Как снять фильтр инфракрасного излучения с камеры. Инфракрасная фотография - смотритель закатов

Как снять фильтр инфракрасного излучения с камеры. Инфракрасная фотография - смотритель закатов

Ильина Марина Андреевна 3045

В поисках необычных идей для фотографий и видеоматериала оператор порой заглядывает в самые отдаленные уголки планеты, ищет фантастические точки съемки и даже выходит за пределы способностей человеческого глаза.

Для реализации последнего оператору на помощь приходит набор специально сконструированных дополнений к объективам. В фото- и видеосреде их называют светофильтрами. Часто при их использовании получается действительно фантастическая и неожиданная картинка.

Именно таким свойством обладает и герой этого обзора – инфракрасный фильтр для объектива.

Он представляет собой темное, часто совсем черное, стекло. ИК-фильтр при съемке ограничивает поступление от объекта съемки на собирающую поверхность – матрицу фотоаппарата или видеокамеры – любых лучей, кроме инфракрасных. Не стоит думать, что инфракрасные фильтры позволяют регистрировать собственные «тепловые» лучи, испускаемые любым нагретым телом. Изображения, созданные с их помощью, получаются при регистрации тех лучей, которые это тело может отразить в инфракрасном диапазоне.

Что же получается в итоге? Для того чтобы понять это перед началом съемки используют следующее правило: чем сильнее предмет поглощает ИК-излучение, тем он сильнее нагревается (например, на солнце) и тем темнее получится на фотографии или в видеокадре.

Цены в интернет-магазинах:

Privezite 4 200 Р

Privezite 23 426 Р

LightPhotos 1 590 Р
LightPhotos 1 710 Р

Оглядимся по сторонам: хорошо отражают инфракрасные лучи (а, значит, получатся светлыми или даже белыми) листья, трава и снег. Поглощают же – асфальт, вода и небо, что делает их темными или даже черными на изображениях.

Съемка с инфракрасным фильтром позволяет создать действительно сюрреалистичные кадры. Слишком контрастные белые облака на черном небе, листва будто бы покрытая толстым слоем пепла, нарочито бледные лица с черными глазами придают неожиданное звучание и драматизм даже самым простым изображениям.

Если Вы решили попробовать съемку с инфракрасным фильтром, то обратите внимание на следующие пункты:

  1. Не все фотоаппараты и видео камеры позволяют создавать кадры с инфракрасным фильтром. Часто производители фото- и видеоаппаратуры ставят внутри камеры, перед матрицей, свой инфракрасный фильтр. Это делается для того, чтобы отсечь попадание любых ИК-лучей, которые при «обыкновенной» съемке считаются шумом, на матрицу. Узнать, способна ли Ваша камера снимать в ИК, можно лишь экспериментально.
  2. Инфракрасные лучи гораздо слабее лучей в видимом диапазоне. А, значит, для съемки с инфракрасным фильтром просто необходимо использовать штатив.

Рассказать друзьям

Несколько лет назад я впервые услышал об инфракрасной фотографии и об удивительных возможностях, которые она открывает перед любителем фотографических экспериментов. К сожалению, информации на эту тему в сети было слишком мало и нередко она была противоречива. В частности, во многих источниках указывалось, что для владельцев зеркальных цифровых камер инфракрасная фотография совершенно невозможна.


1. Общая информация об инфракрасной съёмке

Информации об инфракрасном спектре в сети достаточно много, поэтому ограничусь коротким описанием.

Спектр инфракрасного излучения делится примерно на три участка, границы между которыми строго не определены:
Ближнее (IR-A): 750–1400 нм
Среднее (IR-B): 1400–3.000 нм
Дальнее (IR-C): 3.000–1.000.000 нм (0,003-1 мм)

Разница между ними состоит в способности передавать энергию молекулам воды и, тем самым, живым организмам. Дальнее инфракрасное излучение, обладающее такой способностью, воспринимается нами как тепло. Матрица цифровой камеры не может зафиксировать волны этой части спектра, поэтому для инфракрасной фотографии представляет интерес только ближнее инфракрасное излучение.

Эффекты, которых позволяет добиться ИК-фотография, связаны с количеством отражённого от различных материалов света. Как видно из графика, листва отражает инфракрасные лучи гораздо сильнее, чем видимый свет, в то время как вода отражает видимый свет и поглощает инфракрасное излучение.

Процент отражённого света в зависимости от длины волны и материала. Пунктирной линией примерно обозначено начало инфракрасного спектра.
Оригинал графика: © J. Andrzej Wrotniak

Ещё раз хочу подчеркнуть, что результаты ИК-фотографии никак не связаны ни с излучаемыми, ни с отражаемыми тепловыми волнами. Тепловые волны лежат в диапазоне IR-C и на матрицу цифровых камер если и влияют, то только в качестве увеличения шума от нагревания светочувствительных элементов. Однако эти части спектра часто путают, поскольку предметы, отражающие дальнее тепловое инфракрасное излучение, отражают чаще всего и ближнее излучение IR-A. Так листва, отражающая тепловые лучи, чтобы избежать перегрева, отражает к тому же практически весь спектр от IR-A до IR-C. Поэтому хвоя и листья на ИК-фотографиях выглядят светлыми. Это явление называется называется Wood-эффектом, но не по аналогии с лесом, а в честь фотографа Роберта Вуда , который в 1910 первым опубликовал инфракрасные фотографии, сделанные с помощью особого, экспериментального типа плёнки.

2. Инфракрасный фильтр

Несмотря на то, что матрицы цифровых камер чувствительны к инфракрасному излучению, их чувствительность к видимому свету в сотни, а то и в тысячи раз больше, поэтому для того, чтобы сделать ИК-фотографию, необходимо блокировать видимый свет. Инфракрасные фильтры блокируют излучение, начиная с разной длины волн, и, в зависимости от производителя, могут также называться по-разному. В таблице приведены названия и характеристики некоторых из них. В последней колонке указаны длины волн, при которых пропускная способность фильтра равна 50%. Фильтры Heliopan изготавливаются из стекла фирмы Schott и носят те же названия. В некоторых источниках можно встретить несколько иные данные. А.Вротняк приводит таблицу, в которой RG695 и B+W092 сответствуют характеристикам #89B и R72. Судя по фотографиям, которые я находил в сети, это неверно. Фильтр RG695 пропускает слишком много видимого света и делать качественные инфракрасные фотографии с ним невозможно. Пропускные характеристики фильтра Cokin 007, судя по снимкам, сделанным на камеры Canon, также не соответствуют характеристикам Hoya R72.

Инфракрасные и тёмно-красные фильтры
© Gisle Hannemyr

Фильтры и их пропускная способность
© J. Andrzej Wrotniak

Из графика, показывающего пропускную способность различных фильтров в зависимости от длины волны, следует, что некоторые фильтры пропускают также часть видимого света, красная часть которого заканчивается на 700-720 нм. Для фотографа это не является недостатком. Элементы матрицы, ответственные за разные цвета, по-разному чувствительны к инфракрасному свету и к проникающим через фильтр небольшим количествам красного, поэтому на фотографии получаются так называемые псевдоцвета. По этой причине для цифровой инфракрасной съёмки лучше всего подходит фильтр Hoya R72 (#89B), блокирующий излучение, начиная с 680 нм. С одной стороны, он пропускает немного видимого света, что укорачивает время выдержки; с другой, позволяет делать типично инфракрасные фотографии.

Если вы уверены, что ваша камера обладает достаточной чувствительностью к инфракрасному спектру, можете поэкспериментировать с "чёрным" фильтром B+W 093 (#87C), который блокирует весь видимый спектр и даёт возможность делать монохромные фотографии, увеличивая выдержку в среднем на две ступени по сравнению с R72. Правда, фотографии, сделанные #87C , практически неотличимы от фотографий с фильтром Hoya R72, так что ничего, кроме лишних ступеней выдержки, это не даёт.

Альтернативой навинчивающимся фильтрам является фильтр Cokin 007, который также встречается под названием Cokin #89B и теоретически пропускает ту же часть спектра, что и Hoya R72. Кроме неудобств, свойственным всем кукинским фильтрам (царапины, следы от пальцев), у Cokin 007 есть проблема со светом, проникающим между объективом и фильтром за длительное время выдержки. Я тестировал этот фильтр только один раз и отказался от него именно по этой причине - при свете сбоку или сзади блики на фотографии слишком сильны, чтобы их можно было незаметно отретушировать. Однако в этой статье рассказано, как с помощью простого резино-тканевого пояска избавиться от этой проблемы. Кроме того, хотя по спецификации фильтр Cokin 007 имеет те же свойства, что и Hoya R72, производители скорее всего не смогли из-за особенностей материала соответствовать пропускной характеристике 89B. На фотографиях, получающихся при съёмке камерами Canon через Cokin 007, инфракрасный эффект выражен заметно слабее, чем при использовании Hoya R72.

Самой дешёвой возможностью фильтровать видимый свет является использование вместо фильтра проявленной незасвеченной слайдовой плёнки. Такой вариант опробован многими фотографами, но сам я его не проверял, так что о достоинствах и недостатках ничего сказать не могу.

Если вы решите в пользу навинчивающегося фильтра или фильтра Cokin, советую сперва узнать, какие из имеющихся в наличии объективов подходят для инфракрасной съёмки, потом приобрести фильтр или держатель для самого большого диаметра, а для остальных объективов купить переходные кольца. О подходящих для ИК-фотографии объективах – чуть ниже.

Да, чуть не забыл, - несмотря на то, что тёмные фильтры вроде Hoya R72 не пропускают видимый свет, не стоит через них смотреть на солнце. Хотя увидеть сквозь них почти ничего нельзя, они прекрасно пропускают инфракрасные и ультрафиолетовые лучи, так что сетчатке глаза подобные эксперименты вряд ли понравятся. Если же вы знакомы с людьми, которые всё же интереса ради проводили много часов, глядя на солнце сквозь инфракрасные фильтры, напишите мне, пожалуйста, как они поживают.

3. О фильтре, мешающем жить ИК-фотографу

Прежде чем задуматься о покупке ИК-фильтра, следует убедиться, что камера способна делать инфракрасные фотографии. На самом деле я пока не слышал о камерах, которые были бы совершенно непригодны для этой цели. Матрицы всех цифровых камер восприимчивы к инфракрасному свету, но дело в так называемом Hot-mirror фильтре, блокирующем инфракрасный свет. Этот фильтр находится непосредственно на матрице и предназначем для того, чтобы избежать неверных отображений цветов, которые вносит инфракрасное излучение. Разница в экспозиции между видимым и инфракрасным светом 11-13 ступеней, как у Canon 5D или Nikon 200D, достаточна, чтобы инфракрасные лучи не имели никакого эффекта на обычной фотографии. Но и меньшие значения, как у D50/D70 (утвеждают что 6-8) также вполне приемлемы. При такой разнице влияние ИК-света настолько мало, что оно не отражается на контрасте и цветах изображения.

В камерах Leica m8 (сентябрь 2006) этот анти-ИК-фильтр был не очень эффективен (если он вообще был), что приводило к искажению серых оттенков одежды в сторону магенты. Фирме Leica пришлось решать проблему, рассылая владельцам камер бесплатные фильтры, блокирующие ИК-свет. Такая вот шутка юмора. Это тем более странно, если учесть, что проблема была известна по другим камерам .

В некоторых камерах, например, Sony, есть возможность убирать с матрицы фильтр Hot-mirror, переключаясь в режим Night Shot. К сожалению, минимальная выдержка при этом ограничена довольно большим значением. Причина ограничения - в способности лучей IR-A проникать через некоторые текстильные материалы, особенно светлых тонов. Ранние модели видеокамер Sony, как утверждают сетевые , позволяли таким образом запечатлеть гораздо больше, чем хотелось бы объектам съёмки, особенно в солнечную погоду на пляже. После того, как этот факт стал известен, видеокамеры были быстро изъяты из продажи, и с тех пор на всякий случай и на всех фотокамерах Sony установлены ограничения минимальной выдержки в режиме ночной съёмки. Видеокамерами Sony я не пользовался, так что не знаю, как они разобрались в них с этой проблемой. Что касается способности камер Canon просвечивать через одежду, то мои эксперименты с различными материалами не увенчались успехом. Напротив - некоторые материалы, например, полиамид, в солнечном свете на обычных фотографиях просвечивают гораздо сильнее, чем на инфракрасных.

Когда в феврале 2005-го Canon объявил о выпуске новой модели 20Da с увеличенной пропускной способностью фильтра в области 656 нм и предназначенной специально для астрофотографии, любители ИК-фотографии радостно оживились. Но оживление быстро улеглось, когда из спецификации 20Da стало известно, что ИК-волны от 700 нм блокируются в этой камере так же, как и в 20D, то есть очень сильно. Несмотря на это, с фильтром Hoya R72, пропускающим часть видимого света, 20Da примерно на 5 ступеней экспозиции чувствительней к ИК-свету , чем 20D.

Во многих источниках указывается, что фильтр Hot-mirror предотвращает появление муара. С технической точки зрения это неверно. Муар появляется на фотографиях сетчатых или линейных структур, как москитные сетки. Происходит это из-за наложения периодического рисунка, передаваемого линзой, на светочувствительные элементы матрицы цифровой камеры, также представляющего из себя периодическую дискретную структуру. Аналогичный эффект можно увидеть, если положить две москитные сетки с мелкими ячейками друг на друга под углом. Одна сетка в нашем случае - объект съёмки, другая - матрица. Короче говоря, инфракрасные лучи тут совершенно ни при чём.

Против муара на матрице устанавливают так называемый Low-pass фильтр, который немного размывает изображение. Против влияния инфракрасного света устанавливают фильтр Hot-mirror , обычно представляющий из себя напыление на фильтре Low-pass, отражающее инфракрасные лучи, не давая им попадать на матрицу. Сам фильтр Low-pass также блокирует какую-то часть инфракрасных лучей, но это скорее побочный эффект материала, из которого он изготовлен, а не основное его предназначение. То есть та штука, которая лежит на матрице большинства цифровых камер, представляет из себя бутерброд из фильтров Low-pass и Hot-mirror (напыления), толщина которых может варьироваться независимо друг от друга. В некоторых камерах этот бутерброд включает в себя также фильтр, дополнительно поглощаюший лучи инфракрасного спектра.

У камер разных производителей фильтр на матрице различается по устройству. Так, на камере Canon 5D на матрице находится комбинация из двух фильтров Low-pass; фильтра, поглощающего инфракрасные лучи; фильтра, преобразующего линейно поляризованный свет в циркулярно поляризованный; плюс напыление Hot-mirror (5D-White Paper, страница 7, pdf). В некоторых источниках все они вместе называются антиалиасным фильтром (АА filter), хотя действительно антиалиасным (предотвращающим муар) из них является только фильтр Low-pass.

У камер Kodak, по утверждению самой фирмы, нет фильтра Hot-mirror, поскольку ИК-лучи полностью задерживаются их АА-фильтром. Короче говоря, в терминологии между АА, Low-Pass и Hot-mirror царит большая путаница.

Как пример независимости фильтров АА и Hot-мirror друг от друга, можно, во-первых, вспомнить, что некоторые умельцы удаляют из своих камер фильтр-бутерброд, чтобы достичь максимальной резкости, то есть их целью является удаление АА фильтра. После этого им приходится специально заказывать фильтр Hot-мirror, чтобы избежать пониженного контраста из-за влияния ИК-света. Во-вторых, антиалиасные способности фильтра Canon 5D меньше, чем у 350D, благодаря чему в принципе возможны более резкие изображения, но и подверженность муару у 5D больше. В то же время чувствительность к инфракрасному излучению у 5D примерно на одну ступень ниже, чем у 350D.

4. Цифровые камеры для инфракрасной съёмки

Классический метод поверки камеры на ИК-пригодность - с помощью дистанционного пульта, например, от телевизора. С компактными цифровыми камерами, показывающими объект съёмки непосредственно на экране, всё просто: пульт следует направить лампочкой в объектив и нажать на нём какую-нибудь кнопку. На экране фотоаппарата будет видно, как лампочка светится розоватым или голубым светом.

Canon PowerShot S40, 1/25 сек.

С цифровыми зеркалками тест немного сложнее - камеру следует поставить на стол или на штатив, напротив объектива положить пульт и сфокусироваться на пульте. Выдержку поставить побольше - на несколько секунд, открыть диафрагму пошире и отключить автофокус. Теперь выключить свет в комнате и сделать кадр. Если на фотографии не будет светлого пятна от лампочки, то можно попробовать увеличить выдержку в несколько раз. Если кадр всё ещё чёрный, то не исключено, что в пульте нужно поменять батарейки. Если не первое, ни второе не поможет, напишите, пожалуйста, мне, поскольку пока я пребываю в уверенности, что все зеркалки чувствительны к ИК-волнам, но, конечно же, всех их я не тестировал.

Canon 350D, ISO100. Слева - EF 50/1,8, справа - EF 50/1,4. Оба объектива - f2, 1 секунда. Причина разницы между результатами теста описана в разделе 6.

Зеркальные камеры Canon снабжены очень эффективным фильтром Hot-mirror, поэтому владельцы этих камер должны быть готовы к очень длинным выдержкам, это же касается и владельцев Nikon D200, анти-ИК-фильтр которого намного сильнее фильтров D70 или D50. При условиях съёмки, требующих на Nikon D70 всего 1 секунду выдержки, на D200 или Canon 20D потребуется выдержка в 30 секунд. Владельцам цифрозеркалок Olympus также придётся снимать с длинными выдержками - при ИК-съёмке на E-500 экспозиция увеличивается на 11 ступеней по сравнению с видимым светом, в то время как для C-2000Z эта разница составляет 7 ступеней, то есть выдержка на нём в 16 раз меньше.

Таблицу со списком некоторых компакт-камер и примерным увеличением экспозиции для ИК-света можно найти на jr-worldwi.de .

Примеры инфракрасных фотографий, сделанных различными камерами, а также уровень шума в цветовых каналах и при различных значениях чувствительности можно найти на dimagemaker.com .

Камеры, которые точно позволяют делать ИК-фотографии:


- Canon IXUS 430, 500, 700, V2, Powershot A70, A75, A80, A95, G1, G2, G3, G5, G6, 10D, 1D Mark II, 5D, 20D, 30D, 300D, 350D, 400D, 500D, D30, D60
- Fuji S3 Pro UVIR, Fuji S5600, Fuji S9500
- Minolta Dimage 7
- Kodak P880
- Nikon Coolpix 950, 990, 4500, 5400, 5700, 8400, 8800, D100, D200, D50, D70
- Olympus C-220, C-720, C-2000Z, C-3030, C-4000, C-4040, C-5060, C-7070, C-70, C-750, C-770, C-765, C8080, E-10, E-20p, E-330, E-500
- Panasonic FZ30
- Pentax K100D
- Samsung Pro815
- Sony DSC F828, F504V, F707, F717, A100, H1, H5, P52, R1, S75, S85, V1, V3, W1

На исходник для следующей фотографии, снятый не только в пасмурную погоду, но ещё и в тени, потребовалось 40 минут.

5.4. Баланс белого

Фотографии, сделaнные с фильтрами, пропускающими часть видимого красного света, как Hoya R72, обычно кажутся равномерно окрашенными в красные тона: в зависимости от камеры, в алый или пурпурный. На самом деле тональность не одинакова на всех объектах, поэтому изменение баланса белого может сделать фотографию цветной. На цифрокомпактах для этого следует предварительно установить баланс белого по траве или листьям через фильтр. Если есть возможность, делайте съёмку в RAW. Это позволит, во-первых, исправить ошибки экспозиции, которые неизбежны при определении выдержки на глаз, во-вторых, выставить баланс белого в RAW-конвертере.

Левая верхняя фотография конвертирована из RAW без изменения баланса белого. В правой верхней фотографии баланс белого был выставлен по листве. Две нижние фотографии получились из соответствующих верних с помощью перемены каналов, о которой рассказано в разделе 7.1.

Результат изменения баланса белого зависит от использованного объектива и, конечно же, от цвета объекта, который выбран как "нейтральный". Баланс белого по листьям или траве немного отличается от баланса белого по хвое.

Список объективов для камер Canon с указанием пригодности для инфракрасной съёмки приведён в конце статьи. Среди непригодных упомянуты также объективы, пригодные только при полностью открытой диафрагме или только при максимальном фокусном расстоянии.

Не знаю как вам, а мне всегда было интересно: как выглядел бы мир, если бы цветовые каналы RGB в глазу человека были чувствительны к другому диапазону длин волн? Порывшись по сусекам, я обнаружил инфракрасные фонарики (850 и 940нм), комплект ИК фильтров (680-1050нм), черно-белую цифровую камеру (без фильтров вообще), 3 объектива (4мм, 6мм и 50мм) расчитанные на фотография в ИК свете. Что-ж, попробуем посмотреть.

На тему ИК фотографии с удалением ИК фильтра на хабре - на этот раз у нас будет больше возможностей. Также фотографии с другими длинами волн в каналах RGB (чаще всего с захватом ИК области) - можно увидеть в постах с Марса и в целом.


Это фонарики с ИК диодами: 2 левых на 850нм, правый - на 940нм. Глаз видит слабое свечение на 840нм, правый - только в полной темноте. Для ИК камеры они ослепительны. Глаз похоже сохраняет микроскопическую чувствительность к ближнему ИК + излучение светодиода идет с меньшей интенсивностью и на более коротких (=более видимых) длинах волн. Естественно, с мощными ИК светодиодами нужно быть аккуратным - при везении можно незаметно получить ожег сетчатки (как и от ИК лазеров) - спасает лишь то, что глаз не может излучение в точку сфокусировать.

Черно-белая 5-и мегапиксельная noname USB камера - на сенсоре Aptina Mt9p031. Долго тряс китайцев на тему черно-белых камер - и один продавец наконец нашел то, что мне было нужно. В камере нет никаких фильтров вообще - можно видеть от 350нм до ~1050нм.

Объективы: этот на 4мм, еще есть на 6 и 50мм. На 4 и 6мм - рассчитанные на работу в ИК диапазоне - без этого для ИК диапазона без перефокусировки снимки получались бы не в фокусе (пример будет ниже, с обычным фотоаппаратом и ИК излучением 940нм). Оказалось, байонет C (и CS с отличающимся на 5мм рабочим отрезком) - достался нам еще от 16мм кинокамер начала века. Объективы до сих пор активно производятся - но уже для систем видеонаблюдения, в том числе и известными компаниями вроде Tamron (объектив на 4мм как раз от них: 13FM04IR).

Фильтры: нашел опять у китайцев комплект ИК фильтров от 680 до 1050нм. Однако тест на пропускание ИК излучения дал неожиданные результаты - это похоже не полосовые фильтры (как я себе это представлял), а похоже разная «плотность» окраски - что изменяет минимальную длину волны пропускаемого света. Фильтры после 850нм оказались очень плотными, и требуют длинных выдержек. IR-Cut фильтр - наоборот, пропускает только видимый свет, понадобится нам при съемке денег.

Фильтры в видимом свете:

Фильтры в ИК: красный и зеленый каналы - в свете 940нм фонарика, синий - 850нм. IR-Cut фильтр - отражает ИК излучение, потому у него такой веселенький цвет.

Приступим к съемке

Панорама днем в ИК: красный канал - с фильтром на 1050нм, зеленый - 850нм, синий - 760нм. Видим, что деревья особенно хорошо отражают именно самый ближний ИК. Цветные облака и цветные пятна на земле - получились из-за движения облаков между кадрами. Отдельные кадры совмещались (если мог быть случайный сдвиг камеры) и сшивались в 1 цветную картинку в CCDStack2 - программа для обработки астрономических фотографий, где цветные снимки часто делают из нескольких кадров с различными фильтрами.

Панорама ночью: видно отличие по цвету разных источников света: «энергоэффективные» - синие, видны только в самом ближнем ИК. Лампы накаливания - белые, светят во всем диапазоне.

Книжная полка: практически все обычные объекты практически бесцветны в ИК. Либо черные, либо белые. Лишь некоторые краски имеют выраженный «синий» (коротковолновый ИК - 760нм) оттенок. ЖК экран игры «Ну погоди!» - в ИК диапазоне ничего не показывает (хотя работает на отражение).

Сотовый телефон с AMOLED экраном: совершенно ничего не видно на нем в ИК, равно как и синего индикаторного светодиода на подставке. На заднем фоне - на ЖК экране также ничего не видно. Синяя краска на билете метро прозрачна в ИК - и видна антенна для RFID чипа внутри билета.

На 400 градусах паяльник и фен - довольно ярко светятся:

Звезды

Известно, что небо голубое из-за Рэлеевского рассеяния - соответственно в ИК диапазоне оно имеет намного мЕньшую яркость. Возможно ли увидеть звезды вечером или даже днем на фоне неба?

Фотография первой звезды вечером обычным фотоаппаратом:

ИК камерой без фильтра:

Еще один пример первой звезды на фоне города:

Деньги

Первое, что приходит на ум для проверки подлинности денег - это УФ излучение. Однако купюры имеют массу спец.элементов, проявляющихся в ИК диапазоне, в том числе и видимых глазом. Об этом на хабре уже - теперь посмотрим сами:

1000 рублей с фильтрами 760, 850 и 1050нм: лишь отдельные элементы напечатаны краской, поглощающей ИК излучение:

5000 рублей:

5000 рублей без фильтров, но с освещением разными длинами волн:
красный = 940нм, зеленый - 850нм, синий - 625нм (=красный свет):

Однако инфракрасные хитрости денег на этом не заканчиваются. На купюрах есть антистоксовские метки - при освещении ИК светом 940нм они светятся в видимом диапазоне. Фотография обычным фотоаппаратом - как видим, ИК свет немного проходит через встроенный IR-Cut фильтр - но т.к. объектив не оптимизирован под ИК - изображение в фокус не попадает. Инфракрасный свет выглядит светло-сиреневым потому, что RGB фильтры Байера - .

Теперь, если добавить IR-Cut фильтр - мы увидим только светящиеся антистоксовские метки. Элемент выше «5000» - светится ярче всего, его видно даже при не ярком комнатном освещении и подсветке 4Вт 940нм диодом/фонариком. В этом элементе также красный люминофор - светится несколько секунд после облучения белым светом (или ИК->зеленого от антистоксовского люминофора этой же метки).

Элемент чуть правее «5000» - люминофор, светящийся зеленым некоторое время после облучения белым светом (он ИК излучения не требует).

Резюме

Деньги в ИК диапазоне оказались крайне хитрыми, и проверять их в полевых условиях можно не только УФ, но и ИК 940нм фонариком. Результаты съемки неба в ИК - рождают надежду на любительскую астрофотографию без выезда далеко за пределы города.

Нам понадобится кусок не засвеченной, но проявленной обратимой (то есть, «слайдовой») фотоплёнки. Снимая цифровой фотокамерой через этот обрезок слайда, мы и получаем инфракрасные изображения. При этом фотоплёнка исполняет обязанности инфракрасного светофильтра.

Тот факт, что такая плёнка на вид абсолютно непрозрачна и имеет чёрный цвет, не должен нас настораживать. Сама по себе не засвеченная проявленная эмульсия задерживает излучение того диапазона спектра, к которому чувствительна фотоплёнка (то есть, весь видимый диапазон), пропуская всё остальное (то есть ультрафиолетовый и инфракрасный диапазоны). Но, несмотря на такую «демократию» эмульсии по отношению к невидимому диапазону, пластиковая подложка плёнки не в состоянии пропустить ультрафиолет. Поэтому комбинации «эмульсия/подложка» остаётся пропускать только инфракрасное излучение.

Матрица цифровой фотокамеры, как мы знаем, способна его зафиксировать, несмотря на усилия производителей в обратном направлении. Поскольку объектив фотоаппарата, особенно зеркального, имеет достаточно большой диаметр, рекомендуется пользоваться фотоплёнкой формата 120. Ширина такой плёнки составляет 6см, поэтому из неё можно вырезать кусок нужного размера, в отличие от узко-форматной плёнки. Такую плёнку вовсе необязательно покупать и тут же проявлять: готовые ненужные обрезки можно выпросить у оператора в любом пролабе. В качестве держателя такого «светофильтра», можно использовать всё, что есть под рукой, включая саму руку. Если наш самодельный ИК фильтр имеет выпукло-вогнутую форму то его необходимо выправить положив в середину увесистой книги на пару дней.

Лучше пользоваться плёнкой Fujichrome Velvia 100F или Agfachrome RSX II 100 которая даёт ничуть не худший результат.

К недостаткам описанного метода можно отнести пониженный контраст, по сравнению с настоящими инфракрасными изображениями, снятыми через фильтр, и невысокую механическую прочность самодельного «фильтра».

Как работают ИК-камеры?

Инфракрасное излучение является одним из видов излучения, которое нельзя увидеть глазами человека. Его длина волны больше, чем у света в видимом спектре. Инфракрасная подсветка позволяет камере «видеть» даже в полной темноте. Это становится возможным с помощью лампы или диодов, излучающих инфракрасный свет определенной длины волны. Три длины волн 715 нм, 850 нм и 940 нм являются общими для инфракрасных осветителей. Человеческий глаз способен видеть до 780 нм и, следовательно, может слегка видеть осветители, которые используют 715 нм. Для истинного скрытого ночного наблюдения необходимо использовать ИК-прожекторы, работающие при 850 нм и 940 нм.

Свет лампы фильтруется таким образом, чтобы происходило излучение только заранее определенных длин волн 715 нм, 850 нм и 940 нм.

Инфракрасный фильтр своими руками для креативного освещения никон

Эти цифры являются отправными точками в отношении частоты излучаемых волн — они являются абсолютным нижним пределом спектра, используемым камерой. Если человек подойдет достаточно близко, то он сможет понять, что камера является инфракрасной, хотя не сможет видеть используемые длины волн.

Способность камеры для захвата изображений в зависимости от уровня освещенности измеряется в люксах. Чем ниже значение люкс, тем лучше камера может видеть в условиях низкой освещенности. Все ИК-камеры имеют значение 0 люкс, что означает, что они могут видеть в кромешной тьме. Цветные ИК-камеры переключаются в черно-белый режим для видеонаблюдения ночью, чтобы достичь максимальной чувствительности. Фотоэлемент внутри камеры отслеживает дневной свет и определяет, когда необходимо переключение. Следует различать ИК-камеры и камеры День/ночь. День/ночь камеры могут эффективно работать в условиях низкой освещенности, но они не оснащены светодиодами, что делает невозможным их работу в полной темноте, в отличие от камер с ИК-подсветкой.

При использовании ИК-камер для уличного применения, лучше применять готовые комплекты уличных видеокамер с кожухом или камеры с ИК-прожектором. Сочетание ИК камер для помещений с уличным кожухом может работать недостаточно хорошо, ведь ИК свет может отражаться от стекла кожуха. Кроме того, при покупке ИК-камеры или осветителя надо всегда смотреть на значение дальности луча. Установив в помещении ИК камеры с более широким диапазоном, чем размеры помещения, можно получить размытые изображения. Следует отметить, что ИК-камеры не могут видеть сквозь дым. Для того чтобы добиться этого, должна быть использована тепловизионная камера.

Перевод Хай-Тек Секьюрити. Источник: http://www.surveillance-video.com/ea-ir.html

Самодельный инфракрасный светофильтр

Думаю, что такое инфракрасная фотография, знает не каждый, а зря, это довольно-таки интересная штука. Можно сделать инфракрасный фильтр из фотопленки, но в этой статье речь пойдёт о том, как из CD диска сделать ИК фильтр. Сам CD диск должен быть темно-красного цвета, такие диски продают во многих магазинах. Что нам нужно в первую очередь — взять крышку от любой пластиковой бутылки, в моём случае это минералка, и вырезать отверстие как можно большего диаметра. Крышка от пластиковой бутылки хорошо подошла в качестве насадки на объектив.

Фотография №1


Далее вырезанное отверстие нужно очистить от заусениц и покрасить чёрной автокраской из баллончика или любой другой — лишь бы держалась.

Чтобы очистить диск от верхнего слоя, нужно ножом от середины до края провести линию, и под напором воды верхний слой быстро смоется. Затем из диска нужно вырезать три или два квадрата одинакового размера и склеить. Наш самодельный фильтр готов, осталось только его наклеить на заранее подготовленную крышку из пластиковой бутылки. Готово, надеваем фильтр на мыльницу и идём фотографировать.

Фотография №2


Фотографировать будем в режиме фотосъёмки «М », так как нам нужен доступ ко всем настройкам мыльницы. Желательно взять штатив, но так как я фотографировал летом в солнечные дни, света хватало, при чувствительности ISO 200 удавалось фотографировать пейзажи с рук, диафрагма была открыта, что снижало резкость снимка.

Фотография №3


При дополнительной обработке в Adobe Photoshop можно получить самые разные результаты: понизить шум, тонировать или покрасить фотографию как вашей душе угодно.

Фотография №4


На снимках видно что инфракрасный фильтр из CD диска недостаточно резкий, более того скорее он создаёт эффект монокля. Если посмотреть каналы снимка, то красный постоянно засвечен, а если и присутствует, то его резкость крайне низка, синий канал самый контрастный, зелёный не так, но изображение достаточно хорошо просматривается.

Фотография №5


Фотографии, сделанные с помощью этого фильтра, напоминают инфракрасные снимки: зелёная листва светлеет, синее небо и вода темнеет.

Фотография №6

А если ваша мыльница поддерживает формат RAW, изображение можно сделать намного привлекательнее, попробуйте, и я уверен, у вас получится не хуже! О сайте fotomtv.

Зачем мне нужна SplitCam?

Бесплатная программа для веб камеры SplitCam позволяет добавлять к видео красочные вебкам эффекты, которые добавят веселья вам и вашим друзьям! Кроме того SplitCam – это простой и удобный способ разделения видеопотока от вебкамеры.

Инфракрасная цифровая камера своими руками

С помощью SplitCam вы можете общаться в видеочате со всеми друзьями, раздавать видео на онлайн-сервисах и все это одновременно! Подробнее…

  • Красочные эффекты для веб камеры

    Добавляйте наши эффекты для веб камеры в ваше видео во время видеозвонков
    и получайте море положительных эмоций от общения с друзьями! Примеры прикольных эффектов программы SplitCam: искажение лица и замена лица другим объектом, кривое зеркало, подмена заднего плана…

  • � азделение видео потока и подключение нескольких приложений

    Со SplitCam вы можете подключить вебкамеру к нескольким приложениям сразу
    и не получить при этом ошибку с сообщением, что «веб камера уже используется».
    Поверьте, ваша вебкамера может больше!

  • � еалистичные 3D маски

    Простая программа для веб камеры SplitCam позволяет виртуально заменить вашу голову любым 3D объектом. 3D эффекты для вебкамеры выглядят особенно привлекательно. Это может быть, например, голова слона или другого животного, которая повторяет все движения вашей настоящей головы. Также вы можете предстать перед собеседником в 3D маске из популярного фильма, например, в маске Дарта Вейдера.

  • Поддержка всех популярных сервисов

    Skype, Windows Live Messenger, Yahoo Messenger, AOL AIM, ICQ, Camfrog, Gtalk, YouTube, ooVoo, Justin.tv, Ustream и другие…

  • Трансляция видео на популярных сервисах

    Отправляйте видео на Livestream, Ustream, Justin.tv, TinyChat и другие сервисы в несколько кликов. Бесплатная программа для вебкамеры SplitCam сделает ваши трансляции более яркими и гибкими.

  • Поддержка различных разрешений видео, в том числе HD

    Отправляйте видео с HD камеры без потери качества. Выбирайте любое из доступных разрешений: 320×180, 320×240, 400×225, 400×300, 512×384, 640×360, 640×480, 800×600, 960×540, 1024×768, 1280×720, 1280×960, 1400×1050, 1600×900, 1600×1200, 1920×1080, 1920×1440, 2048×1536

  • � азличные источники видео

    Со SplitCam вы можете распространять видео с вебкамеры, из видео файла, слайд шоу или рабочего стола (рабочего стола целиком или выбранной его части)!

  • ��спользование IP камеры как источника

    Подключитесь к любой IP камере и отправляйте видео с нее в любимые видео мессенджеры и видео сервисы.

  • Небольшие, но полезные видео функции

    Записывайте видео без специализированных программ и загружайте его на YouTube в несколько кликов непосредственно из окна SplitCam!

  • Увеличение/уменьшение видео (Zoom)

    В SplitCam вы можете увеличить и передавать только нужную часть видео. Увеличивать/уменьшать видео можно с помощью клавиатуры и мыши.

Кроме всем известных красок для малярных работ существуют и специальные виды красок. Они применяются для защиты штрих кода и блокировки инфракрасных лучей. Знания о них расширят наш кругозор и может даже пригодятся.

  • Краски для защиты штрих-кода (бар-кода). Предназначены для предохранения оригинального штрих-кода от фотокопирования.
  • IR-blocking — краски, блокирующие инфракрасные лучи. Предназначены для печати на прозрачных ПВХ-пленках, для производства прозрачных пластиковых карт. Эти краски, блокируют или отражают инфракрасный свет. Источники излучения: банковские автоматы или другие аналогичные считывающие устройства.

Краски для защиты штрих-кода (бар-кода)
Данные краски предназначены для предохранения оригинального штрих-кода от фотокопирования. В случае использования такой краски черного цвета оригинальный штрих-код всегда будет невидим и для человеческого зрения. Можно также нанести эту блокирующую краску под ламинационной пленкой, а затем напечатать оригинальный штрих-код на карте сверху. После ламинирования уже невозможно отделить верхний слой от основы, не повредив штрих-код. Все эти краски не содержат углеродов.

Стандартные цвета:

  • S 3374 - красная краска, блокирующая штрих-код, который можно считывать с помощью оптических считывающих устройств.
  • S 4500 - черно-голубая краска, блокирующая штрих-код, который можно считывать с помощью инфракрасных считывающих устройств.
  • S 4501 - черно-коричневая краска, блокирующая штрих-код, который можно считывать с помощью инфракрасных считывающих устройств.

Печать: Подходит для всех типов трафаретов, кроме самоклеющихся пленок Stenplex Amber и Solvent. Рекомендуется использовать моноволоконные сетки 77 Т-90 Т. При использовании сетки с ячейками 90Т кроющая способность краски составляет 35-35 кв.м/кг.

Закрепление:
Сушка занимает от 30 минут до 1 часа в зависимости от условий. Можно использовать струйную сушку.

Ламинирование: Этими красками можно печатать непосредственно поверх напечатанного штрих-кода или на ламинационной пленке, а затем заламинировать обычным способом.

Использование: Изготовление кредитных карточек и билетов, где требуется защита штрих-кода от фотокопирования.

Могут также поставляться краски, блокирующие штрих-код, для печати на полиэстровых пленках

IR-blocking

Эти краски представляют собой прозрачные краски, блокирующие или отражающие инфракрасный свет. Источники излучения: банковские автоматы или другие аналогичные считывающие устройства.

Стандартные цвета - прозрачный желтый и зеленый.

Инфракрасный фильтр своими руками из CD диска на мыльницу

Эти краски имеют разную отражающую способность. Они предназначены для печати на прозрачных ПВХ-пленках, для производства прозрачных пластиковых карт. Этими красками можно печатать, как на пленках-основах, так и на ламинационных пленках.

Стандартные цвета:

  • S 17699 — зеленый ИК-блокер с максимальной степенью поглощения 860-900 нм
  • S 18203 — желтый ИК-блокер с максимальной степенью поглощения 980 нм
    Обе эти краски соответствуют стандарту ISO при печати через сетку 90Т.
  • S21143 — высококонцентрированный ИК-блокер с максимальной степенью поглощения 980 нм
    Эта краска соответствуют стандарту ISO при печати через сетку 120Т.

Для получения других цветовых оттенков поверх данных красок можно напечатать другими прозрачными красками.

Печать:
Подходит для любого типа трафарета, кроме клейких пленок Stenplex Amber и Solvent. Рекомендуется использовать моноволоконную сетку № 90Т, при этом кроющая способность краски составляет 60 кв.м/кг.

Закрепление:
Сушка занимает от 30 минут до 1 часа в зависимости от условий сушки. Можно использовать струйную сушку.

Ламинирование:
Эти краски можно использовать для печати непосредственно на пленке- основе или на ламинате, затем ламинировать обычным способом.

Использование:
Изготовление прозрачных кредитных карт для считывания информации посредством инфракрасных считывающих устройств и для идентификации банковскими автоматами.

«Класс!ная физика» — на Youtube

Инфракрасное и ультрафиолетовое излучения.
Шкала электромагнитных волн

«Физика — 11 класс»

Инфракрасное излучение

Электромагнитное излучение с частотами в диапазоне от 3 10 11 до 3,75 10 14 Гц называется инфракрасным излучением .
Его испускает любое нагретое тело даже в том случае, когда оно не светится.
Например, батареи отопления в квартире испускают инфракрасные волны, вызывающие заметное нагревание окружающих тел.
Поэтому инфракрасные волны часто называют тепловыми.

Не воспринимаемые глазом инфракрасные волны имеют длины волн, превышающие длину волны красного света (длина волны λ = 780 нм - 1 мм).
Максимум энергии излучения электрической дуги и лампы накаливания приходится на инфракрасные лучи.

Инфракрасное излучение применяют для сушки лакокрасочных покрытий, овощей, фруктов и т. д.
Созданы приборы, в которых не видимое глазом инфракрасное изображение объекта преобразуется в видимое.
Изготовляются бинокли и оптические прицелы, позволяющие видеть в темноте.

Ультрафиолетовое излучение

Электромагнитное излучение с частотами в диапазоне от 8 10 14 до 3 10 16 Гц называется ультрафиолетовым излучением (длина волны λ = 10-380 нм).

Обнаружить ультрафиолетовое излучение можно с помощью экрана, покрытого люминесцирующим веществом.
Экран начинает светиться в той части, на которую падают лучи, лежащие за фиолетовой областью спектра.

Ультрафиолетовое излучение отличается высокой химической активностью.
Повышенную чувствительность к ультрафиолетовому излучению имеет фотоэмульсия.
В этом можно убедиться, спроецировав спектр в затемненном помещении на фотобумагу.
После проявления бумага почернеет за фиолетовым концом спектра сильнее, чем в области видимого спектра.

Ультрафиолетовые лучи не вызывают зрительных образов: они невидимы.
Но действие их на сетчатку глаза и кожу велико и разрушительно.
Ультрафиолетовое излучение Солнца недостаточно поглощается верхними слоями атмосферы.
Поэтому высоко в горах нельзя оставаться длительное время без одежды и без темных очков.
Стеклянные очки, прозрачные для видимого спектра, защищают глаза от ультрафиолетового излучения, так как стекло сильно поглощает ультрафиолетовые лучи.

Впрочем, в малых дозах ультрафиолетовые лучи оказывают целебное действие.
Умеренное пребывание на солнце полезно, особенно в юном возрасте: ультрафиолетовые лучи способствуют росту и укреплению организма.
Кроме прямого действия на ткани кожи (образование защитного пигмента - загара, витамина D 2), ультрафиолетовые лучи оказывают влияние на центральную нервную систему, стимулируя ряд важных жизненных функций в организме.

Ультрафиолетовые лучи оказывают также бактерицидное действие.
Они убивают болезнетворные бактерии и используются с этой целью в медицине.

Итак,
Нагретое тело испускает преимущественно инфракрасное излучение с длинами волн, превышающими длины волн видимого излучения.

Инфракрасный фильтр своими руками №2

Ультрафиолетовое излучение - более коротковолновое и обладает высокой химической активностью.

Шкала электромагнитных волн

Длина электромагнитных волн изменяется в широком диапазоне. Независимо от длины волны все электромагнитные волны обладают одинаковыми свойствами. Существенные различия наблюдаются при взаимодействии с веществом: коэффициенты поглощения и отражения зависят от длины волны.

Длина электромагнитных волн бывает самой различной: от 10 3 м (радиоволны) до 10 -10 м (рентгеновские лучи).
Свет составляет ничтожную часть широкого спектра электромагнитных волн.
При изучении этой малой части спектра были открыты другие излучения с необычными свойствами.

На рисунке изображена шкала электромагнитных волн с указанием длин волн и частот различных излучений:

Принято выделять:
низкочастотное излучение,
радиоизлучение,
инфракрасные лучи,
видимый свет,
ультрафиолетовые лучи,
рентгеновские лучи,
γ-излучение
.

Принципиального различия между отдельными излучениями нет.
Все они представляют собой электромагнитные волны, порождаемые заряженными частицами.

Обнаруживаются электромагнитные волны в основном по их действию на заряженные частицы.
В вакууме электромагнитное излучение любой длины волны распространяется со скоростью 300 000 км/с.
Границы между отдельными областями шкалы излучений весьма условны.

Излучения различных длин волн отличаются друг от друга по способам их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей.
В первую очередь это относится к рентгеновскому и у-излучениям, сильно поглощаемым атмосферой.
По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.

Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом.
Коротковолновые излучения (рентгеновское и особенно γ-лучи) поглощаются слабо.
Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений.

Коэффициент отражения электромагнитных волн также зависит от длины волны.

Здравствуйте, друзья!

Я давно хотел написать на эту тему, но всё как-то казалось, что материала маловато и сейчас, спустя год кажется также. Процесс набора материала очень долгий и если быть к себе очень критичным, то можно и одной теме всю жизнь посвятить.

Что даёт инфракрасная фотосъемка

Давно вы занимаетесь фотографией или начали недавно, скорее всего, вы обратили внимание, что многие достопримечательности уже сфотографированы со всех сторон. Видов природы столько, что сервера Амазон и Гугл уже не вмещают, а фотостоки не принимают. Проблема заключается в том, что мало просто сфотографировать. В наше время когда вы вряд ли будете первым в месте съемки, нужно сфотографировать как-то по особенному.

И здесь нам приходят на помощью необычные способы съемки и экзотические светофильтры.

Видеоролик интервью со мной для канала Наука 2.0 про инфракрасную фотосъемку

Единственное замечание к ролику — я всё-таки снимаю инфракрасные фото как раз на коротких выдержках. На длинных снимал когда у меня не было модифицированной камеры.

Цифровые фотокамеры для инфракрасной фотографии

Современные фотокамеры устроены так чтобы инфракрасный спектр, который попадает в объектив не влиял на изображение. Для того, чтобы он не влиял в фотокамеру ставят фильтр, которые этот спектр отсекает.

На приведённом ниже графике вы можете увидеть, что кремний из которого сделан сенсор камеры вполне себе пропускает излучение с длиной волны до 300нм и до 1100нм. Далее он становится «прозрачным» для излучения (за ИК излучением начинаются радиоволны).

На самом деле сенсор фотокамеры, это не просто кремний, а целый «бутерброд», в котором возникает масса дополнительных проблем с правильным распознаванием цвета.

На каждом этапе прохождения излучения через границу между слоями электромагнитная волна может менять амплитуду и направление. Часть излучения отражается обратно, часть переходит на следующий слой «бутерброда». Из отразившейся обратно части излучения, часть переотражается в предыдущем слое и переходит на следующий слой изменённой, а часть выходит за пределы сенсора (полностью отражается обратно). Т.к. степень отражения излучения зависит от его длины волны, то влияет этот процесс на спектральную чувствительность сенсора нелинейно. Особенно это касается лучей, приходящих на сенсор под углом (помните ?)

Обычно с «лишним» спектром ЭМ волн борются с помощью специального фильтра, который отсекает инфракрасный и ультрафиолетовый спектр, чтобы получить чистую картинку с видимым спектром. Иначе мы имеем искаженные цвета (красные цвета усиливаются, черный становится тёмно-фиолетовым) и т.д.). Такую проблему имела, например, камера Leica M8 .

Собственной картинки снятого ИК/УФ фильтра у меня пока нет (донорская камера лежит и ждёт пока я её разберу), так что вы можете посмотреть процесс разборки и как выглядит сам фильтр на сайте компании Lifepixel , известного американского модификатора камер.

Пленочные фотокамеры для инфракрасной фотографии

Я не занимался инфракрасной фотографией на пленочных камерах. В теории тут есть свои плюсы и минусы. Есть плюс в том, что вы можете купить инфракрасную плёнку любого производителя и начать снимать, никакие фильтры вам не мешают. А минус в том, что единственный доступный способ фокусировки это ставить на объективе шкалу дистанций на специальную красную метку. С одной стороны это просто, а с другой... Разные длины волн фокусируются в разных местах и потому с одними инфракрасными фильтрами вы будете попадать точно в фокус, а с другими снимки будут нерезкими. Придётся экспериментально искать правильное положение фокуса для конкретного инфракрасного фильтра.
Еще есть один плюс... Плёночные камеры дешевые и пленка для них тоже недорогая.

Объективы для инфракрасной фотографии

Инфракрасный спектр не блокируется стеклом объектива, так что подойдет любой объектив. Если на нём есть специальная красная метка для занятий инфракрасной фотографией — вообще здорово, может облегчит работу с некоторыми инфракрасными светофильтрами, не нужно будет тщательно фокусироваться.

Теория и практика светофильтров для инфракрасной фотографии

Для инфракрасной фотографии существуют специальные фильтры с разным пропускаемым спектром. Дело в том, что диапазон инфракрасного спектра большой, а нас интересует только определенный участок, плюс если к инфракрасному спектру подмешивать видимый спектр, то будет иногда интереснее, чем просто инфракрасный спектр.

Я использую светофильтры B+W 092 , B+W 093 , но существует еще много других инфракрасных светофильтров которых у меня нет или они уже не производятся.

Внешний вид

Почти непрозрачный инфракрасный фильтр B+W 092 , который выглядит темно-красным с фиолетовым оттенком (dark purplish red), если смотреть на просвет.

Кривая пропускания

Блокирует видимый спектр до 650нм
Пропускает только 50% с 650нм до 730нм (отсюда тёмно-красный цвет)
730-2000нм — пропускает более 90% спектра

Это светофильтр в основном используется пейзажными фотографами для фотосъемки на чёрно-белую инфракрасную плёнку и на модифицированную для инфракрасной съемки цифровую камеру.
20-40.

кадр инфракрасного фото со светофильтром B+W 092 и балансом белого по-умолчанию

кадр инфракрасного фото со светофильтром B+W 092 с другим балансом белого

пример обработанной инфракрасной фотографии, сделанной со светофильтром B+W 092

Обработка может быть совсем разной, цвета неба, деревьев и прочего здесь условны и вы выбираете такие, которые вам нравятся. Чаще всего небо и здания лучше сделать естественных цветов. А вот листья деревьев, трава и проч. могут быть какие угодно.

Попытка имитировать работу инфракрасного фильтра 092 в фотошопе

Раньше инфракрасное изображение всегда переводили в ч.б., но сейчас появилась мода и на цветные инфракрасные фотографии.

Уверен, что вы снимите что-то более интересное т.к. это просто тестовый снимок, чтобы показать как работает фильтр.

Такое ч.б. изображение не получить имитацией в фотошопе или в настройках камеры — проверено. Потому как все объекты отражающие ИК (листья деревьев и трава, например) получают бОльшую яркость, а поглощающие (вода, например) становятся темнее.

Обратите внимание, что на настоящем инфракрасном фото чёрные фары стали белыми, листья деревьев белые даже снизу. На снимке появились тучи на небе. И это с фильтром, где всё-таки есть примесь видимого спектра.

Примеры снимков

Внешний вид

Инфракрасный фильтр 093 — с бликом от мощного источника света. По блику его иногда называют тёмно-зелёным. Такой блик получается потому что фильтр пропускает только ИК спектр (красный) и отражает синий и зеленый, которые мы и видим

Фильтр B+W 093 полностью блокирует видимый спектр, таким образом фильтр выглядит как полностью непрозрачный.
Этот светофильтр делает возможными инфракрасные фотографии без примешивания красной составляющей, в отличие от предыдущего светофильтра (092).

Кривая пропускания

Результирующее изображение обычно переводят в черно-белое.

Такое ч.б. изображение не получится имитацией в фотошопе — проверено. Потому как все объекты отражающие ИК (листья деревьев и трава, например) получают бОльшую яркость, а поглощающие (вода, например) становятся темнее.

Пропускание B+W 093 начинается с 800 нм, поднимается до 88% на 900 нм и остается таким высоким далеко за пределы чувствительности инфракрасной плёнки. Этот фильтр редко используется для пейзажной съемки т.к. вынуждает снимать на очень чувствительные пленки (высоком ISO). Но в научном плане, судебной экспертизе и проч. ограничение спектра только инфракрасным особенно важно. Фактор фильтра очень зависит от освещения и характеристик светочувствительного материала (плёнка, сенсор).

пример инфракрасного фото снятого с фильтром B+W 093 с балансом белого по-умолчанию

пример ифракрасного фото, снятого со светофильтром B+W 093 с другим балансом белого

пример инфракрасного фото, снятого со светофильтром B+W 093 и переведённого в черно-белое

Примеры снимков с инфракрасным фильтром B+W 093

>

Очарование снимков с этим фильтром в передаче цветов зелёной растительности в оранжево-красных цветах, которая получается благодаря высокой способности отражать инфракрасный спектр у хлорофилла в растениях.
Фактор этого фильтра очень зависит от светочувствительного материала (плёнка, сенсор) и степени отражения инфракрасного спектра от объекта съемки.

Камера

Хорошие инфракрасные фильтры довольно «плотные» (тёмные) и потому обычной камерой приходится снимать со штатива. Например, через B+W 093, который пропускает только инфракрасный спектр вообще ничего не видно глазами. Выдержка при этом становится весьма длинной. В яркий солнечный день параметры съемки могут быть F4 1/4sec iso 1600. По этой причине снимок может иметь довольно сильные шумы, которые впрочем успешно подавляются в RAW-конвертере. Но хуже то, что на длинной выдержке листья деревьев часто получаются размытыми.
Потому я сильно рекомендую купить модифицированную под инфракрасную съемку камеру и снимать на нормальной выдержке. Тогда для инфракрасной съемки в яркий солнечный день параметры могут быть такими: F4 1/200sec iso 100. Как видите, можно вполне нормально снимать что угодно с рук.
Вариантов найти модифицированную камеру или модифицировать свою несколько. Самый простой — купить или модифицировать в американской конторе LifePixel . Второй путь — попытаться сделать это самому. Я отдавал свой Nikon D300 на модификацию специалистам, которые работают с мелкой электроникой. Они успешно разобрали камеру, но рамка на сенсоре по их словам так «закисла» на винтах, что её было не снять. Так что пришлось всё собрать обратно. Третий вариант — найти специалиста там где живёте. Если будет необходимость, обращайтесь ко мне , я постараюсь помочь с камерой модифицированной под инфракрасную съемку.

Фокусировка

При смене фильтров желательно перефокусироваться тщательно, используя LiveView фотокамеры на максимальном увеличении. Причину я уже выше объяснял, фильтр с другим спектром смещает фокусировку. Также имеет смысл использовать шторки на ЖК экран фотокамеры или увеличитель («лупу») на ЖК экран для более точной фокусировки на солнце, иначе экран засвечивает и плохая фокусировка портит хороший снимок.

Какой светофильтр выбрать

При выборе фильтра стоит учесть, что плотные инфракрасные светофильтры, которые отсекают весь видимый спектр оставляют только один по сути канал в цветном изображении и потому оно превращается в черно-белое.
На экране фотокамеры оно чаще выглядит как фиолетовое, но это условно т.к. инфракрасный спектр цвета не имеет и с помощью баланса белого вы можете поставить любой цвет, если хотите оставить изображение цветным.

Другое дело светофильтры где пропускается часть видимого спектра. Он примешивается к инфракрасному и тогда есть некоторая информация в цветовых каналах изображения, это позволяет перекрашивать изображение в разные необычные цвета.

Вы также можете заказать себе установку специального светофильтра прямо на матрицу и тогда у вас будет то цветное изображение, которое вы «заказывали».
В этом есть свой плюс т.к. аналоговое расщепление изображение на цвета не даёт артефактов на изображении, в отличие от цифровой «раскраски». Но есть и минус — ограничение свободы выбора раскраски.

Итоги

Вариантов съемки много хороших и разных, желаю вам поскорее взять камеру и идти на улицу пока на дворе лето (если вы этого еще не сделали или делаете редко)! Особенно это касается инфракрасной съемки, зимой от которой мало пользы.

Удачных вам снимков! :)

P.S. Я еще многое мог бы вам рассказать об инфракрасной фотосъемке, но если буду вдаваться слишком глубоко, то не успею написать другие интересные статьи. Так что позже постепенно буду дополнять эту статью.