Типы настенных газовых котлов отопления. Какой газовый котел лучше выбрать: виды, характеристики, фирмы

Типы настенных газовых котлов отопления. Какой газовый котел лучше выбрать: виды, характеристики, фирмы

По способу отвода продуктов сгорания и подачи свежего воздуха различают следующие типы газовых аппаратов: Аппарат типа А: эти аппараты не должны подсоединяться к дымо­ходу или к вытяжке наружу. Пример: газовая плита на кухне.

Аппарат типа В: эти аппараты должны быть подсоединены к ды­моходу для отвода продуктов сгорания. Свежий воздух для го­релки поступает непосредственно из помещения, где установлен аппарат.

Пример: Настенный котел.

Аппарат типа В1: это аппарат типа В, снабженный прерывателем тяги/антинагнетателем в цепи горелки.

Примечание: Этот аппарат будет аппаратом типа В2, если в нем не установлен вентилятор.

Аппарат типа В2: это аппарат типа В, не снабженный прерывате­лем тяги/антинагнетателем.

Примечание: Аппарат называется аппаратом типа С, если у него закрытая камера сгорания (воздух помещения не используется).

16.6.2.2. Отдельный дымоход для газовых аппара­-
тов типа В

Это дымоход, который обслуживает только одно помещение. Га­зовый котел может быть подсоединен к такому дымоходу. Отвод продуктов сгорания происходит за счет естественной тяги. Такой дымоход можно использовать в качестве выходного от­верстия для удаления загрязненного воздуха из помещения при условии, что верхняя часть входа прерывателя тяги располагает­ся на высоте не менее 1,80 м от пола (см. рис. 16.42). Сечение дымохода определяется из табл. 1 б. 2 в зависимости:

От высоты дымохода (пример: высота дымохода -от 4 до 10 м);

Наличия или отсутствия изменения направления дымохода
(рис. 16.33-16.35) (пример: прямой дымоход или с коленом);

От диаметра соединительной трубы (выходного патрубка аппа­рата) и возможных колен (см. типы I - IV на рис. 16.36) (пример: тип II, если соединение типа I с коленом на 90°);

От мощности котла (пример: котел мощностью 23 или 28 кВт или
больше).


Пример:

Прямой дымоход с тепловой изоляцией:

(r≥ 0,22 м 2 °С/Вт)

Соединение котла с помощью колена на 90° с дымоходом типа II,

Диметр соединения с дымоходом: 125 мм,

Высота дымохода: от 4 до 10м,

Котел muna B1: максимальная полезная мощность 4 кВт.

Находим по таблице:

По горизонтали: mun //→Ø=125 мм -> мощность 41 кВт.

По вертикали: поднимаемся под прямым углом от 41 кВт до 4 ≤Н < 10м.

Получаем: сечение дымохода 200 х 200 мм.

Примечание: Дымоходы прямоугольного сечения должны удовлет­ворять условию: длина/ширина ≤ 1,6.

Важно! Котел, подсоединенный к дымоходу с естественной тягой, нельзя устанавливать в помещении с механической вентиляцией, так как в помещении могут создаваться условия разрежения и об­ратной тяги.




Материалы, используемые для дымоходов:

Цилиндрическая керамическая труба со сплошными или по­ристыми стенками;

Цилиндрическая труба из бетона с примесью пуццолана (при наличии технического экспертного заключения);

Металлическая труба с двойными стенками;

Обсадная труба (обечайка) (жесткая или гибкая):

Из нержавеющей стали 18/8, стабилизированной титаном,

Из алюминия А5 (чистота 99,5%) толщиной 0,8 мм.


Обсадка трубы

Обсадкой называется операция, которая состоит в том, что внутрь дымохода вводится отдельная труба для отвода продуктов сгора­ния (рис. 16.37 - 16.39).

Двустенный дымоход с асбестовой изоляцией. Двойные стенки из нержавеющей стали повышают антикоррозий­ные свойства дымохода. Такой способ применяется, когда необходимо:

Согласовать сечение дымохода с нормативными требованиями и с типом отопительной установки;

Обеспечить защиту от коррозии или образования сажи на его стенках и быстрый отвод продуктов сгорания.

Монтаж: основные моменты

Вентиляция снизу и сверху кольцевого пространства,

Тройник с очистным люком внизу дымохода,

Защита выхода дымовой трубы от дождя,

Размер обсадной трубы (см. табл. 16.2).




Высота трубы дымохода над крышей

Рекомендуемые нормы показаны на рис. 16.40 для крыши с уклоном >15°. Жерло трубы должно располагаться на такой вы­соте, чтобы соседние препятствия не могли создать условия повышенного давления в месте его расположения.

Примечание: При уклоне крыши < 15° жерло трубы должно располагаться как минимум на 1,20 м выше точки выхода трубы и как минимум на / м выше акротерия, если по­следний находится на высоте > 0,20 м.

Предписания

Объем помещения

Газовые аппараты с открытой камерой сгорания нельзя устанавливать в помещении объемом менее 8 м 3 .

Подача свежего воздуха в топку котла

Для любого аппарата с камерой сгорания требуется свежий воздух для работы горелки. Подача воздуха и отвод продуктов сгорания пря­мо влияют на гигиеническое состояние помещения, в котором рас­положен газовый аппарат.

В каждом основном помещении дома имеется как минимум один ввод свежего воздуха.

Модули применяемых вводов воздуха равны 20 и 30 м 3 /ч в основных помещениях (гостиная и спальни).

При отводе продуктов сгорания за счет естественной вентиляции требуется только контролировать сумму М модулей вводов воздуха в зависимости от мощности установленных аппаратов. При этом разли­чают два случая:

1. В помещении установлен один газовый аппарат, не подсоединен­ный к вентиляционной системе (например, газовая плита). В этом случае М должно быть > 90.

2. В помещении установлен газовый котел с дымоходом и газовая пли­та без дымохода. В этом случае М ≥ 6,2 Ри, где Ри - сумма полезных мощностей газовых аппаратов, подсоединенных к вытяжке.

Пример. В загородном доме типа Т4 на кухне установлен газовый ко­тел мощностью 28 кВт, подсоединенный к дымоходу с естественной тягой. В 3 комнатах установлены вводы воздуха с модулем 30 м 3 /ч -> суммарный модуль М = 90 м 3 /ч. В столовой установлены 3 ввода воз­духа с модулем 30 м 3 /ч -> суммарный модуль М = 90 м 3 /ч. Сумма всех модулей равна М = 180 м 3 /ч. Условие М≥ 6,2 Ри выполнено (6.2 х28 = 173,6).

Отвод загрязненного воздуха

В каждом служебном помещении имеются несколько вытяжных от­верстий с естественной тягой или подсоединенных к системе механи­ческой вентиляции (рис. 16.41 и 16.42).

При естественной тяге, если в помещении имеется несколько
газовых аппаратов, не подсоединенных к системе вентиляции (на­
пример, газовая плита), в верхней части вертикального воздуховода
должно быть вытяжное отверстие диаметром не менее 100 см 2 .

При регулируемой системе вентиляции (РСВ) отвод загрязнен­-
ного воздуха может осуществляться:

Через вытяжное отверстие регулируемой системы вентиляции (см. разд 16.6.2.4);

Через прерыватель тяги аппарата, если он подсоединен к регулиру­емой системе вентиляции газов (РСВ-газ) при условии, что верхняя часть входа прерывателя тяги расположена на расстоянии > 1,80 м от пола.

Во всех случаях при необходимости быстрого отвода загрязненно­го воздуха требуется предусмотреть окно минимальной площадью 0,40 мм 2 или световой двор шириной не менее 2 м.

Существуют различные типы газовых котлов.

Газовые котлы считаются самыми оптимальными.

Они обеспечивают эффективный обогрев помещений в случае отсутствия доступа к централизованной отопительной системе. Высокий спрос на данный вид отопительного оборудования обоснован видом потребляемого топлива. Природный газ — это самой доступный ресурс на сегодняшний день, который позволяет получить тепловую энергию. Из-за наличия широкого ассортимента есть возможность подбора оптимального варианта для обогрева помещения.

Классификация газовых котлов

  1. По способу исполнения. Существуют напольные и настенные типы котлов. Отличительной чертой напольных газовых котлов является широкий диапазон регулирования мощности. С их помощью можно обогревать помещения площадью до 200 м². При совместной работе с бройлером с помощью такого котла обеспечивается максимальная подача горячей воды. Отличием настенных котлов являются компактные габариты, которые позволяют экономить площадь установки. Настенные котлы оснащены устройствами, которые обеспечивают безопасность эксплуатации (блокировочные термостаты, датчики наличия пламени, датчики контроля тяги, механизм отключения во время перебоев электропитания и прочие).
  2. По количеству контуров отопления. Одноконтурные котлы предназначены для нагрева теплоносителя либо отопительной системы, либо горячего водоснабжения. Двухконтурные используются в одновременном отоплении помещения и подаче теплой воды. Для решения индивидуальных потребностей подойдет приобретение газового котла с бойлером, который позволит иметь постоянный запас воды (40-70 литров), или оборудование проточного типа.
  3. По способу сброса продуктов сгорания. При естественной тяге в котлах отопления вывод продуктов сгорания происходит путем постоянного притока воздуха с улицы. Такие приборы устанавливаются в нежилых помещениях или в небольших домах. Если в приборе оборудована принудительная тяга с закрытой камерой сгорания, то воздух забирается с помощью специального дымохода, состоящего из внешней и внутренней трубы. Эти котлы не сжигают кислород, находящийся в помещении, и не требуют дополнительного притока холодного воздуха для поддержания горения газа.
  4. По энергоэффективности. Существуют конвекционные котлы, использующие низшую теплоту сгорания. Такая система отопления должна проектироваться с созданием всех условий, не допускающих конденсацию водяных паров, которые содержат растворенные кислоты, на стенках теплообменника, топки и дымохода. В конденсационных котлах используется высшая теплота сгорания. Обогрев помещения происходит за счет водяных паров, которые образуются на стенках экономайзера.
  5. По типу розжига. При электронном розжиге запуск происходит автоматически. Такие модели более экономичны из-за отсутствия запальника с пламенем, горящим постоянно. При временном прерывании подачи электричества включение котла происходит автоматически при возобновлении питания. В случае пьезорозжига котел придется включать вручную.

Газовые настенные котлы

Как и любые другие, газовые настенные котлы являются основой всей системы отопления. Считаются самым доступным и распространенным оборудованием для отопления. Подобный котел несет в себе технологичность и комфорт при применении в загородном доме.

Монтаж отопления проводится там, где находится газопровод. Они могут работать от магистрали с природным газом, а также от баллона со сжиженным газом. Баллон со сжиженным газом имеет высокую стоимость и является менее эффективным в эксплуатации, чем на природном газе. Чтобы установить настенный котел, необходимо иметь перечень определенных документов. Монтаж и обслуживание такого типа оборудования должны производить профессионалы, которые специализируются на этом оборудовании.

Наличие газовых горелок, газовой арматуры и теплообменника является основным узлом газового настенного котла. Медные теплообменники имеют самую низкую стоимость и легкий вес. Такие теплообменники применяются чаще всего, но существуют также стальные и чугунные. Настенные котлы оборудованы элементами управления, защиты и самодиагностики.

Существуют одноконтурные и двухконтурные настенные котлы. Одноконтурные предназначены для отопления помещений, а чтобы нагреть воду, устанавливается колонка или электрический бройлер. Двухконтурные котлы могут использоваться как для отопления, так и для горячего водоснабжения (не одновременно).

При правильном монтаже и эксплуатации такой котел может прослужить до 15-20 лет (с гарантией 1 год). По окончанию гарантийного срока следует провести техобслуживание. Техническое обслуживание рекомендуется проводить ежегодно.

Газовые конденсационные котлы

Газовые конденсационные котлы — это надежные, современные и высокотехнологичные приборы.

В отличие от обычных котлов, которые пропускают продукты сгорания через решетку теплообменника, конденсационные создают передачу своей тепловой энергии в теплообменник. Через дымоходы выводятся отходящие газы в атмосферу, теряя часть теплоты. Вместе с газами происходит выход топливного пара, который образуется при сгорании, снижая эффективность и забирая часть энергии. Эта энергия сохраняется конденсационным котлом и передается в систему отопления.

При охлаждении происходит превращение пара в жидкость (конденсация), что ведет к высвобождению определенного количества теплоты. Специальный теплообменник скапливает конденсацию и передает тепло в систему отопления. Во время полного сжигания единицы топлива происходит выработка тепла, высвобождающаяся при конденсации. Это явление именуется высшей теплотой сгорания топлива.

Конденсационные котлы обладают высокой экономичностью. Из-за использования высокотехнологичных горелок происходит обеспечение приготовления топливно-воздушной смеси в необходимых пропорциях для данного режима горения.

Этот тип котлов может быть как в настенном виде, так и в напольном.

Для конденсационных котлов устанавливается система отопления с расчетом на более низкую температуру теплоносителя. В этом проекте учитывается температура теплоносителя в обратном контуре. Температура не может превысить 60°С при любых климатических условиях.

Такой тип отопительных приборов является самым массовым в Европе. Во многих странах запрещается устанавливать любые газовые котлы, кроме конденсационных, так как именно эти котлы имеют самые низкие показатели выбросов вредных веществ и самый высокий КПД.

Типы газовых горелок в отопительных котлах

Классификация газовых горелок:

  • по давлению газа;
  • по конструкции, которая влияет на способность сжигания газа, а также его смешение с воздухом во время горения.

По давлению газа, который подается для сжигания, различают горелки:

  • низкого давления. До 0,05 кгс/см² (5 кн/м², 500 мм вод.ст.);
  • среднего давления. От 0,05 до 3 кгс/см² (5-300 кн/м², 0,5-30 м вод.ст.);
  • высокого давления. От 3 кгс/см² (300 кн/м², 30 м вод.ст.).

По конструкции и методу сжигания газа делятся на:

  • диффузные;
  • инжекционные;
  • газотурбинные;
  • двухпроводные;
  • комбинированные.

Принцип работы диффузионных горелок основывается на горении, которое происходит при смешивании горючего газа и воздуха, находящихся внутри камеры сгорания. Для этого при определенном давлении на горелку подается газ, а воздух поступает естественным путем. После смешивания образуется горючая смесь.

Работа инжекционных горелок происходит при смешивании газа и воздуха внутри корпуса. Воздух для горения инжектируется, смешиваясь с газом, с помощью специального раструба и сопла для выхода газа с высокой скоростью. Имеют полное и частичное смешивание количества подаваемого воздуха.

В двухпроводном типе газовых горелок воздух подается с помощью дутьевого вентилятора. В зоне сжигания происходит смешивание горючего газа с воздухом. Имеют возможность работоспособности на низком и среднем давлении. Этот тип горелок является компактным, бесшумным в работе. Имеет широкий диапазон тепловой мощи с регулировкой.

Конструкция газотурбинных горелок предполагает подачу воздуха с помощью осевого вентилятора, который начинает работать при включении турбины, которая находится в потоке истекающего газа. Подача воздуха происходит в обратном направлении от течения газа из горелки. В следующей статье — сколько сжигают газа настенные газовые котлы.

Газовая горелка - это устройство для смешения кислорода с газообразным топливом с целью подачи смеси к выходному отверстию и сжигания её с образованием устойчивого факела. В газовой горелке газообразное топливо, подаваемое под давлением, смешивается в смесительном устройстве с воздухом (кислородом воздуха) и образовавшаяся смесь поджигается на выходе из смесительного устройства с образованием устойчивого постоянного пламени.

Газовые горелки обладают широким спектром достоинств. Конструкция газовой горелки очень проста. Ее запуск занимает доли секунды и работает такая горелка практически безотказно. Газовые горелки используются для отопительных котлов или промышленного применения.

Сегодня существует два основных вида газовых горелок, их разделение ведется в зависимости от используемого метода образования горючей смеси (состоящей из топлива и воздуха). Различают атмосферные (инжекторные) и наддувные (вентиляционные) устройства. В большинстве случаев первый вид является частью котла и входит в его стоимость, второй же вид чаще всего приобретается отдельно. Наддувная горелка газовая в качестве инструмента горения более эффективна, поскольку в них подача воздуха осуществляется специальным вентилятором (встроенным в горелку).

Назначениями газовых горелок являются:

– подача газа и воздуха к фронту горения;

– смесеобразование;

– стабилизация фронта воспламенения;

– обеспечение требуемой интенсивности горения.

Типы газовых горелок:

Диффузионная горелка – горелка, в которой топливо и воздух
смешиваются пригорении.

Инжекционная горелка – газовая горелка с предварительным смешиванием газа с воздухом, у которой одна из сред, необходимых для горения, подсасывается в камеру горения другой среды (синоним– эжекционная горелка)

Горелка с полым предварительным смешением – горелка, в которой газ смешиваетсяс полным объемом воздуха перед выходными отверстиями.

Горелка не с полым предварительным смешением горелка, в которой газ не полностью смешивается с воздухом перед выходными отверстиями. Атмосферная газовая горелка инжекционная газовая горелка с частичным предварительным смешением газа с воздухом, использующая вторичный воздух среды, окружающей факел.

Горелка специального назначения горелка, принцип действия и конструкцию которой определяет тип теплового агрегата или особенности технологического процесса.

Рекуперативная горелка горелка, снабженная рекуператором для подогрева газа или воздуха



Регенеративная горелка – горелка, снабженная ре генератором для подогрева газа или воздуха.

Автоматическая горелка горелка, оборудованная автоматическими устройствами: дистанционным запальным, контроля пламени, контроля давления топлива и воздуха, запорными клапанами и средствами управления, регулирования и сигнализации.

урбинная горелка газовая горелка, в которой энергия вытекающих струй газа используется для привода встроенного вентилятора, нагнетающего воздух в горелку.

Запальная горелка вспомогательная горелка, служащая для розжига основной горелки.

Наиболее применимы на сегодняшний день классификация горелок по способу подачи воздуха, которые делятся на:

– бездутьевые – воздух поступает в топку за счет разрежения в ней;

– инжекционные – воздух засасывается за счет энергии струи газа;

– дутьевые – воздух подается в горелку или топку с помощью вентилятора.

Используют газовые горелки при различных давлениях газа: низком – до 5000 Па, среднем – от 5000 Па до 0,3 МПа и высоком – более 0,3 МПа. Чаще используют горелки, работающие на среднем и низком давлении газа.

Большое значение имеет тепловая мощность газовой горелки, которая бывает максимальная, минимальная и номинальная.

При длительной работе горелки, где газа расходуется большее количество без отрыва пламени, достигается максимальная тепловая мощность.

Минимальная тепловая мощность возникает при устойчивой работе горелки и наименьших расходах газа без проскока пламени.

При работе горелки с номинальным, обеспечивающим максимальный КПД при наибольшей полноте сжигания, расходом газа достигается номинальная тепловая мощность.

Допускается превышение максимальной тепловой мощности над номинальной не более чем на 20%. В случае если номинальная тепловая мощность горелки по паспорту 10000 кДж/ч, максимальная должна быть 12000 кДж/ч.



Еще одной важной особенностью газовых горелок является диапазон регулирования тепловой мощности.

На сегодня используется большое количество горелок различной конструкции. Выбирается горелка по определенным требованиям, к которым относятся: устойчивость при изменениях тепловой мощности, надежность в эксплуатации, компактность, удобство при обслуживании, обеспечение полноты сгорания газа.

Основные параметры и характеристики используемых газогорелочных устройств определены требованиями:

– тепловая мощность, вычисляемая как произведение часового расхода газа, м 3 /ч, на его низшую теплоту сгорания, Дж/м 3 , и являющаяся главной характеристикой горелки;

– параметры сжигаемого газа (низшая теплота сгорания, плотность, число Воббе);

– номинальная тепловая мощность, равная максимально достигаемой мощности при длительной работе горелки с минимальным " коэффициентом избытка а воздуха и при условии, что химический недожог не превышает установленных для данного типа горелок значений;

– номинальное давление газа и воздуха, соответствующее номинальной тепловой мощности горелки при атмосферном давлении в топочной камере;

– номинальная относительная длина факела, равная расстоянию по оси факела от выходного сечения (сопла) горелки при номинальной тепловой мощности до точки, где содержание углекислого газа при α = 1 равно 95% его максимального значения;

– коэффициент предельного регулирования тепловой мощности, равный отношению максимальной тепловой мощности к минимальной;

– коэффициент рабочего регулирования горелки по тепловой мощности, равный отношению номинальной тепловой мощности к минимальной;

– давление (разрежение) в топочной камере при номинальной мощности горелки;

– теплотехнические (светимость, степень черноты) и аэродинамические характеристики факела;

– удельная металло– и материалоемкость и удельный расход энергии, отнесенные к номинальной тепловой мощности;

– уровень звукового давления, создаваемый работающей горелкой при номинальной тепловой мощности.

Требования к горелкам

На основании опыта эксплуатации и анализа конструкции горелочных устройств можно сформулировать основные требования к их конструкции.

Конструкция горелки должна быть наиболее простой: без подвижных частей, без устройств, изменяющих сечение для прохода газа и воздуха и без деталей сложной формы, расположенных вблизи носика горелки. Сложные устройства при эксплуатации себя не оправдывают и быстро выходят из строя под действием высоких температур в рабочем пространстве печи.

Сечения для выхода газа, воздуха и газовоздушной смеси следует отрабатывать в процессе создания горелки. В процессе эксплуатации все эти сечения должны быть неизменными.

Количество газа и воздуха, подаваемого на горелку, следует измерять дроссельными устройствами на подводящих трубопроводах.

Сечения для прохода газа и воздуха в горелке и конфигурацию внутренних полостей следует выбирать таким образом, чтобы сопротивление на пути движения газа и воздуха внутри горелки было бы минимальным.

Давление газа и воздуха в основном должно обеспечивать требуемые скорости в выходных сечениях горелки. Желательно, чтобы подача воздуха в горелку была регулируемой. Неорганизованная подача воздуха в результате разрежения в рабочем пространстве или путем частичного инжектирования воздуха газом может допускаться только в особых случаях.

Конструкции горелок.

Основные элементы горелки газовой: смеситель и горелочная насадка со стабилизирующим устройством. В зависимости от назначения и условий эксплуатации горелки газовой её элементы имеют различное конструктивное исполнение.

В диффузионных горелках газовых в камеру сжигания подводится газ и воздух. Смешение газа и воздуха происходит в камере горения. Большинство диффузионных горелок газовых монтируют на стенках топки или печи. В котлах получили распространение т. н. подовые горелки газовые, которые размещаются внутри топки, в нижней её части. Подовая горелка газовая состоит из одной или нескольких газораспределительных труб, в которых просверлены отверстия. Труба с отверстиями устанавливается на колосниковой решётке или поду топки в щелевом канале, выложенным из огнеупорного кирпича. Через огнеупорный щелевой канал поступает требуемое количество воздуха. При таком устройстве горение струек газа, выходящих из отверстий в трубе, начинается в огнеупорном канале и заканчивается в топочном объёме. Подовые горелки создают малое сопротивление прохождению газа, поэтому они могут работать без принудительного дутья.

Диффузионные горелки газовые характеризуются более равномерной температурой по длине факела.

Однако эти горелки газовые требуют повышенного коэффициента избытка воздуха (по сравнению с инжекционными), а также создают более низкие тепловые напряжения топочного объёма и худшие условия для догорания газа в хвостовой части факела, что может приводить к неполному сгоранию газа.

Диффузионные горелки газовые применяют в промышленных печах и котлах, где требуется равномерная температура по длине факела. В некоторых процессах диффузионные горелки газовые незаменимы. Например, в стекловаренных, мартеновских и др. печах, когда идущий на горение воздух подогревается до температур, превышающих температуру воспламенения горючего газа с воздухом. Успешно применяются диффузионные горелки газовые и в некоторых водогрейных котлах.

В инжекционных горелках воздух для горения засасывается (инжектируется) за счёт энергии струи газа и их взаимное смешение происходит внутри корпуса горелки. Иногда в инжекционных горелках газовых подсасывание необходимого количества горючего газа, давление которого близко к атмосферному, осуществляется энергией струи воздуха. В горелках полного смешения (с газом перемешивается весь необходимый для горения воздух), работающих на газе среднего давления, образуется короткий факел пламени, а горение завершается в минимальном топочном объёме. В инжекционные горелках газовых частичного смешения поступает только часть (40 ÷ 60%) требующегося для горения воздуха (т. н. первичный воздух), который и смешивается с газом. Остальное количество воздуха (т. н. вторичный воздух) поступает к факелу пламени из атмосферы за счёт инжектирующего действия газо-воздушных струй и разрежения в топках. В отличие от инжекционных горелок газовых среднего давления, в горелках низкого давления образуется однородная газо-воздушная смесь с содержанием газа больше верхнего предела воспламенения; эти горелки газовые устойчивы в работе и имеют широкий диапазон тепловой нагрузки.

Для устойчивого горения газовоздушной смеси в инжекционных горелках газовых среднего и высокого давления применяют стабилизаторы: дополнительные поджигающие факелы вокруг основного потока (горелки с кольцевым стабилизатором), керамические туннели, внутри которых происходит горение газовоздушной смеси, и пластинчатые стабилизаторы, создающие завихрение на пути потока.

В топках значительных размеров инжекционные горелки газовые собирают в блоки из 2 и более горелок.

Широкое применение получили инжекционные горелки газовые инфракрасного излучения (т. н. беспламенные горелки), в которых основное количество получаемого при горении тепла передаётся излучением, т.к. газ сгорает на излучающей поверхности тонким слоем, без видимого факела. Излучающей поверхностью служат керамические насадки или металлические сетки. Эти горелки применяют для обогрева помещений с большой кратностью обмена воздуха (спортивные залы, торговые помещения, теплицы и др.), для сушки окрашенных поверхностей (тканей, бумаги и др.), разогрева мёрзлого грунта и сыпучих материалов, в промышленных печах. Для равномерного нагрева больших поверхностей (печей нефтеперерабатывающих заводов и др. промышленных печей) применяют т. н. панельные инжекционные излучающие горелки. В этих горелках газо-воздушная смесь из смесителя попадает в общий короб, а далее по трубкам смесь распределяется по отдельным туннелям, в которых и происходит её сгорание. Панельные горелки имеют малые габариты и широкий диапазон регулирования, малочувствительны к противодавлению в топочной камере.

Увеличивается применение газотурбинных горелок, в которых подача воздуха осуществляется осевым вентилятором, приводимым в движение газовой турбиной. Эти горелки предложены в начале 20 века (турбогорелка Эйкарта). Под действием реактивной силы вытекающего газа турбинка, вал и вентилятор приводятся во вращение в сторону, противоположную истечению газа. Производительность горелки регулируется величиной давления поступающего газа. Газотурбинные горелки могут применяться в топках котлов. Перспективными являются высоконапорные турбинные горелки газовые с самоподачей воздуха через рекуператоры и воздушные экономайзеры: газо-мазутные горелки газовые большой производительности, работающие на подогретом и холодном воздухе.

К горелкам предьявляют следующие требования:

1. Основные типы горелок должны изготавливаться на заводах серийно по техническим условиям. Если горелки изготовляют по индивидуальному проекту, то при вводе в эксплуатацию они должны пройти испытания для определения основных характеристик;

2. Горелки должны обеспечивать пропуск заданного количества газа и полноту его сжигания с минимальным коэффициентом расхода воздуха α, за исключением горелок специального назначения (например, для печей, в которых поддерживается восстановительная среда);

3. При обеспечении заданного технологического режима горелки должны обеспечить минимальное количество вредных выбросов в атмосферу;

4. Уровень шума, создаваемого горелкой, не должен превышать 85 дБ при измерении шумомером на расстоянии 1 м от горелки и на высоте 1,5 м от пола;

5. Горелки должны устойчиво работать без отрыва и проскока пламени в пределах расчетного диапазона регулирования тепловой мощности;

6. У горелок с предварительным полным смешением газа с воздухом скорость истечения газовоздушной смеси должна превышать скорость распространения пламени;

7. Для сокращения расхода электроэнергии на собственные нужды при использовании горелок с принудительной подачей воздуха сопротивление воздушного тракта должно быть минимальным;

8. Для уменьшения эксплуатационных расходов конструкция горелки и стабилизирующие устройства должны быть достаточно просты в обслуживании, удобны для ревизии и ремонта;

9. При необходимости сохранения резервного топлива горелки должны обеспечивать быстрый перевод агрегата с одного топлива на другое без нарушения технологического режима;

10. Комбинированные газомазутные горелки должны обеспечивать примерно одинаковое качество сжигания обоих видов топлива – газового и жидкого (мазута).

Диффузионные горелки

В диффузионные горелки воздух, необходимый для горения газа, поступает из окружающего пространства к фронту факела за счет диффузии.

Такие горелки применяются обычно в бытовых приборах. Их можно использовать также при увеличении расходе газа, если необходимо распределить пламя по большой поверхности. Во всех случаях газ подается в горелку без примеси первичного воздуха и смешивается с ним за пределами горелки. Поэтому иногда эти горелки называют горелками внешнего смешивания.

Наиболее простые по конструкции диффузионные горелки (рис. 7.1) представляют собой трубу с высверленными отверстиями. Расстояние между отверстиями выбирается с учетом скорости распространения пламени от одного отверстия к другому. Эти горелки имеют небольшие тепловые мощности и применяются при сжигании природных и низкокалорийных газов под небольшими водонагревательными устройствами.

Рис. 7.1. Диффузионные горелки

Рис.7.2. Подовая диффузионная горелка:

1 – регулятор воздуха; 2 – горелка; 3 – смотровое окно; 4 – центрующий стакан; 5 – горизонтальный тоннель; 6 – выкладки из кирпича; 7 – колосниковая решетка

К промышленным горелкам диффузионного типа относятся подовые щелевые горелки (рис. 7.2). Обычно они представляют собой трубу диаметром до 50 мм, в которой просверлены отверстия диаметром до 4 мм в два ряда. Канал представляет собой щель в поде котла, откуда и название горелок – подовые щелевые.

Из горелки 2 газ выходит в топку, куда из-под колосников 7 поступает воздух. Газовые струйки направляются под углом к потоку воздуха и равномерно распределяется по его сечению. Процесс смешения газа с воздухом осуществляется в специальной щели, сделанной из огнеупорного кирпича. Благодаря такому устройству усиливается процесс смешивания газа с воздухом и обеспечивается устойчивое зажигание газовоздушной смеси.

Колосниковая решетка закладывается огнеупорным кирпичом и оставляются несколько щелей, в которых размещаются трубы с просверленными отверстиями для выхода газа. Воздух под колосниковую решетку подается вентилятором или в результате разряжения в топке. Огнеупорные стенки щели являются стабилизаторами горения, предотвращают отрыв пламени и одновременно повышают процесс теплоотдачи в топке.

Инжекционные горелки.

Инжекционными называются горелки, в которых образование газовоздушной смеси происходит за счет энергии струи газа. Основной элемент инжекционной горелки – инжектор, подсасывающий воздух из окружающего пространства внутрь горелок.

В зависимости от количества инжектируемого воздуха горелки могут быть полного предварительного смешения газа с воздухом или с неполной инжекцией воздуха.

Горелки с неполной инжекцией воздуха. К фронту горения поступает только часть необходимого для сгорания воздуха, остальной воздух поступает из окружающего пространства. Такие горелки работают на низком давлении газа. Их называют инжекционными горелками низкого давления.

Основными частями инжекционных горелок (рис. 7.3) являются регулятор первичного воздуха, форсунка, смеситель и коллектор.

Регулятор первичного воздуха 7 представляет собой вращающийся диск или шайбу и регулирует количество первичного воздуха, поступающего в горелку. Форсунка 1 служит для превращения потенциальной энергии давления газа в кинетическую, т.е. для придания газовой струе такой скорости, которая обеспечивает подсос необходимого воздуха. Смеситель горелки состоит из трех частей: инжектора, конфузора и диффузора. Инжектор 2 создает разрежение и подсос воздуха. Самая узкая часть смесителя – конфузор 3, выравнивающий струю газовоздушной смеси. В диффузоре 4 происходит окончательное перемешивание газовоздушной смеси и увеличение ее давления за счет снижения скорости.

Из диффузора газовоздушная смесь поступает в коллектор 5, который и распределяет газовоздушную смесь по отверстиям 6. Форма коллектора и расположение отверстий зависит от типа горелок и их назначения.

Инжекционные горелки низкого давления имеют ряд положительных качеств, благодаря которым их широко применяют в бытовых газовых приборах, а также в газовых приборах для предприятий общественного питания и других коммунально-бытовых потребителей газа. Горелки используют также в чугунных отопительных котлах.

Рис. 7.3. Инжекционные атмосферные газовые горелки

а – низкого давления; б – горелка для чугунного котла; 1 –форсунка. 2 – инжектор, 3 – конфузор, 4 – диффузор, 5 – коллектор. 6 – отверстия, 7 – регулятор первичного воздуха

Основные преимущества инжекционных горелок низкого давления: простота конструкции, устойчивая работа горелок при изменении нагрузок; надежность и простота обслуживания; бесшумность работы; возможность полного сжигания газа и работа на низких давлениях газа; отсутствие подачи воздуха под давлением.

Важной характеристикой инжекционных горелок неполного смешения является коэффициент инжекции – отношение объема инжектируемого воздуха к объему воздуха, необходимого для полного сгорания газа. Так, если для полного сгорания 1 м 3 газа необходимо 10 м 3 воздуха, а первичный воздух составляет 4 м 3 , то коэффициент инжекции равен 4:10=0,4.

Характеристикой горелок является также кратность инжекции – отношение первичного воздуха к расходу газа горелкой. В данном случае, когда на 1 м 3 сжигаемого газа инжектируется 4 м 3 воздуха, кратность инжекции равна 4.

Достоинство инжекционных горелок: свойство их саморегулирования, т.е. поддержание постоянной пропорции между количеством подаваемого в горелку газа и количеством инжектируемого воздуха при постоянном давлении газа.

Смесительные горелки. Горелки с принудительной подачей воздуха.

Горелки с принудительной подачей воздуха широко применяют в различных тепловых устройствах коммунальных и промышленных предприятий.

По принципу действия эти горелки подразделяются на горелки с предварительным смешением газа (рис.7.4)и топлива и на горелки без предварительной подготовки газовоздушной смеси. Горелки обоих типов могут работать на природном, коксовом, доменном, смешанном и других горючих газах низкого и среднего давления. Диапазон рабочего регулирования - 0,1 ÷ 5000 м 3 /ч.

Воздух в горелки подается центробежными или осевыми вентиляторами низкого и среднего давления. Вентиляторы могут быть установлены на каждой горелке или один вентилятор на определенную группу горелок. При этом, как правило, весь первичный воздух подается вентиляторами, вторичный же практически не влияет на качество горения и определяется только подсосом воздуха в топочную камеру через неплотности топочной арматуры и лючки.

Преимуществами горелок с принудительной подачей воздуха являются: возможность применения в топочных камерах с различным противодавлением, значительный диапазон регулирования тепловой мощности и соотношения газ - воздух, сравнительно небольшие размеры факела, незначительный шум при работе, простота конструкции, возможность предварительного подогрева газа или воздуха и использования горелок большой единичной мощности.

Горелки низкого давления применяют при расходе газа 50 ÷ 100 м 3 /ч, при расходе 100 ÷ 5000 целесообразно использовать горелки среднего давления.

Давление воздуха в зависимости от конструкции горелки и необходимой тепловой мощности принимается равным 0,5 ÷ 5кПа.

Для лучшего перемешивания топливно-воздушной смеси в большинство горелок газ подается небольшими струями под различным углом к потоку первичного дутьевого воздуха. С целью интенсификации смесеобразования потоку воздуха придают турбулентное движение при помощи специально установленных завихряющих лопаток, тангенциальных направляющих и т.д.

К наиболее распространенным горелкам с принудительной подачей воздуха внутреннего смешения относят горелки с расходом газа до 5000 м3/ч и более. В них можно обеспечить заранее заданное качество подготовки топливно-воздушной смеси до ее подачи в топочную камеру.

В зависимости от конструкции горелки процессы смешения топлива и воздуха могут быть различными: первый - подготовка топливно-воздушной смеси непосредственно в камере смешения горелки, когда в топку поступает готовая газовоздушная смесь, второй - когда процесс смешения начинается в горелке, а заканчивается в топочной камере. Во всех случаях скорость истечения газовоздушной смеси разна 16...60 м/с. Интенсификации смесеобразования газа и воздуха достигают путем струйной подачи газа, применения регулируемых лопаток, тангенциального подвода воздуха и пр. При струйной подаче газа используют горелки с центральной подачей газа (от центра горелки к периферии) и с периферийной.

Максимальное давление воздуха на входе в горелку - 5 кПа. Она может работать при противодавлении и разрежении в топочной камере. В данных горелках в отличие от горелок внешнего смешения пламя менее светящееся и относительно небольших размеров. В качестве стабилизаторов наиболее часто применяют керамические тоннели. Однако могут быть использованы все рассмотренные выше способы.

Горелка типа ГНП с принудительной подачей воздуха и центральной подачей газа, сконструированная специалистами института Теплопроект, предназначена для использования в топочных устройствах со значительными тепловыми напряжениями. В этих горелках предусмотрено закручивание потока воздуха с помощью лопаток. В комплект горелки входят два сопла: сопло типа А, применяемое для короткофакельного сжигания газа с 4÷6 отверстиями для выхода газа, направленными перпендикулярно или под углом 45° к потоку воздуха, и сопло типа Б, используемое для получения удлиненного факела и имеющее одно центральное отверстие, направленное параллельно потоку воздуха. В последнем случае предварительное смешение газа и воздуха происходит значительно хуже, что приводит к удлинению факела.

Стабилизация факела, обеспечивается применением огнеупорного тоннеля из шамотного кирпича класса А. Горелки могут работать на холодном и подогретом воздухе. Коэффициент избытка воздуха - 1,05. Горелки такого типа применяют в паровых котлах, хлебопекарной промышленности.

Двухпроводная газомазутная горелка ГМГ предназначена для сжигания природного газа или малосернистых видов жидкого топлива типа дизельного, бытового, мазутов флотских Ф5, Ф12 и пр. Допускается совместное сжигание газа и жидкого топлива.

Газовое сопло горелки имеет два ряда отверстий, направленных под углом 90° друг к другу. Отверстия на боковой поверхности сопла позволяют подавать газ в закрученный поток вторичного дутьевого воздуха, отверстия на торцевой поверхности - в закрученный поток первичного воздуха.

Процесс образования газовоздушной смеси в горелках с принудительной подачей воздуха начинается непосредственной в самой горелке, а завершается уже в топке. В процессе сжигания газ сгорает коротким и несветящимся пламенем. Требующийся для сгорания газа воздух, подается в горелку принудительно с помощью вентилятора. Газ и воздух подаются по отдельным трубам.

Данный вид горелок еще называют двухпроводными или смесительными горелками. Чаще всего используются горелки, работающие на низком давлении газа и воздуха. Также некоторые конструкции горелок используются и при среднем давлении.

Устанавливаются горелки в топках котлов, в нагревательных и сушильных печах и т.д.

Принцип работы горелки с принудительной подачей воздуха:

Газ поступает в сопло 1 с давлением до 1 200 Па и выходит из него через восемь отверстий диаметром 4,5 мм. Эти отверстия должны быть расположены под углом 30° к оси горелки. Специальные лопатки, которые задают вращательное движение потоку воздуха, расположены в корпусе 2 горелки. В процессе работы газ в виде мелких струек поступает в закрученный поток воздуха, который помогает хорошему смешиванию. Горелка заканчивается керамическим тоннелем 4, имеющим запальное отверстие 5.

Рис. 7.4. Горелка с принудительной подачей воздуха:

1 - сопло; 2 - корпус; 3 - фронтальная плита; 4 – керамический тоннель.

Горелки с принудительной подачей воздуха обладают рядом достоинств:

–высокая производительность;

–широкий диапазон регулирования производительности;

–возможность работы на подогретом воздухе.

В существующих разнообразных конструкциях горелок интенсификация процесса образования газовоздушной смеси достигается следующими способами:

–разбиением потоков газа и воздуха на мелкие потоки, в которых проходит смесеобразование;

–подачей газа в виде мелких струек под углом к потоку воздуха;

–закручиванием потока воздуха различными приспособлениями, встроенными внутрь горелок.

Комбинированные горелки.

Комбинированными называются горелки, работающие одновременно или раздельно на газе и мазуте или на газе и угольной пыли.

Их применяют при перебоях в подаче газа, когда необходимо срочно найти другой вид топлива, когда газовое топливо не обеспечивает необходимого температурного режима топки; подача газа на данный производится только в определенное время (ночью) для выравнивания суточной неравномерности газопотребления.

Наибольшее распространение получили газомазутные горелки с принудительной подачей воздуха. Горелка состоит из газовой, воздушной и жидкостной частей. Газовая часть представляет собой полое кольцо, имеющее штуцер для подвода газа и восемь трубочек для распыления газа.

Жидкостная часть горелки состоит из мазутной головки и внутренней трубки, заканчивающейся форсункой 1 (рис. 7.5).

Подача мазута в горелку регулируется вентилем. Воздушная часть горелки состоит из корпуса, завихрителя 3, воздушной заслонки 5, с помощью которой можно регулировать подачу воздуха. Завихритель служит для лучшего перемешивания струи мазута с воздухом. Давление воздуха 2÷3 кПа, давление газа до 50 кПа, а давление мазута до 0,1 МПа.

Рис. 7.5. Комбинированная газомазутная горелка:

1 – мазутная форсунка, 2 – воздушная камера, 3 – завихритель, 4 – трубки выхода газа, 5 – воздушная регулировочная заслонка.

Применение комбинированных горелок дает более высокий эффект, чем одновременное использование газовых горелок и мазутных форсунок или газовых пылеугольных горелок.

Комбинированные горелки необходимы для надежной и бесперебойной работы газоиспользующего оборудования и установок крупных промышленных предприятий, электростанций и других потребителей, для которых перерыв в работе недопустим.

Рассмотрим принцип действия комбинированной пылегазовой горелки конструкции Мосэнерго (рис. 7.6)

При работе на угольной пыли в топку по кольцевому каналу 3 центральной трубы подается смесь первичного воздуха с угольной пылью, а вторичный воздух поступает в топку через улитку 1.

В качестве резервного топлива служит мазут, в этом случае в центральной трубе устанавливается мазутная форсунка. При переводе горелки на газовое топливо мазутную форсунку заменяются кольцевым каналом, по которому подается газовое топливо.

В центральной части канала устанавливается труба с чугунным наконечником 2. Наконечнике 2 косые щели, через которые выходит газ и пересекается с потоком закрученного воздуха, выходящего из улитки 1. В усовершенствованных конструкциях горелок в наконечнике вместо щелей предусмотрено 115 отверстий диаметром 7 мм. В результате скорость выхода газа увеличивается почти в два раза (150 м/с).

Рис. 7.6. Комбинированная пылегазовая горелка с центральной подачей газа.

1 – улитка для закручивания воздушного потока, 2 – наконечник газоподводящих труб,

3 – кольцевой канал для подачи смеси первичного воздуха с угольной пылью.

В новых конструкциях горелки применяется периферийная подача газа, при которой газовые струйки, имеющие более высокую скорость, чем воздушные, пересекают закрученный поток воздуха, движущийся со скоростью 30 м/с, под прямым углом. Такое взаимодействие потоков газа и воздуха обеспечивает быстрое и полное перемешивание, в результате чего газовоздушная смесь сгорает с минимальными потерями.

7.3. Автоматизация процессов сжигания газа .

Свойства газового топлива и современные конструкции газовых горелок создают благоприятные условия для автоматизации процессов сжигания газа. Автоматическое регулирование процесса горения повышает надежность и безопасность эксплуатации газоиспользующих агрегатов и обеспечивает их работу в соответствии с наиболее оптимальным режимом.

Сегодня в газоиспользующих установках применяются системы частичной или комплексной автоматизации.

Комплексная газовая автоматика состоит из следующих основных систем:

– автоматика регулирования;

– автоматика безопасности;

– аварийной сигнализации;

–телотехнического контроля.

Регулирование и управление процессом горения определяется работой газовых приборов и агрегатов в заданном режиме и обеспечением оптимального режима сгорания газа. Для этого регулирование процесса горения предназначена автоматика регулирования бытовых, коммунальных и промышленных газовых приборов и агрегатов. Таким образом, поддерживается постоянная температура воды в баке у емкостных водонагревателей, постоянное давление пара у паровых котлов.

Подача газа к горелкам газоиспользующих установок прекращается автоматикой безопасности в случае:

– погасание факела в топке;

– понижении давления воздуха перед горелками;

– овышении давления пара в котла;

– повышении температуры воды в котле;

– понижении разряжения в топке.

Отключение этих установок сопровождается соответственными звуковыми и световыми сигналами. Не менее важен и контроль загазованности помещения, в котором расположены все газовые приборы и агрегаты. Для этих целей устанавливают электромагнитные клапаны, которые прекращают подачу газа в случаях превышения ПДК в окружающем воздухе СН 4 и СО 2 .

Добиться оптимального режима в условиях технологического процесса можно при помощи приборов теплотехнического контроля

Условия эксплуатации газоиспользующего оборудования определяют степень его автоматизации.

Дистанционное управление газоиспользующих установок достигается путем использования приборов контроля и сигнализации.

Расчеты горелок.

В газомазутных топках, снабженных современными горелочными устройствами с автоматическим управлением процессом сжигания, стало возможным сжигать природные газы и мазут с малыми избытками воздуха практически при отсутствии или малой величине химической неполноты сгорания (менее 0,5%). Поэтому рекомендуется процесс сжигания этих топлив поддерживать с коэффициентом избытка воздуха за пароперегревателем не выше 1,03 ÷ 1,05.

Газовой горелкой называется устройство, обеспечивающее устойчивое сжигание газообразного топлива и регулирования процесса горения.

Основные функции горелок:

· Подача газа и воздуха к фронту горения;

· Смесеобразование;

· Стабилизация фронта пламени;

· Обеспечение требуемой интенсивности процесса горения газа.

Типы газовых горелок

1. Диффузионные горелки.

2. Инжекционные среднего и низкого давления.

3. Кинетические – с принудительной подачей воздуха низкого и среднего давления.

4. Комбинированные газомазутные горелки низкого и среднего давления.

Все горелки должны пройти государственные испытания в специальных испытательных центрах и иметь «Сертификат соответствия российским стандартам»

(Испытания: г.Шахты, Ростовской области, Свердловская область: «Уральский испытательный центр горелочных устройств».

Диффузионная горелка . Диффузия – процесс самопроизвольного проникновения одного вещества в другое.

В диффузионных горелках весь, необходимый для сгорания газа воздух – вторичный. Диффузионные горелки практически нигде не применяются. Диффузионная горелка представляет собой трубу с отверстиями для выхода газа, расстояние между отверстиями определяется с учетом распространения пламени от одного отверстия к другому. В такую горелку подается чистый газ без примеси воздуха. Горелки маломощные, требуют большой объем топочного пространства или подачу воздуха в топку вентилятором.

В промышленности на старых заводах применяется подово-щелевая диффузионная горелка, представляющая собой трубу Æ 57мм с высверленными на ней в 2 ряда отверстиями.

К преимуществам диффузионных горелок можно отнести простоту конструкции и устойчивое пламя.

Инжекционная горелка. Подсос воздуха за счет разряжения, создаваемого струей истекающего газа, называется инжекцией, или подсос воздуха осуществляется за счет энергии струи газа. Инжекционные горелки бывают с неполной (50…60%) инжекцией воздуха и полной инжекцией.

В инжекционных горелках в горении участвует воздух первичный (50…60%) и вторичный из объема топки. Горелки эти называются еще саморегулирующимися (т.е., чем больше подача газа, тем больше засасывается воздуха).

Недостатки этих горелок: нуждаются в стабилизации пламени от отрыва и проскока. Горение – с шумом при работе.

Достоинства горелок: простота конструкции, надежность в работе, возможность полного сжигания газа, возможность работы на низких и средних давлениях, подача воздуха за счет энергии струи газа, что экономит электрическую энергию (вентилятора).

Основными частями инжекционных горелок являются:

· Регулятор первичного воздуха (1);

· Сопло (2);

· Смеситель (3).


Регулятор первичного воздуха представляет собой вращающийся диск, шайбу или заслонку, с помощью которых регулируется подача первичного воздуха.

Сопло служит для превращения потенциальной энергии давления газа – в кинетическую (скоростную), т.е. для придания газовой струе такой скорости, которая обеспечивала бы необходимый поток воздуха.

Смеситель горелки состоит из 3-х частей:

· Инжектора (4);

· Конфузора (5);

· Диффузора (7).

В инжекторе создается разрежение и создается подсос первичного воздуха.

Самая узкая часть горелки – конфузор, в котором происходит выравнивание газо-воздушной смеси.

В диффузоре происходит окончательное перемешивание газовоздушной смеси и увеличение ее давления за счет снижения скорости.

Горелка с принудительной подачей воздуха. Это кинетическая или двухпроводная горелка. Воздух для сгорания газа подается в горелку принудительно вентилятором 100%, т.е. весь воздух первичный. Горелка эффективная, большой мощности, не требует большого топочного пространства. Работает на низком и среднем давлении газа, нуждается в стабилизации пламени от отрыва и проскока.

В горелке имеется завихритель воздуха, предназначенный для полного перемешивания газа с воздухом внутри горелки.

У горелки имеется керамический туннель, выполняющий функции стабилизатора.

Комбинированные газомазутные горелки. У этих горелок помимо газовой части имеется форсунка для распыливания жидкого топлива. Одновременное сжигание газа и жидкого топлива разрешается кратковременно при переходе с одного вида топлива на другой.

Форсунка представляет собой конструкцию типа труба в трубе. По центральной трубе подается жидкое топливо, по межкольцевому пространству подается распыливающий воздух или пар.


Преимущества газового отопления для владельца частного дома очевидны. Это минимальная стоимость топлива, доступная цена оборудования, простота монтажа и высокая энергоэффективность.

Кроме этого, газовый котел избавляет от необходимости заготовки дров и трудоемкой топки. И хотя монтаж такого оборудования – дело специалистов, выбор газового котла для частного дома всегда остается за хозяевами. Учитывая разнообразие предложений отопительных устройств, работающих на природном газе, сделать его непросто.

Поэтому мы предлагаем краткий экскурс по теме разновидности и технические характеристики бытовых газовых котлов. Он поможет сделать свой выбор более осмысленным и точным.

Разновидности газовых котлов

Первым критерием, по которому покупатель судит о данной технике, является компания- производитель. Импортные бренды, как правило, дороже отечественных моделей. При этом по ряду показателей – надежность, ремонтопригодность, срок службы и КПД они превосходят продукцию менее известных фирм.

Между собой известные марки активно конкурируют, стремясь привлечь внимание покупателя современным дизайном, компактностью и надежностью. Здесь, как и в других категориях бытового оборудования, основным показателем при прочих равных параметрах является цена.

Переходя в техническую область, отметим, что все бытовые газовые котлы делятся по типу установки на настенные и напольные . Основная разница здесь заключается в весе.

Тяжелый напольный котел на стену не повесишь, а легкий агрегат нет смысла ставить на пол, занимая лишнее пространство. Большой вес напольного оборудования (от 150 до 200 кг) свидетельствует не только о высокой мощности, но и о долговечности.

Настенное отопительное оборудование (вес от 20 до 30 кг) не бывает мощнее 45 кВт, в том время как тепловая производительность напольных котлов измеряется сотнями киловатт.

Площадь обогрева – еще одна важная характеристика газового котла, которую производители специально указывают для покупателей. Мощность – термин для специалистов. На бытовом языке гораздо понятнее звучит площадь обогрева. Зная геометрические параметры помещений своего дома, можно легко выбрать подходящий агрегат.

Следующие базовые технические характеристики газового котла – количество контуров и тип горелки.

Контур – замкнутый круг (теплообменник-трубы-радиаторы), или открытая магистраль (водопровод-теплообменник-смеситель), по которому движется вода. Одноконтурный котел проще по устройству и дешевле, но при этом не способен дать горячую воду для бытовых нужд.

Двухконтурный, напротив, универсален. Он не только греет батареи, но также нагревает воду для ванной комнаты и кухни. Его сокращенно обозначают АОГВ (агрегат отопительный+горячее водоснабжение).

Решив купить одноконтурный котел, не забудьте о дополнительном источнике тепла (электробойлер или газовая колонка), который обеспечит ваше жилище горячей водой. Если же вы делаете выбор в пользу универсальности, то двухконтурная отопительная техника полностью оправдает ваши надежды.

Тип горелки – немаловажный параметр , от которого зависит способ отвода дымовых газов и КПД установки.

Атмосферные горелочные устройства появились первыми. Они просты по конструкции, бесшумны и надежны в работе.

С атмосферным агрегатом не сможет работать без высокого дымохода. Внутри него должна стоять труба из кислотостойкой нержавеющей стали.

Для городской квартиры новой планировки отсутствие дымовой трубы – серьезная проблема. В вентиляционные каналы отводить продукты сгорания нельзя. Поэтому в конструкцию котла внедрили новый тип горелки – наддувную и назвали его турбированным.

На наличие наддувной горелки указывает название камеры сгорания. У атмосферных горелок она открытая, а у надувных – закрытая. Почему? Объясняем. В турбированном котле подача воздуха и отвод дымовых газов производится по системе «труба в трубе». По внутреннему каналу меньшего диаметра отводятся топочные газы, а по внешнему вентилятор засасывает чистый воздух. Такая схема требует закрытой конструкции камеры сгорания.

Решая вечный вопрос застройщика, какой газовый котел лучше можно сказать, что турбированная установка экономичнее в потреблении газа и не знает проблем с тягой. Она не требует строительства дымохода и монтажа мощной приточной вентиляции топочного помещения. Недостаток всех турбокотлов — обмерзание наружного выпуска коаксиальной трубы, где встречаются теплый влажный и холодный воздух.

Приняв во внимание характеристики, о которых мы вам рассказали, не забудьте поинтересоваться материалом, из которого изготовлен теплообменник. Для напольных котлов есть два варианта: чугун или сталь. Первый более стойкий к коррозии и (как утверждают рекламные проспекты), более долговечный.

Отметим, что долговечность чугуна – понятие весьма относительное. Он прослужит вам 25-30 лет только при условии использования подготовленной воды (очищенной от солей) и нормальной работе четырехходового смесительного кла­пана. Его внедряют в систему для защиты хрупкого чугуна от перепада температур между зоной нагрева и точкой входа остывшей воды из обратной магистрали.

Если учесть эти риски и приплюсовать к ним высокую стоимость котлов с чугунными теплообменниками, то следует рассмотреть вариант со стальной камерой сгорания. Сталь – прочный и при этом пластичный материал. Она не боится резких перепадов температуры в камере сгорания. При условии надежной защиты от коррозии или использования нержавеющей стали, такой теплообменник прослужит вам очень долго.

Медный теплообменник хорош во всех отношениях. Он легче стального и чугунного, обладает высокой теплоемкостью, пластичностью и стойкостью к коррозии. Поэтому его можно признать оптимальным вариантом для настенного котла.

Резюмируя наш обзор, кратко повторим, как правильно выбрать газовый котел для дома:

  • Площадь обогрева, м2 или мощность;
  • Напольный или настенный;
  • Количество контуров (1 или 2);
  • Тип камеры сгорания (атмосферная или закрытая);
  • Материал теплообменника.

Фирмы-производители, отзывы, ориентировочные цены

Задача продавца – продать котел. Поэтому не надейтесь, что вам объективно укажут на недостатки каждой модели. Внимательно изучите перед покупкой отзывы пользователей. В них аргументированно раскрываются слабые места конструкции.

Известный бренд – сильный аргумент в пользу выбора. Это концентрированное выражение опыта производства, уровня технологий, качества материалов и сборки.

Подбирая экономичный газовый котел для отопления дома, обратите внимание на такие популярные немецкие марки, как Vaillant (Вайлант) и Bosch (Бош).

Они надежны и потребляют минимальное количество газа. Отзывы об их работе в большинстве случаев положительные. Минимальная цена настенного 2-х контурного котла Vaillant (атмосферный) мощностью в 24 кВт (площадь отопления до 240 м2) начинается от 35 тысяч рублей. Котел Bosch с аналогичными характеристиками существенно дешевле (от 23 тыс. руб.). Ориентировочные цена атмосферных агрегатов данных компаний (напольное исполнение, площадь отопления до 320 м2) начинаются от 60 тыс. руб.

Итальянские бренды Baxi (бакси), Ariston (Аристон), Ferroli (Ферроли), корейский Navien (Навьен) при достаточно высоком качестве оборудования доступны по цене большинству домовладельцев. В отзывах покупателей вы встретите больше положительных оценок, чем откровенного негатива.

Цены на настенные атмосферные модели (24 кВт) здесь стартуют с отметки в 25 000 рублей. Напольные установки данных компаний (отапливаемая площадь до 300 м2) обходятся покупателям в сумму от 50 тысяч рублей.

Хорошо зарекомендовала себя отопительная техника отечественной компании Лемакс и словацкий Protherm (Протерм). Напольные модели Протерм с атмосферной горелкой (мощность 35 кВт) можно приобрести за 40 тыс. руб., а настенные 24 – киловаттные двухконтурные котлы за 25-26 тысяч рублей.

Напольные атмосферные агрегаты Лемакс мощностью 35 кВт (одноконтурные) можно купить за 34 000 рублей. За настенный атмосферный двухконтурный агрегат данной компании (площадь отопления 250 м2), продавцы просят от 19 000 рублей.

В отличие от других брендов, фирма Лемакс работает и в категории напольных одноконтурных котлов малой мощности (от 7,5 до 16 кВт) предлагая их по ценам от 12 до 16 тыс. руб.