снова приведет к математическому ожиданию. Это, конечно, очень свободное толкование, но это то, что говорит нам закон больших чисел. Это важно. Он не говорит нам, что, если у нас выпало много орлов, то каким-то образом вероятность выпадения решки увеличится, чтобы это компенсировать. Этот закон говорит нам, что неважно, каков результат при конечном количестве испытаний, если у вас еще осталось бесконечное количество испытаний впереди. И если вы сделаете достаточное их количество, вы вернетесь снова к математическому ожиданию. Это важный момент. Подумайте о нем. Но это не используется ежедневно на практике с лотереями и в казино, хотя известно, что, если вы сделаете достаточное количество испытаний... Мы даже можем это посчитать... чему равна вероятность того, что мы серьезно отклонимся от нормы? Но казино и лотереи каждый день работают по тому принципу, что если взять достаточное количество людей, естественно, за короткий срок, с небольшой выборкой, то несколько человек сорвут куш. Но за большой срок казино всегда останется в выигрыше из-за параметров игр, в которые они приглашают вас играть. Это важный принцип вероятности, который является интуитивным. Хотя иногда, когда вам его формально объясняют со случайными величинами, все это выглядит немного запутанно. Все, что этот закон говорит, – это что чем больше выборок, тем больше среднее арифметическое этих выборок будет стремиться к истинному среднему. А если быть более конкретной, то среднее арифметическое вашей выборки сойдется с математическим ожиданием случайной величины. Вот и все. До встречи в следующем видео!

Слабый закон больших чисел

Слабый закон больших чисел также называется теоремой Бернулли , в честь Якоба Бернулли , доказавшего его в 1713 году .

Пусть есть бесконечная последовательность (последовательное перечисление) одинаково распределённых и некоррелированных случайных величин . То есть их ковариация c o v (X i , X j) = 0 , ∀ i ≠ j {\displaystyle \mathrm {cov} (X_{i},X_{j})=0,\;\forall i\not =j} . Пусть . Обозначим через выборочное среднее первых n {\displaystyle n} членов:

.

Тогда X ¯ n → P μ {\displaystyle {\bar {X}}_{n}\to ^{\!\!\!\!\!\!\mathbb {P} }\mu } .

То есть для всякого положительного ε {\displaystyle \varepsilon }

lim n → ∞ Pr (| X ¯ n − μ | < ε) = 1. {\displaystyle \lim _{n\to \infty }\Pr \!\left(\,|{\bar {X}}_{n}-\mu |<\varepsilon \,\right)=1.}

Усиленный закон больших чисел

Пусть есть бесконечная последовательность независимых одинаково распределённых случайных величин { X i } i = 1 ∞ {\displaystyle \{X_{i}\}_{i=1}^{\infty }} , определённых на одном вероятностном пространстве (Ω , F , P) {\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P})} . Пусть E X i = μ , ∀ i ∈ N {\displaystyle \mathbb {E} X_{i}=\mu ,\;\forall i\in \mathbb {N} } . Обозначим через X ¯ n {\displaystyle {\bar {X}}_{n}} выборочное среднее первых n {\displaystyle n} членов:

X ¯ n = 1 n ∑ i = 1 n X i , n ∈ N {\displaystyle {\bar {X}}_{n}={\frac {1}{n}}\sum \limits _{i=1}^{n}X_{i},\;n\in \mathbb {N} } .

Тогда X ¯ n → μ {\displaystyle {\bar {X}}_{n}\to \mu } почти всегда.

Pr (lim n → ∞ X ¯ n = μ) = 1. {\displaystyle \Pr \!\left(\lim _{n\to \infty }{\bar {X}}_{n}=\mu \right)=1.} .

Как и любой математический закон, закон больших чисел может быть применим к реальному миру только при известных допущениях, которые могут выполняться лишь с некоторой степенью точности. Так, например, условия последовательных испытаний часто не могут сохраняться бесконечно долго и с абсолютной точностью . Кроме того, закон больших чисел говорит лишь о невероятности значительного отклонения среднего значения от математического ожидания .