Макет стенда для динамической балансировки якорей. Устройство и ремонт электрических машин - бандажирование и балансировка роторов и якорей

Макет стенда для динамической балансировки якорей. Устройство и ремонт электрических машин - бандажирование и балансировка роторов и якорей

2.16. Балансировка роторов и якорей

Отремонтированные роторы и якоря электрических машин направляют на статическую, а при необходимости и на динамическую балансировку в сборе с вентиляторами и другими вращающимися частями. Балансировку производят на специальных станках для выявления неуравновешенности (дисбаланса) масс ротора и якоря. Причинами неравномерного распределения масс могут быть: разная толщина отдельных деталей, наличие в них раковин, неодинаковый вылет лобовых частей обмотки и др. Любая деталь ротора или якоря может быть неуравновешенной в результате сдвига осей инерции относительно оси вращения. Неуравновешенные массы отдельных деталей в зависимости от их расположения могут суммироваться или взаимно компенсироваться.
Роторы и якоря, в которых центральная ось инерции не совпадает с осью вращения, называют неуравновешенными.
Вращение неуравновешенного ротора или якоря вызывает вибрацию, которая может разрушить подшипники и фундамент машины. Чтобы этого избежать, производят балансировку роторов, которая заключается в определении размеров и мест неуравновешенной массы и устранении дисбаланса.
Неуравновешенность определяют статической или динамической балансировкой. Выбор способа балансировки зависит от точности уравновешивания, которую можно осуществить на данном оборудовании. При динамической балансировке получают лучшие результаты компенсации неуравновешенности, чем при статической.

Статическую балансировку выполняют при невращающемся роторе на призмах, дисках или специальных весах (рис. 2.45). Для определения неуравновешенности ротор выводят из равновесия легким толчком. Неуравновешенный ротор будет стремиться вернуться в такое положение, когда его тяжелая сторона окажется внизу. После остановки ротора мелом отмечают место, которое оказалось в верхнем положении. Процесс повторяют несколько раз. Если ротор останавливается в одном и том же положении, значит центр его тяжести смещен.

Рис. 2.45. :
а - на призмах; б - на дисках; в - на специальных весах; 1 - груз; 2 - грузовая рамка; 3 - индикатор; 4 - рама; 5 - ротор (якорь)
В определенном месте (чаще, всего это внутренний диаметр обода нажимной шайбы) устанавливают пробные грузы, прикрепляя их замазкой. После этого повторяют прием балансировки. Увеличивая или уменьшая массы грузов, добиваются остановки ротора в произвольном положении. Это означает, что ротор статически уравновешен.
По окончании балансировки пробные грузы заменяют одним грузом той же массы.
Неуравновешенность можно компенсировать высверливанием соответствующей части металла из тяжелой части ротора.
Более точной, чем на призмах и дисках, является балансировка на специальных весах.
Статическую балансировку применяют для роторов с частотой вращение не более 1000об/мин. Статически -уравновешенный ротор может быть динамически неуравновешенным, поэтому роторы с частотой вращения более 1000 об/мин подвергают динамической балансировке, при которой устраняется и статическая неуравновешенность.
Динамическая балансировка ротора, которую выполняют на балансировочном станке, состоит из двух операций: измерение первоначальной вибрации; нахождение точки расположения и массы уравновешивающего груза для одного из торцов ротора.
Балансировку производят с одной стороны ротора, а потом с другой. После окончания балансировки груз закрепляют сваркой или винтами. Затем выполняют проверочную балансировку.

Сборка является заключительным технологическим процессом, от качества исполнения которого в значительной мере зависят энергетические и эксплуатационные показатели машин - КПД, уровень вибраций и шума, надежность и долговечность. Сборку необходимо производить используя детали и сборочные единицы, принадлежащие данной машине, так как обезличенная сборка более сложна в организационном отношении и при ней возможны случаи, когда характеристики машины не будут соответствовать требованиям стандартов. На качество сборки влияют правильная организация рабочего места и использование исправного инструмента. Собранная машина подвергается обкатке и испытаниям.

§ 10.1. Балансировка роторов и якорей

Перед сборкой производят балансировку роторов (якорей) и других вращающихся деталей, если они ремонтировались или при предремонтных испытаниях была обнаружена повышенная вибрация. Согласно ГОСТ 12327-79 компенсация неуравновешенности должна производиться в двух плоскостях исправления при отношении осевого размера L детали к диаметру D больше 0,2; при L/D<0,2 - в одной плоскости. Детали, устанавливаемые на отбалансированный ротор, балансируются отдельно. Если деталь устанавливают на ротор (якорь) с помощью шпонки, то она балансируется со шпонкой, а ротор - без шпонки.

При одной плоскости исправления ротор (якорь) можно балансировать как статическим, так и динамическим способами, а при двух плоскостях - только динамическим.

Статическая балансировка. Ротор балансируют на призмах (10.1). Отклонение плоскости призм от горизонтальной плоскости не должно превышать 0,1 мм на 1 м длины призмы. Шероховатость поверхности призм должна быть не хуже

Ротор (якорь) устанавливают на призмы и легким толчком выводят из равновесия, предоставляя ему возможность катиться по призмам. После нескольких качаний несбалансированный ротор (якорь) остановится. В верхней точке ротора устанавливают пробный груз и повторяют опыт. Так поступают несколько раз и подбирают груз. Ротор считается отбалансированным, если он останавливается без качаний в состоянии безразличного равновесия. Пробный груз взвешивают и на его место устанавливают штатный груз, равный по массе пробному.

Если балансируемые детали не имеют вала, то изготовляют технологический вал, на котором производят балансировку.

Динамическая балансировка. Ротор балансируют на станке при его вращении. Современные балансировочные станки позволяют определить место установки и массу груза. Их использование при ремонте весьма желательно, но при большой номенклатуре ремонтируемых машин частная переналадка снижает эффективность станков и их применение не всегда является обоснованным. Использование универсального балансировочного станка позволяет решить эту задачу (10.2).

Балансируемый ротор 4 устанавливают на четыре круглые опоры 2 и 6. Опоры расположены на раме 7, состоящей из двух круглых балок. Двигателем 5 через ремень 3 ротор приводится во вращение. Левая сторона рамы крепится к основанию плоской пружиной 1 и при вращении ротора остается неподвижной, а правая сторона опирается на пружины 9 и при вращении ротора начинает колебаться под действием неуравновешенных масс правой стороны ротора.

Величину колебаний показывает стрелочный индикатор 8. После определения величины колебаний останавливают ротор и навешивают пробный груз (пластилин) на правую сторону ротора. Если при очередном вращении величина колебаний увеличивается, то это означает, что пробный груз установлен неверно. Передвигая груз по окружности, находят место, где его расположение вызывает наименьшие колебания. Затем начинают изменять массу пробного груза, добиваясь минимума колебаний. Отбалансировав правую часть, снимают пробный и устанавливают постоянный груз. Затем ротор поворачивают и балансируют вторую сторону.

4 апреля 2011

Для статической балансировки служит станок, представляющий собой опорную конструкцию из профильной стали с установленными на ней призмами трапециевидной формы. Длина призм должна быть такой, чтобы ротор мог сделать на них не менее двух оборотов.

Ширина рабочей поверхности призм а определяется по формуле:

где: G — нагрузка на призму, кг; Е — модуль упругости материала призмы, кг/см 2 ; р — расчетная удельная нагрузка, кг/см 2 (для твердой закаленной стали р = 7000 — 8000 кг/см 2); d — диаметр вала, см.

Практически ширину рабочей поверхности призм балансировочных станков для балансировки роторов массой до 1 т принимают 3 — 5 мм. Рабочая поверхность призм должна быть хорошо отшлифована и способна, не деформируясь, выдерживать массу балансируемого ротора.

Станки для балансировки роторов (якорей) электрических машин:

а — статической, б — динамической;

1 — стойка, 2 — балансируемый ротор, 3 — стрелочный индикатор, 4 — муфта расцепления, 5 — электродвигатель привода, б сегменты, 7 — зажимные болты, 8 — подшипник, 9 — плита.

Статическая балансировка ротора на станке производится в такой последовательности. Ротор укладывают шейками вала на рабочие поверхности призм. При этом ротор, перекатываясь на пркзмах, займет такое положение, при котором его наиболее тяжелая часть окажется внизу.

Для определения точки окружности, в которой должен быть установлен балансирующий груз, ротор пять раз перекатывают и после каждой остановки отмечают мелом нижнюю «тяжелую» точку. После этого на небольшой части окружности ротора окажется пять меловых черточек.

Отметив середину расстояния между крайними меловыми отметками, определяют точку установки уравновешивающего груза: она находится в месте, диаметрально противоположном средней тяжелой токе. В этой точке и устанавливают уравновешивающий груз.

Массу его подбирают опытным путем до тех пор, пока ротор не перестанет перекатываться, будучи остановлен в любом произвольном положении. Правильно сбалансированный ротор после перекатывания в одном и другом направлениях должен во всех положениях находиться в состоянии безразличного равновесия.

При необходимости более полного обнаружения и устранения оставшегося небаланса окружность ротора делят на шесть равных частей. Затем, укладывая ротор на призмах так, чтобы каждая из отметок поочередно находилась на горизонтальном диаметре, в каждую из шести точек поочередно навешивают небольшие грузы до тех пор, пока ротор не выйдет из состояния покоя.

Массы грузов для каждой из шести точек будут различными. Наименьшая масса будет в тяжелой точке, наибольшая — в диаметрально противоположной точке ротора.

При статическом методе балансировки уравновешивающий груз устанавливают только на одном торце ротора и таким образом устраняют статический небаланс.

Однако этот способ балансировки применим только для коротких роторов мелких и тихоходных машин. Для уравновешивания масс роторов крупных электрических машин (мощностью свыше 50 квт) с большими скоростями вращения (больше 1000 об/мин) применяют динамическую балансировку, при которой уравновешивающий груз устанавливают на обоих торцах ротора.

Это объясняется тем, что при вращении ротора с большой скоростью каждый его торец имеет самостоятельное биение, вызванное несбалансированными массами.

«Ремонт электрооборудования промышленных предприятий»,
В.Б.Атабеков

В современных электрических машинах применяют главным образом шариковые или роликовые подшипники качения. Они просты в эксплуатации, хорошо противостоят резким колебаниям температуры, легко могут быть заменены при износе. Подшипники скольжения применяют в крупных электрических машинах. Подшипники качения При ремонте электрической машины с подшипниками качения, как правило, ограничиваются промывкой подшипников и закладкой в них новой порции соответствующей…

Заключительными этапами проверки ремонтируемого электродвигателя являются измерения зазоров и пробный пуск. Величины зазоров измеряют при помощи набора стальных пластин — щупов толщиной от 0,01 до 3 мм. У асинхронных машин измеряют зазор с обоих торцов в четырех точках между активной сталью ротора и статора. Зазор должен быть одинаковым по всей окружности. Величины зазоров в диаметрально…


Степень износа подшипников качения определяют, измеряя их радиальные и аксиальные (осевые) зазоры на несложных приспособлениях, изготовляемых в мастерских электроцеха предприятия. Для замера на таком приспособлении радиального зазора подшипник 11 устанавливают на вертикальной плите 8 приспособления. Наложив на внутреннее кольцо 2 подшипника стальную шланку 10, закрепляют его гайкой, навернутой на стержень 9 приваренный к вертикальной плите;…

В практике ремонта электрических машин нередко возникает необходимость в расчете обмоток или пересчете их на новые параметры. Расчеты обмоток производят обычно при отсутствии у электродвигателя, подлежащего ремонту, паспортных данных или в случае поступления в ремонт двигателя без обмотки. Потребность в пересчете обмоток возникает также при необходимости изменения числа оборотов или напряжения, переделке односкоростных двигателей на…

К токособирательной системе электрических машин относят коллекторы, контактные кольца, щеткодержатели с траверсами и щеткоподъемным механизмом, короткозамыкающие кольца фазных роторов старых конструкций. В процессе работы машины отдельные элементы токособирательной системы изнашиваются, вследствие чего нарушается ее нормальная работа. Наиболее распространенными дефектами токособирательной системы являются: недопустимый износ коллектора и контактных колец, появление на их рабочих поверхностях неровностей и…

Для динамической балансировки наиболее удобен станок резонансного типа, состоящий из двух сварных стоек, опорных плит и балансировочных головок. Головки состоят из подшипников, сегментов 6 и могут быть закреплены неподвижно болтами либо свободно качаться на сегментах.

Балансируемый ротор приводится во вращательное движение электродвигателем. Муфта расцепления служит для отсоединения вращающегося ротора от привода в момент балансировки.

Динамическая балансировка роторов состоит из двух операций: измерения первоначальной величины вибрации, дающей представление о размерах неуравновешенности масс ротора; нахождения тючки размещения и определения массы уравновешивающего груза для одного, из торцов ротора.

При первой операции головки станка закрепляют болтами. Ротор при помощи электродвигателя приводится во вращение, после чего привод отключают, расцепляя муфту, и освобождают одну из головок станка.

Освобожденная головка под действием радиально направленной центробежной силы небаланса раскачивается, что позволяет стрелочным индикатором 3 измерить амплитуду колебания головки. Такое же измерение производится для второй головки.

Вторая операция выполняется методом «обхода груза». Разделив обе стороны ротора на шесть равных частей, в каждой точке поочередно закрепляют пробный груз, который должен быть меньше предполагаемого небаланса.

Затем описанным выше способом измеряют колебания головки для каждого положения груза. Наивыгоднейшим местом размещения груза будет точка, у которой амплитуда колебаний была минимальной.

Массу уравновешивающего груза Q получают из выражения:

где: Р - масса пробного груза; К 0 - первоначальная амплитуда колебаний до обхода пробным грузом; К мин - минимальная амплитуда колебаний при обходе пробным грузом.

43.Последовательность операций при сборке электрических машин после ремонта.

Общая сборка машин переменного тока включает: монтаж подшипников, ввод ротора в статор, запрессовку подшипниковых щитов, измерение воздушных зазоров. Ввод ротора осуществляется теми же приспособлениями, которые применяют при разборке. Большого внимания и опыта эта операция требует при сборке крупных машин, так как даже легкое прикосновение массивного ротора может привести к значительному повреждению обмоток и сердечников.

Последовательность сборки и ее трудоемкость в первую очередь определяются сложностью конструкции электрической машины. Наиболее проста сборка асинхронных двигателей с короткозамкнутым ротором.

Вначале подготовляют к сборке ротор, насаживая на вал шарикоподшипники. Если у подшипниковых опор есть внутренние крышки, сначала их надевают на вал, заполняя уплотнительные канавки смазкой. Подшипники закрепляют на валу стопорным кольцом или гайкой, если это предусмотрено конструкцией машины. Роликовые подшипники разделяются на две части: внутреннее кольцо вместе с роликами насаживают на вал, наружное устанавливают в щит.

После ввода ротора в статор в подшипники закладывают консистентную смазку, щиты надевают на подшипники и вдвигают в корпус центрирующими поясками, закрепляя болтами. Все болты первоначально ввертывают на несколько ниток, затем, поочередно затягивая их в диаметрально противоположных точках, запрессовывают щит в корпус. После сборки проверяют легкость вращения ротора и производят обкатку на холостом ходу, проверяя подшипники на нагрев и шум. Затем двигатель отправляют на испытательную станцию.

Сборку машин постоянного тока начинают с подготовки якоря, индуктора и подшипниковых щитов.

На якорь, состоящий из вала, сердечника с обмоткой, коллектора и балансировочного кольца, напрессовывают вентилятор. На оба конца вала надевают внутренние крышки подшипниковых опор и напрессовывают шарикоподшипники. У роликовых подшипников напрессовывают только внутреннее кольцо. На наружное кольцо подшипника со стороны, противоположной коллектору, напрессовывают щит. В подшипник закладывают смазку и закрывают его наружной крышкой.

Сборка индуктора включает в себя установку в корпус главных и добавочных полюсов с катушками и выполнение между катушечных соединении. Полюса сначала запрессовывают в катушки, устанавливая прокладки, рамки, пружины и др. Катушка или рамка, которая в нее упирается, должна выступать над поверхностью затылка полюса, чтобы обеспечить надежный зажим катушек при затяжке болтов крепления полюсов.

Небольшие полюса с катушками сборщик поддерживает при монтаже рукой, тяжелые полюса сначала закрепляют на приспособлении скобами или другим способом. Приспособление, показанное на рисунке, предназначено для установки полюсов при вертикальном положении корпуса и состоит из круглого основания, центральной штанги для подъема и транспортировки и рычажно-шарнирного механизма, который обеспечивает прижим полюсов после опускания приспособления в корпус под действием собственной массы.

Катушки главных и добавочных полюсов соединяют согласно схеме. В зависимости от класса изоляции места соединений изолируют несколькими слоями лакоткани или стеклолакоткани и поверху защитной лентой. На гибкие выводы в местах прохода их через стенки станины надевают резиновые втулки, предохраняющие изоляцию выводов от повреждения.

Полярность полюсов проверяют в собранном индукторе с помощью компаса. Обмотку подключают к источнику постоянного тока, компас перемещают но окружности вблизи полюсов. Около каждого соседнего полюса стрелка должна поворачиваться на 180°. По ходу вращения в двигателях за главным полюсом следует одноименный добавочный, в генераторах - добавочный другой полярности.

Щит со стороны коллектора подготовляют к сборке, устанавливая в него и соединяя по схеме комплект щеткодержателей.

Общая сборка машин постоянного тока начинается с запрессовки в индуктор переднего (коллекторного) щита. Эта операция выполняется обычно при вертикальном положении индуктора. Щит вставляют сверху и запрессовывают в корпус крепящими болтами. Ввод якоря и запрессовку заднего щита производят при вертикальном или горизонтальном индукторе. При вертикальной сборке якорь со щитом поднимают за рым-болт, который навертывают на резьбовой конец вала.

Сбалансирован ротор или якорь электродвигателя, когда центр тяжести совмещен с осью вращения.

После ремонта ротора или якоря электродвигателя их обязательно необходимо подвергнуть статической, а иногда и динамической балансировке в сборе с вентиляторами и другими вращающимися частями.

И ротор, и якорь электродвигателя состоят из большого количества деталей, поэтому распределение масс в них не может быть строго равномерным. Чаще всего причина неравномерного распределения масс заключается в разной толщине или массе отдельных деталей, наличии в них раковин, неодинаковый вылет лобовых частей обмотки и пр.

Каждая из деталей, входящих в состав собранного ротора или якоря, может быть неуравновешенной вследствие смещения ее осей инерции от оси вращения. В собранном роторе или якоре неуравновешенные массы отдельных деталей в зависимости от их расположения могут суммироваться или взаимно компенсироваться. Роторы и якоря, у которых главная центральная ось инерции не совпадает с осью вращения, называют неуравновешенными.

Неуравновешенность, как правило, складывается из суммы двух неуравновешенностей - статической и динамической.

Вращение статически и динамически неуравновешенного ротора и якоря является частой причиной возникновения вибрации при работе электродвигателя, способной разрушить подшипники и фундамент механизма. Разрушающее воздействие неуравновешенных роторов и якорей устраняют путем их балансировки, которая заключается в определении размера и места неуравновешенной массы.

Балансировка производятся нашими мастерами на специальном оборудовании для выявления неуравновешенности масс ротора (якоря).

Неуравновешенность определяют статической или динамической балансировкой. Выбор способов балансировки зависит от требуемой точности уравновешивания в каждой конкретной ситуации. При динамической балансировке получаются более высокие результаты компенсации неуравновешенности (меньшая остаточная неуравновешенность), чем при статической. При выборе способа балансировки необходимо учитывать много нюансов. Например, статическая балансировка применяется для роторов, вращающихся с частотой, не превышающей 1000 об/мин. Статически уравновешенный ротор (якорь) может иметь динамическую неуравновешенность, поэтому роторы, вращающиеся с частотой выше 1000 об/мин, рекомендуют подвергать динамической балансировке, при которой одновременно устраняются оба вида неуравновешенностей - и статическая и динамическая.

Наши специалисты проходят специальное обучение работе с балансировочными станками и приборами, имеют солидный опыт в балансировке и отлично разбираются во всех механизмах электродвигателей. Обратившись в «Элпромтехцентр», Вы можете быть уверены, что все машины на вашем производстве будут работать четко и без сбоев, ведь мы соблюдаем все правила и гарантируем высокое качество проведенных работ.

Если у Вас есть вопросы по поводу перемотки электродвигателей, Вы хотите получить консультацию, рассчитать стоимость или записаться на ремонт - обращайтесь к специалистам "Элпромтехцентр" в отдел по ремонту электрооборудования.