Метеостанция на цифровых индикаторах своими руками. Метеостанция своими руками (Погодная станция)

Метеостанция на цифровых индикаторах своими руками. Метеостанция своими руками (Погодная станция)

Метеостанция своими руками.

Дело было вечером, делать было нечего после нового года. Как обычно, во время зимних новогодних каникул хочется занять голову да и руки тоже чем-нибудь полезным, творческим. В эти новогодние каникулы решил сделать метеостанцию своими руками. Готовиться начал заранее, все компоненты закупал и собирал перед новым годом, а основное программирование делал на каникулах.

(под катом много фотографий!)

Сначала пробегусь по компонентам, ссылки давать не буду, так как на eBay (в личном кабинете) товары ушли в архив. Многие компоненты покупал неспеша на аукционе eBay. Впервые опробовал аукцион, раньше всегда покупал «buy it now». Что могу сказать, если не спешить с покупками, то некоторые компоненты можно купить дешевле (разница иногда бывает в два раза).

Датчик давления ВМР085
Это основной датчик. Когда я увидел его на eBay, то понял, что хочу собрать именно домашнюю метеостанцию.
Прилетел датчик в обычном конверте, внутри обклеенном пупыркой.

Внутри конверта была визитка продавца и датчик, запакованный в антистатический пакет и завёрнутый в ещё один слой пупырки

Антистатический пакет был запаян, дабы влага во время перелёта не грозила датчику

Достаём датчик. С одной стороны припаяна линейка контактов, которые были вставлены в пенопласт, чтобы не погнулись. С другой стороны располагается сам датчик и маркировка контактов.




Все бы хорошо, но маркировка контактов нанесена в зеркальном виде.
Подключается датчик по шине I2C и питается от 3,3 В. То есть для нормального функционирования нужно 4 провода (+, -, SDA, SCL)
Опрашивать датчик можно 2 способами: или через библиотеку, или используя функции прямо скетче.
Пример программы:

#include

#define BMP085_ADDRESS 0x77 // I2C address of BMP085

Const unsigned char OSS = 0; // Oversampling Setting

// Calibration values
int ac1;
int ac2;
int ac3;
unsigned int ac4;
unsigned int ac5;
unsigned int ac6;
int b1;
int b2;
int mb;
int mc;
int md;

Short temperature;
long pressure;

Void setup()
{
Serial.begin(9600);
Wire.begin();
bmp085Calibration();
}

Void loop()
{
temperature = bmp085GetTemperature(bmp085ReadUT());
pressure = bmp085GetPressure(bmp085ReadUP());
Serial.print(«Temperature: „);
Serial.print(temperature/10.0, DEC);
Serial.println(“ C»);
Serial.print(«Pressure: „);
Serial.print(pressure/133.322, DEC);
Serial.println(“ mm Hg»);
Serial.println();
delay(1000);
}

Void bmp085Calibration()
{
ac1 = bmp085ReadInt(0xAA);
ac2 = bmp085ReadInt(0xAC);
ac3 = bmp085ReadInt(0xAE);
ac4 = bmp085ReadInt(0xB0);
ac5 = bmp085ReadInt(0xB2);
ac6 = bmp085ReadInt(0xB4);
b1 = bmp085ReadInt(0xB6);
b2 = bmp085ReadInt(0xB8);
mb = bmp085ReadInt(0xBA);
mc = bmp085ReadInt(0xBC);
md = bmp085ReadInt(0xBE);
}

Short bmp085GetTemperature(unsigned int ut)
{
long x1, x2;
x1 = (((long)ut - (long)ac6)*(long)ac5) >> 15;
x2 = ((long)mc << 11)/(x1 + md);
b5 = x1 + x2;

Return ((b5 + 8)>>4);
}

Long bmp085GetPressure(unsigned long up)
{
long x1, x2, x3, b3, b6, p;
unsigned long b4, b7;
b6 = b5 - 4000;
// Calculate B3
x1 = (b2 * (b6 * b6)>>12)>>11;
x2 = (ac2 * b6)>>11;
x3 = x1 + x2;
b3 = (((((long)ac1)*4 + x3)<>2;
// Calculate B4
x1 = (ac3 * b6)>>13;
x2 = (b1 * ((b6 * b6)>>12))>>16;
x3 = ((x1 + x2) + 2)>>2;
b4 = (ac4 * (unsigned long)(x3 + 32768))>>15;
b7 = ((unsigned long)(up - b3) * (50000>>OSS));
if (b7 < 0x80000000)
p = (b7<<1)/b4;
else
p = (b7/b4)<<1;
x1 = (p>>8) * (p>>8);
x1 = (x1 * 3038)>>16;
x2 = (-7357 * p)>>16;
p += (x1 + x2 + 3791)>>4;
return p;
}

// Read 1 byte from the BMP085 at "address"
char bmp085Read(unsigned char address)
{
unsigned char data;

Wire.write(address);
Wire.endTransmission();
Wire.requestFrom(BMP085_ADDRESS, 1);
while(!Wire.available())
;
return Wire.read();
}

Int bmp085ReadInt(unsigned char address)
{
unsigned char msb, lsb;
Wire.beginTransmission(BMP085_ADDRESS);
Wire.write(address);
Wire.endTransmission();
Wire.requestFrom(BMP085_ADDRESS, 2);
while(Wire.available()<2)
;
msb = Wire.read();
lsb = Wire.read();
return (int) msb<<8 | lsb;
}

// Read the uncompensated temperature value
unsigned int bmp085ReadUT()
{
unsigned int ut;
// Write 0x2E into Register 0xF4
// This requests a temperature reading
Wire.beginTransmission(BMP085_ADDRESS);
Wire.write(0xF4);
Wire.write(0x2E);
Wire.endTransmission();
// Wait at least 4.5ms
delay(5);
// Read two bytes from registers 0xF6 and 0xF7
ut = bmp085ReadInt(0xF6);
return ut;
}

// Read the uncompensated pressure value
unsigned long bmp085ReadUP()
{
unsigned char msb, lsb, xlsb;
unsigned long up = 0;
// Write 0x34+(OSS<<6) into register 0xF4
// Request a pressure reading w/ oversampling setting
Wire.beginTransmission(BMP085_ADDRESS);
Wire.write(0xF4);
Wire.write(0x34 + (OSS<<6));
Wire.endTransmission();
// Wait for conversion, delay time dependent on OSS
delay(2 + (3< // Read register 0xF6 (MSB), 0xF7 (LSB), and 0xF8 (XLSB)
Wire.beginTransmission(BMP085_ADDRESS);
Wire.write(0xF6);
Wire.endTransmission();
Wire.requestFrom(BMP085_ADDRESS, 3);
// Wait for data to become available
while(Wire.available() < 3)
;
msb = Wire.read();
lsb = Wire.read();
xlsb = Wire.read();
up = (((unsigned long) msb << 16) | ((unsigned long) lsb << 8) | (unsigned long) xlsb) >> (8-OSS);
return up;
}


Помимо этого в датчике есть собственный термо-сенсор для компенсации давления и альтиметр

Arduino Nano v3.0
Это сердце всей метеостанции. По простому говоря, контроллер в миниатюрном размере.
Покупал
Рассказывать подробно про контроллер не буду, так как до меня уже это сделали:


Посылка с lightake была сборная, контроллер пришел в пакете, где был USB-кабель и Arduino в запаянном антистатическом пакете.

Чтобы оценить размеры, рядом с Arduino положил монетку номиналом 1 руб.

Плата контроллера вблизи



USB-кабель хороший, с ферритовым кольцом. Питается Arduino по USB кабелю. Среду разработки можно скачать (страница для скачивания ). Язык «С»-подобный, с освоением проблем не было, так как на нем очень много программирую на работе.

LCD экран
На работе в закромах нашёл совместимый LCD 1602 экран. С подключением пришлось повозиться, так как даташита на него не нашёл. В результате LCD заработал.

Но после недолгой эксплуатации заметил, что мне этого экрана мало и вывести больше данных не получится, так как он имеет всего 2 строки по 16 символов в каждой. Поначалу кажется, что этих параметров хватит, но когда начинаешь программировать, то понимаешь, что максимум можно впихнуть 3-4 параметра. А если делать меню (я ведь подумывал сделать меню на этом экране), то свободного места остаётся на 1-2 параметра.
В итоге начал подыскивать себе другой экран. Сначала присматривался к графическому экрану от Nokia 3310 и даже в аукционе eBay участвовал, чтобы его купить, но не сложилось (чему я очень рад), поэтому мне пришлось отказаться от этого экрана. Сейчас я понимаю, что он был бы слишком мал для моих целей, так как есть с чем сравнивать.
Случайно просматривая шилды на Arduino, я наткнулся на графический экран 12864 на контроллере ST7920. У этого экрана и размер подходящий, и хорошее разрешение для моих нужд (128х64). То есть можно спокойно разместить 6-7 строк по 20 символов нормально читающегося шрифта. Так как экран графический, то помимо текста разными шрифтами можно разместить и графику. Короче, это именно то, что мне нужно было, все присутствовало в этом экране, поэтому я не выдержал и заказал.
Посылка пришла быстро и была упаковано стандартно: конверт-пупырка, внутри ещё слой пупырки и экран в антистатическом пакете:






Чтобы оценить размеры, рядом с LCD положил монетку номиналом 1 руб.




Чтобы быстро подключить экран к Arduino, к контактам LCD припаял линейку контактов. Подключать LCD можно по последовательной шине и по параллельной. Я выбрал первый вариант, так как свободных контактов Arduino и так мало.
Подключение (взято из сети):

- Контакт 1 (GND) подключается к общей шине
- Контакт 2 (VCC) подключается к шине питания +5V, причём потребляемый ток сравнительно небольшой и дисплей можно питать от встроенного стабилизатора Arduino.
- Контакты 4, 5 и 6 подключаются к цифровым выходам Arduino, образуя последовательный интерфейс SPI:
контакт 4 – (RS) – соответствует линии CS (например 7)
контакт 5 – (RW) – соответствует линии MOSI (например 8)
контакт 6 – (E) – соответствует линии SCK (например 3)
номера контактов Arduino могут быть любыми, главное не забыть потом правильно указать их в тексте программы при инициализации дисплея.
- Контакт 15 (PSB) соединяется с общей шиной.
- Контакты 19 (A) и 20 (K) – это питание подсветки (+5V и GND соответственно). Для регулировки яркости подсветки можно использовать переменный резистор 10кОм, включённый между шинами питания и GND. Напряжение с его движка подаётся на контакт 19 дисплея.
По этой инструкции я подключил все, кроме подсветки. В качестве питания подсветки я использовал ШИМ Arduino.
Для того, чтобы программно подключить LCD к Arduino, используется библиотека u8glib. Скачать можно . Если есть проблемы скачивания, то могу библиотеку залить на narod.ru.
Сама библиотека не сложная и позволяет выводить текст разным шрифтом, рисовать линию, рисовать простейшие геометрические фигуры (прямоугольник, круг), выводить на экран свои изображения, подготовленные специальным образом. В принципе, этого инструмента достаточно для большинства задач.
Вот результат простенькой программы:

Сама программа:

#include «U8glib.h»

U8GLIB_ST7920_128X64 u8g(3, 9, 8, U8G_PIN_NONE); // SPI E = 3, RW = 9, RS = 8

// Подпрограмма определения свободной памяти
int freeRam () {
extern int __heap_start, *__brkval;
int v;
return (int) &v - (__brkval == 0? (int) &__heap_start: (int) __brkval);
}

Void setup(void) {
u8g.setFont(u8g_font_6x10); // шрифт
u8g.setRot180(); //Перевернул экран
analogWrite(6, 115); // Устанавливаем яркость экрана (анод подсветки на 6 pin)
}

Void loop(void) {
u8g.firstPage();
do {

u8g.setPrintPos(1, 12); // позиция
u8g.print(«Hello!!!»); // вывод текста
u8g.drawBox(0,22,128,9); // Закрашиваем прямоугольник белым
u8g.setColorIndex(0); // белые чернила, черный фон
u8g.setPrintPos(1, 30); // позиция
u8g.print(«Word...»); // вывод текста

U8g.setColorIndex(1); // белые чернила, черный фон
u8g.setPrintPos(1, 50); // позиция
u8g.print(«After start =»); // вывод текста
u8g.setPrintPos(85, 50); // позиция
u8g.print(millis() / 1000); // вывод число секунд после старта
u8g.setPrintPos(1, 64); // позиция
u8g.print(freeRam ()); // вывод сколько памяти занято
} while(u8g.nextPage());

Delay(200);
}

Часы реального времени DS1307
Ещё один компонент для моей метеостанции. На данном шилде реализованы часы реального времени. Заказывал их на аукционе eBay. Продавец прислал платку часов в нереально большой коробке


Внутри коробки было два листка А4 с рекламой и платка часов, обмотанная целлофаном


Хочу заметить, что плата не превышает размером 2 руб. монету, а коробка была размером 13х15х5 см.
Плата была упакована в антистатический пакет

Платка вблизи



С данным модулем мне пришлось повозиться. Во-первых, были трудности подключения. А во-вторых, кварц на данной плате никакой. Если бы знал, что на модуль потрачу столько времени, то, скорее всего, собрал бы его сам, благо в сети полно схем. Самая простейшая схема содержит 4-5 компонентов.
По поводу подключения. Я нашёл библиотеку, в которой было сказано, что интерфейс I2C можно подключать не на привычные аналоговые входы Arduino (А4 и А5), а на любые дискретные. Как написано, так и сделал. Сначала ничего не работало, после долгого танца с бубном часы завелись. Ну, подумал, всё, проблемы закончились, но после того, как я попытался этот же модуль подключить к другой Arduino, пляски с бубном продолжились. Много времени потратил на поиски решения данной проблемы и практически везде указывалось либо на неправильное подключение, либо на отсутствие подтягивающих резисторов на контактах SCL и SDA. Я уже хотел с паяльником в плату лезть, но на одном форуме случайно наткнулся на код, где было сказано, чтобы SCL и SDA подключать к стандартным портам I2C на Arduino. После стандартного подключения, все сразу заработало.
Теперь по поводу кварца. Не знаю, что там за кварц ставят китайцы, но часы с таким кварцем убегали в сутки на 10-11 сек. В месяц данная погрешность составляет 5 минут, а в год 1 час. Нафиг такие часы не нужны. Пришлось снова лезть в сеть и искать, как исправить данный баг. Первое попавшее решение говорит о том, что нужно заземлить кварц. Сделал - результат нулевой. Ещё где-то нашёл, что нужно найти старую материнку и выпаять оттуда часовой кварц. Сделал - результат есть. Теперь часы убегают не на 10-11 секунд, а на 1,5 секунды в сутки. Скажем так, стало лучше, но до идеала далеко. Так как больше с паяльником возится неохота, то было решено подводить часы программно, то есть раз в сутки подводить часы на нужную величину. После 10 суток, часы ушли не более, чем на секунду. Метод хорош, но только тогда, когда устройство синхронизации Arduino подключено к питанию, иначе часы работают от батарейки и все равно убегают.
Небольшая тестовая программа:

#include «Wire.h»
#define DS1307_I2C_ADDRESS 0x68 // SDA A4, SCL A5

Byte decToBcd(byte val)
{
return ((val/10*16) + (val%10));
}

Byte bcdToDec(byte val)
{
return ((val/16*10) + (val%16));
}

Void setDateDs1307(byte second, // 0-59
byte minute, // 0-59
byte hour) // 0-99
{

Wire.write(0);
Wire.write(decToBcd(second));
Wire.write(decToBcd(minute));
Wire.write(decToBcd(hour));
Wire.endTransmission();
}

Void getDateDs1307(byte *second,
byte *minute,
byte *hour)
{

Wire.beginTransmission(DS1307_I2C_ADDRESS);
Wire.write(0);
Wire.endTransmission();

Wire.requestFrom(DS1307_I2C_ADDRESS, 3);

*second = bcdToDec(Wire.read());
*minute = bcdToDec(Wire.read());
*hour = bcdToDec(Wire.read());
}

Void setup()
{
byte second, minute, hour;
Wire.begin();
Serial.begin(9600);

Second = 45;
minute = 5;
hour = 16;

SetDateDs1307(second, minute, hour);
}

Void loop()
{
byte second, minute, hour;

GetDateDs1307(&second, &minute, &hour);
Serial.print(hour, DEC);
Serial.print(":");
Serial.print(minute, DEC);
Serial.print(":");
Serial.println(second, DEC);

Delay(1000);
}


Здесь не использована библиотека, да и функции усечены, для чтения и записи времени.

Датчик температуры и влажности DHT11
Про данный датчик рассказывать нечего. Я бы его даже не стал использовать, если бы не нужна была влажность. К сожалению, я его не сфотографировал, когда получил, поэтому фотографий не будет. Фотографии датчика можно будет посмотреть ниже, где я его подключил к Arduino. Подключение датчика простое (+, цифровой выход, -). Обычно датчики делают четырёх контактные. При таком форм-факторе третий контакт ни к чему не подключают.
Для подключения к Arduino можно использовать библиотеку. Скачать можно .
Небольшая тестовая программа c выводом информации на LCD дисплей 1602:

// include the library code:
#include
#include

// Declare objects
dht11 DHT11;
LiquidCrystal lcd(12, 11, 6, 5, 4, 3);

#define DHT11PIN 7
int i;

Void setup()
{
lcd.begin(16, 2);
lcd.print(«Status: „);
i=0;
}

Void loop()
{
int chk = DHT11.read(DHT11PIN);
lcd.setCursor(8, 0);
switch (chk)
{
case 0: lcd.print(“OK „); break;// lcd.setCursor(11, 0); lcd.print(millis()/2000); break;
case -1: lcd.print(“Checksum error»); mErr(); break;
case -2: lcd.print(«Time out error»); mErr(); break;
default: lcd.print(«Unknown error»); mErr(); break;
}
delay(500);
lcd.setCursor(15, 0);
switch (i)
{
case 0: lcd.print("^"); lcd.setCursor(15, 1); lcd.print(" ");break;
case 1: lcd.print(«v»); lcd.setCursor(15, 1); lcd.print(" ");break;
default: lcd.setCursor(15, 1); lcd.print(«E»); break;
}
i=i+1;
if (i>1) i=0;
lcd.setCursor(0, 1);
lcd.print(«H=»);
lcd.setCursor(2, 1);
lcd.print((float)DHT11.humidity, 0);
lcd.setCursor(4, 1);
lcd.print("%");
lcd.setCursor(8, 1);
lcd.print(«T=»);
lcd.setCursor(10, 1);
lcd.print((float)DHT11.temperature, 0);
lcd.setCursor(12, 1);
lcd.print(«C»);

Void mErr()
{
lcd.setCursor(2, 1);
lcd.print("**");
lcd.setCursor(10, 1);
lcd.print("**");
i=5;
}


Минусы у датчика есть – данные с датчика идут только в целых числах, да и диапазон слабенький.

Вроде, про все компоненты написал. Осталось собрать все в единое целое.
Упс, чуть не забыл! Для того, чтобы все собрать устройство, нужен корпус. Корпус тоже заказывал на Ebay. Продавец оказался из Англии. Посылка дошла быстро, но фотографировать её не стал. Все фотографии корпуса ниже.

Сначала собрал все на столе с помощью специальных проводков. Написал тестовую программу и залил её в контроллер.



На самом деле синий цвет подсветки гораздо ярче. Даже при минимальной яркости (Bright=5) происходит засветка кадра.

Чтобы все собрать без проводов, было решено сделать мини материнскую плату, а платка Arduino и шилды надевались на разъёмы. В случае чего, их с лёгкостью можно быстро извлечь. LCD экран и кнопки для управления я решил также цеплять на разъёмах, только датчик температуры впаять на проводах.
Вот такая вышла платка



На последней фотографии я ещё до конца флюс не смыл. Под шилды рядом с разъёмами приклеил пористую резину, чтобы была хоть какая-то опора. Хотя на самом деле шилды в разъёмах на контактах и так прекрасно держатся.

Материнская плата с установленными шилдами и платой Arduino.

Вот так выглядит полное подключение к материнской плате


Вместо кнопок использовал самодельный шилд, спаянный на макетной плате. В качестве кнопок использовал кнопки из старых мышек.
Как видно, количество проводов убавилось.

Основная проблема размещения в корпус - это ровно выпилить паз под LCD экран. Как я ни старался, все равно идеально не получилось. Щели в некоторых местах были чуть больше 1 мм. Чтобы все смотрелось аккуратно, я взял чёрный герметик для аквариума и залил все щели, заодно экран крепил именно на этот герметик. После высыхания герметика снаружи обрезал излишки. При ярком освещении герметик видно, а при обычном - все сливается с корпусом.
Вот так выглядит корпус изнутри с установленным LCD экраном и материнской платой.

Вот так выглядит снаружи при ярком освещении (прошу прощения за отпечатки пальцев, увидел их, когда разбирал фотографии).

Долго думал, как приладить кнопки в корпус и, самое главное, какие использовать кнопки…
В радиоэлектронных магазинах приглянулись кнопка с длинным шпиньком и наконечники, которые надеваются на этот шпинёк. Эти кнопки используются для пайки на плату. Все бы хорошо, но у них есть минус – ход нажатия очень маленький и громкий.
Размещать кнопки пришлось в два этапа: первый - разместить кнопки на плате, второй - эту плату крепить ещё на одной плате. И все это потом засовывать в корпус на направляющие.

Вот так выглядит платка с кнопками:



Вот так выглядит плата-держатель:


Здесь видны направляющие, в которые вставляется плата с кнопками. Некоторые элементы паял для того, чтобы придать жёсткость плате.

Теперь все засовываем в корпус
Без подключения кнопок:


С подключением кнопок:

Закрываем корпус и включаем. Все прекрасно работает, кнопки отрабатывают, как нужно.

В конце размещаю небольшое видео работы устройства в разных режимах:
http://www.youtube.com/watch?v=KsiVaUWkXNA&feature=youtu.be
У кого видео здесь не отображается, вот ссылка на

Пора заканчивать обзор.
Немного напишу о программе, а потом краткие выводы. Когда писал программу, не думал, что очень быстро упрусь в ограничение в 30720 байт.


Пришлось оптимизировать код. Многие куски кода выносил в подпрограммы. Никогда бы не подумал, что оператор switch… case в компилированном виде занимает больше места, чем несколько if… else. Ещё экономит место правильное объявление переменных. Если объявлять массив long, хотя вполне можно обойтись byte, то перерасход памяти достигает 500 байт в зависимости от размерности массива. Когда пишешь программу, то об этом не думаешь, а уже потом, когда анализируешь программу, то понимаешь, что некоторые вещи сделал неправильно, и начинаешь оптимизировать код. После того, как проблемы с размером программы были решены, я упёрся в ограничение оперативной памяти. Выражалось это в том, что программа начинала виснуть после загрузки. Пришлось вводить подпрограмму подсчёта свободной оперативной памяти. В результате, был вынужден отказаться от одного алгоритма предсказывания погоды, так как он должен выводить пиктограммы на экран. Сам алгоритм работает, а вот вывод пиктограмм пришлось заремировать. У меня есть ещё задумки, как оптимизировать код, но в ближайшем будущем оставляю работать устройство, как есть, чтобы оценить работоспособность и выявить все баги.

Теперь небольшие выводы
Минусы
1) Цена. Оправдание этому минусу – хобби никогда не бывает дешёвым.

Плюсы
1) Большой функционал устройства
2) Наращивание функций ограничивается только используемым контроллером и собственным желанием
3) Эстетическое удовольствие от созерцания и моральное удовльствие от того, что я все-таки собрал и доделал это устройство

Планирую купить +86 Добавить в избранное Обзор понравился +137 +304

РУКОВОДСТВО ПО СОЗДАНИЮ ПРОСТОЙ ДОМАШНЕЙ МЕТЕОСТАНЦИИ СВОИМИ СИЛАМИ

Если целый день или вообще круглосуточно включен компьютер, его можно использовать для работы домашней метеостанции. Поставлена цель создать простую и недорогую метеостанцию, в которой будет задействован персональный компьютер (ПК). ПК выступает в роли считывателя, обработчика и отправителя на сайт "Метеопост" измеренных метеорологических данных. Связь между компьютером и измерительным блоком будет осуществляться по сети 1-Wire.

Состав измерительного комплекса
1. Персональный компьютер с операционной системой Windows XP и выше и наличием свободного COM порта.
2. Адаптер для COM порта (преобразователь 1wire - RS232)
3. 4-х жильный Ethernet кабель типа "витая пара", длины должно хватить от COM порта до измерительного блока
4. Блок питания на 5В постоянного тока с хорошей стабилизацией напряжения
5. Измерительный блок (установлен на улице)
6. Программное обеспечение для ПК - приложение "Метеостанция".

ВАРИАНТ №1 - ОДИН ДАТЧИК

Сначала рассмотрим самый простой вариант - это метеостанция с одним датчиком температуры. Для этого не нужен дополнительный блок питания (п.4). И система очень упрощается. Адаптер для COM порта (п.2) можно выполнить по такой схеме. Адаптер состоит из двух стабилитронов на 3.9В и 6.2В, двух диодов Шотки и одного резистора.

Схема адаптера для COM порта


Адаптер в корпусе D-SUB

Место пайки кабеля и датчика температуры, включительно и выводы датчика нужно хорошо защитить от влаги. Лучше всего применить клей на полиуретановой основе.


Гидроизоляция выводов датчика

Эта система обеспечит мониторинг температуры с точностью до десятых градуса. При этом в окне приложения будет виден график зависимости температуры воздуха от времени и иконка в трее будет всегда показывать текущую температуру. Приложение позволяет задавать интервал измерений.

СТОИМОСТЬ РАДИОДЕТАЛЕЙ - не выше 50 грн.

ВАРИАНТ №2 - ЧЕТЫРЕ ДАТЧИКА

Более сложная метеостанция с четырьмя датчиками: температура, влажность, освещенность, давление. Поскольку только датчик температуры будет цифровой, а остальные аналоговые - в системе используется четырехканальный АЦП ds2450. Этот АЦП поддерживает протокол 1-wire. Схема требует дополнительного источника питания. Источник питания должен обеспечивать высокую стабильность напряжения. Но поскольку схема выше описанного адаптера имеет недостаток - невозможность подключения к датчикам внешнего источника питания из-за отсутствия реальной массы (-), используем другую схему адаптера. Этот адаптер также умещается в корпусе разъема COM порта типа D-SUB. Теперь в кабеле задействованы три провода: масса (-), +5в и данные.


Схема адаптера для COM порта с внешним питанием

Схема измерительного блока вполне может быть выполнена даже на макетной плате. Нужно только уделить особое внимание гидроизоляции контактов. Самый простой способ это расплавить парафин и кисточкой нанести его во все оголенные места на плате. Если плата будет незащищенной от воды, будут утечки напряжения и будет много ошибок в измерениях. В нашем случае даже сотые доли Вольта существенно влияют на результаты.


Схема измерительного блока

Измерительный блок нужно разместить в корпусе и таком, чтобы плата и датчики были защищены от прямого воздействия осадков и солнечного излучения. Для этих целей хорошо подходит коробка из плотного пенопласта. В стенках коробки (дно и стенка с теневой стороны) нужно сделать побольше отверстий для вентиляции. Стенки коробки изнутри желательно обклеить алюминиевой фольгой для дополнительной защиты от инфракрасного излучения, иначе будет погрешность измерения температуры. Все датчики, кроме освещенности, размещаются прямо на плате. Датчик освещенности (фоторезистор) выносится из платы на проводах и устанавливается в отверстии дна пенопластового корпуса. Так, чтобы поверхность датчика смотрела вниз. В таком случае на датчик не будут попадать осадки и особенно зимой это убережет его от обледенения. Датчик освещенности для гидроизоляции нужно обработать, например, прозрачным клеем на полиуретановой основе (силиконовый герметик тест не прошел, он давал утечку тока). Обработать включительно (!) и светочувствительную зону фоторезистора. Выводы датчика залить клеем и разместить их можно в изоляционной трубочке. Концы выводов припаять к маленькой плате. А уже провода от измерительного блока припаять к этой плате. Места пайки залить парафином. Иначе, когда идет проливной дождь с ветром, метеостанция может оказаться неработоспособной и придется разбирать ее и все высушивать. Блок можно соединить с кабелем с помощью разъема. Но нужно использовать специальный влагозащитный разъем - система будет работать в сложных погодных условиях.

Если приходится размещать корпус за окном многоэтажки (нет возможности установить на стойке у земли) то коробку нужно удалить от стены дома насколько это возможно, на кронштейне. Иначе нагрев воздуха от стены дает очень искаженные данные о температуре. В условиях частного дома лучше конечно изготовить настоящую метеобудку. Нужно позаботиться о надежном креплении корпуса, иначе сильные порывы ветра могут оторвать нашу конструкцию.


Измерительный блок на кронштейне

Выходное напряжение блока питания (БП) должно быть в пределах 4.8-5.3В. Подойдет и зарядка от старого телефона. Однако если в блоке питания нет стабилизатора - нужно добавить его в блок питания, т.к. для точности измерений очень важно наличие стабильного напряжения. Можно хотябы проверить тестером - изменяются ли десятые или сотые волта на выходе БП. Скачки десятых волта не допускаются. Простая схема стабилизатора на 5в приведена ниже. На входе БП может быть от 7 до 17В. На выходе будет около 5В. После этого нужно подключить наш кабель (который идет к измерительному блоку) к БП и измерить напряжение тестером на другом конце кабеля. Это напряжение может быть несколько ниже, чем непосредственно на выходе БП, из-за сопротивления кабеля. Это измеренное напряжение нужно ввести в настройках приложения как "Напряжение питания датчиков".


Типичная схема стабилизатора напряжения

СТОИМОСТЬ КОМПЛЕКТУЮЩИХ ДЛЯ МЕТЕОСТАНЦИИ

Примерная стоимость радиодеталей (цены 2015 года по магазину ).
1. Датчик температуры ds18b20 - 25 грн
2. АЦП ds2450 - 120 грн
3. Фоторезистор LDR07 - 6 грн
4. Датчик влажности HIH-5030 - 180 грн
5. Датчик давления MPX4115A- 520 грн.
ВСЕГО: 850 грн или 37$

Остальные элементы в сумме стоят не выше 50 грн, блок питания можно взять, например, со старой "зарядки" для телефона.


Маркировка радиоэлементов

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ МЕТЕОСТАНЦИИ

Мы разработали приложение для Windows, которое предоставим бесплатно любому желающему собрать такую метеостанцию. Оно позволит вам на своем ПК наблюдать за погодой.


Окно приложения для ПК

В системном трее отображается температура воздуха

Все измеренные данные приложение может отправлять на наш сервер "Метеопост" и на специальной странице (пример) можно просматривать все метеоданные с браузера ПК. Также страница адаптирована и для браузера мобильного телефона.


Снимок экрана браузера мобильного телефона

ЗАКЛЮЧЕНИЕ
Можно сэкономить на стоимости деталей, если покупать их у китайцев на AliExpress. Возможно собрать метеостанцию без любого из датчиков, за исключением датчика температуры. У нашего АЦП остался один свободный вход, поэтому на него можно еще подать сигнал от датчика ветра. Но поскольку мы находимся в городе - установить и протестировать такой датчик нам попросту негде. В городской застройке не будет адекватного измерения скорости и направления ветра. Способы самостоятельного изготовления датчика скорости ветра подробно описаны многими энтузиастами в сети. Заводской датчик стоит довольно дорого.

Собрать такую метеостанцию под силам радиолюбителю со средними навыками. Для еще большего упрощения можно не разводить печатную плату, а собрать навесным монтажом на макетной плате. Проверено - работает.

Мы попытались создать именно доступную, дешевую метеостанцию. В частности для этого в системе задействован компьютер. Если его исключить, то нужно делать еще блок индикации, блок передачи данных в сеть и т.д, что существенно прибавит в цене. Например, сейчас популярная "Netatmo Weather Station" с подобными измеряемыми параметрами стоит около 4000 грн (200$).

Всем желающим сделать себе такую метеостанцию готовы помочь консультациями. Также предоставим необходимое программное обеспечение и подключим вашу станцию к нашему сайту.

Сегодня будет подробный рассказ о внутреннем устройстве метеостанции, которую включил в работу. От идеи до её технической реализации прошло более года, за это время пришлось решить массу ожидаемых и неожиданных проблем. Теперь обо всём по порядку...


Начнем с грабель.

Грабли №1 . Наверное кто-нить помнит что в начале прошлого года я радиомодули на базе чипа nRF24L01+ c усилителем RFX2401C и в дальнейшем собирал

Увы, данная конструкция работать не захотела. Не смотря на все попытки, мне так и не удалось обеспечить надёжную двухстороннюю связь радиомодулей на значительных расстояниях. Конструкция отняла довольно много сил и времени, но, в силу объективных причин, пришлось отказаться от этого варианта.

И тогда решил достать из закромов опытно-экспериментальный маршрутизатор TP Link MR3220 c системой OpenWRT на борту.

Принципиальная схема метеостанции несколько отличается от той, которую разрабатывал . Первое отличие - применение вместо Arduino Pro Mini платы Arduino Nano. Это позволило выполнять удалённую перепрошивку микроконтроллера, что очень удобно когда физический доступ на объект затруднён

Грабли №2 Я применил китайский клон Arduino Nano v.3.0, о котором подробнее рассказывал . Но возникла неожиданная проблема - при открытии маршрутизатором USB-порта, ардуинка стала перезагружаться. Все возможные варианты конфигурирования USB порта командой stty результата не принесли. С FT232RL такой проблемы не наблюдалось. Пришлось подключить RC-цепочку R1C1 на свободный порт GPIO7 маршрутизатора, это схемное решение позволило блокировать перезагрузку в нормальном режиме работы микроконтроллера. При необходимости перепрошивки нужно вручную включать GPIO7.


Конфигурирование порта

echo "7" > /sys/class/gpio/export

Конфигурируем GPIO7 как выход

echo out > /sys/class/gpio/gpio7/direction

Включить GPIO7

echo 1 > /sys/class/gpio/gpio7/value

Выключить GPIO7:

echo 0 > /sys/class/gpio/gpio7/value

Проверить состояние порта:

cat /sys/class/gpio/gpio7/value

Так как точность термодатчиков семейства DS1820 при отрицательных температурах оставалась под вопросом, для точного измерения температуры решил дополнительно использовать медный термометр сопротивления ТСМ-50М совместно с измерительным преобразователем Ш79. Разумеется, предварительно откалибровал систему с использованием поверенных образцовых приборов и добился погрешности измерения не более 0.2 градуса в диапазоне температур -50...+50 градусов Цельсия.

Ш79 это уже достаточно древний, весьма надёжный советский преобразователь, построенный по классической МДМ-схеме с унифицированным токовым выходом 0...5 мА или напряжением 0...10 В. В данном случае использовал токовый сигнал.

Несмотря на простую принципиальную схему, столкнулся с огромным объемом механической работы. Одно дело когда схема собрана за полчаса на макетной плате и совсем другое - когда устройству нужно придать законченный вид.

Печатная плата метеоконтроллера

Контроллер поместил в гермобокс

Маршрутизатор и метеоконтроллер закрепил на боковой стенке Ш79.

Вид сбоку

И вся эта система помещается в металлический ящик

Внутренности ящика

Так как ещё не знал в каком помещении будет установлен данный шкаф, решил сделать ему обогрев. Температура внутри ящика поддерживается обыкновенным биметаллическим термостатом, на фото выше виден его круглый корпус.

Резисторы обогрева закрыл металлическим кожухом. Круглые отверстия используются для подведения кабелей внутрь шкафа.

Конструкция в собранном виде

Выносные датчики температуры и влажности расположены на отдельной печатной плате

Для защиты от атмосферных воздействий плата покрыта лаком ХСЛ

Сверху кожух закрывает крышка

Внутрь кожуха поместил плату с датчиками и растянул её при помощи толстой рыболовной лески. Это сделано для того чтобы снизить теплопередачу между кожухом и платой датчиков. Данную конструкцию почему-то решил назвать измерительной ячейкой.

UPD: Не смотря на все предпринимаемые меры, как показала практика, солнечные лучи все-таки влияют на показания термометра - нагревается кожух и от него греется сам датчик. Поэтому в настоящее время используется уличный термокожух заводского исполнения, он показал значительно лучшие результаты. Подробнее о данном термокожухе можно почитать .

О конструкции анемометра более подробно рассказывал .

UPD: В настоящее время используется новая конструкция анемометра, подробнее можно почитать . Программа для работы с данным анемометром приведена в конце статьи.

Все выносные датчики соединяются с контроллером посредством 5 парного магистрального телефонного кабеля ТППэп длиной 100 метров. На конце кабеля распаял слегка модернизированную соединительную коробку КРТН-10.

Грабли №3 Для защиты контроллера от атмосферной статики и возможных грозовых перенапряжений хотел поставить защитные диоды 1.5КЕ7.5 на порты D2, D3, D4. Увы, собственная ёмкость данных диодов не позволила пропускать цифровые данные. Поэтому пришлось ограничиться установкой диода D1 по питанию +5V и заземлением экранной оболочки магистрального кабеля.

К данной коробочке подключаются сами датчики

Измерительная ячейка установлена на относительно открытом участке местности на высоте 3-х метров от поверхности земли, это на метр выше положенного по правилам, но сделал это намеренно, т.к. в нашей местности есть вероятность появления высоких сугробов.

Анемометр укреплён на высоте 5 метров, по хорошему нужно ставить выше, но с этим есть конструктивные сложности. Пусть пока поработает так.

Программная часть особо не изменилась: на маршрутизаторе работает php-скрипт отсылки данных на сервер narodmon

который каждые 5 минут запускается планировщиком cron

Программа ардуинки ждёт приема команды от скрипта и формирует пакет данных. Предусмотрел возможность ручной коррекции атмосферного давления для его приведения к уровню моря, метеостанции или аэродрома.

P.S. А вообще использование Wi-Fi для передачи метеоданных не оптимально, было бы лучше использовать УКВ-диапазон, собственно, так и сделано на автоматических метеостанциях. Это повысит дальность связи и снизит требования к месту установки, точнее к наличию прямой радиовидимости.

Принципиальную схему и печатные платы можно скачать

Сегодня, чтобы собрать рабочий прототип базовой домашней метеостанции не нужно обладать сильными навыками программирования (в нашем случае и подавно) или схемотехники. Достаточно умения «гуглить» и толики желания сделать что-то своими руками. В этом материале я расскажу и покажу, как за вечер собрать домашнюю метеостанцию с подключением к сети. Базовый бюджет - всего 10 долларов.

Текст может содержать и наверняка содержит грамматические, орфографические, пунктуационные и другие виды ошибок, включая смысловые. Я всячески прошу читателей указывать на эти ошибки с помощью системы ORPHUS. Для этого достаточно выделить необходимый участок текста и нажать комбинацию клавиш CTRL+Enter.

Базовый набор комплектующих

Основой нашего будущего устройства является отладочная плата NodeMCU на базе модуля ESP8266. Я взял ее на Gearbest , но при желании вы можете поискать оную и на других площадках.

Для соединения модулей можно использовать шлейф с BLS-разъемами ($0.9) или беспаечную макетную плату с набором соединительных проводов ($3.74).

Подключение и настройка

Несмотря на доступные 4 вывода, подключается наш датчик всего по 3 проводам: питание +5В (1 вывод), земля (4) и линия передачи данных (2). Питание для датчика берем либо с пина VUSB, либо с 3V, если первого на вашей плате не оказалось. Линию данных подключаем к порту GPIO14 (пин D5).

Напомню, что навыков программирования в нашем случае не нужно абсолютно никаких. Прошивку для модуля будем генерировать с помощью сайта WiFi-IoT.ru , автором которого является Максим Малкин, также известный по проекту домашней автоматизации homes-smart.ru . Для начала попросту регистрируемся на WIFi-IoT и подтверждаем почту.

Перед сборкой прошивки необходимо подготовить приобретенный модуль к работе и очистить его от возможного предустановленного китайского ПО. Для этого нам понадобится рабочий USB-microUSB кабель и компьютер или виртуальная машина с Windows. После регистрации на сайте вы попадете на англоязычную страницу «Getting started » с пояснениями по подготовке модуля к работе. Скачивайте файлы с ПО из первых двух пунктов инструкции.

Теоретически, после подключения модуля к компьютеру, Windows должна сама отыскать драйвера и установить их. На случай, если этого не произойдет, попробуйте идентифицировать на плате микросхему (отличается большим количеством «ножек») возле microUSB порта. Вероятнее всего это будут CP2102 или CH340 (драйвера к ним доступны по ссылкам).

После установки драйверов повторно подключаем нашу плату к компьютеру и запускаем программу NodeMCU Flasher, которую скачали ранее. В выпадающим списке выбираем присвоенный нашему устройству COM-порт. Скорее всего он будет один, в противном случае его номер можно уточнить в диспетчере устройств Windows. Во вкладке Config указываем расположение загруженного ранее blank-файла с расширением.bin.

Для NodeMCU параметры во вкладке Advanced необходимо выставить в соответствии с нижеприведенным скриншотом, после чего возвращаемся на стартовую страницу и нажимам кнопку Flash. О завершении процесса прошивки программа просигнализирует зеленой галочкой в левом нижнем углу.

После данных манипуляций модуль готов к загрузке прошивки, которую нам еще предстоит скомпоновать. Идем в конструктор и отмечаем необходимые нам пункты:

  • «DHT22» - это наш датчик температуры и влажности;
  • «Время и NTP» - для отображения времени в веб-интерфейсе;
  • «Настройки по умолчанию». Нажимаем шестеренку возле этого пункта и вводим логин и пароль от точки доступа, к которой будет подключен модуль. Остальные пункты пока не трогаем.

Нажимаем клавишу «Скомпилировать» внизу страницы и на выходе получаем готовое к установке ПО. Скачиваем одним файлом.

Далее повторяется процесс с прошивкой blank-файла, только вместо него выбираем уже загруженную на компьютер прошивку. После завершения процесса полностью перезагружаем модуль (отключаем и подключаем заново USB-кабель) и отправляемся в админ-панель роутера в поисках модуля. Так как мы не использовали предварительное присвоение статического IP, роутер должен сам выдать ему адрес. Напомню, что админ-панель обычно находится по адресу 192.168.0.1 или 192.168.1.1. Моему модулю роутер выдал адрес 192.168.1.142. После перехода по этому IP попадаем в веб-интерфейс нашей метеостанции. Предварительно необходимо будет ввести стандартный логин «esp8266» и пароль «0000» во всплывающем окне.

Теперь нужно указать модулю к какому порту подключен датчик, чтобы первый смог считывать его показания. Делается это на странице «Hardware». Соответствующей отметкой активируем первый датчик, а в строке GPIO указываем 14-й порт. Произойдет инициализация и на главной странице интерфейса появится отображение температуры и влажности. Ура!

Напоследок не забудьте на странице «Main» изменить пароль для входа в систему и часовой пояс для отображения времени. Также необходимо перевести модуль на статический IP-адрес (кнопка внизу страницы), чтобы после перезагрузки роутера ваша метеостанция не «потерялась». Если разбираетесь в настройках своего роутера, то лучше сделать бессрочную аренду IP-адреса для модуля, вместо установки статического IP.

Прототип готов, теперь перейдя по установленному IP-адресу можно посмотреть температуру и влажность в месте, где вы установили датчик.

Подключение метеостанции к сервису метрик Thingspeak.com

Но просто смотреть температуру не интересно. Необходима визуализация данных, чтобы можно было проследить какие-то тенденции в изменении показаний. Для этого регистрируемся в сервисе метрик Thingspeak.com и в своем профиле создаем новый канал.

На открывшееся странице заполняем название канала, отмечаем первых два поля field и записываем туда значения «temp» (первое поле) и «humidity / temp» (второе).

Теперь снова займемся модулем. В конструкторе прошивок в дополнение ко всем предыдущим отметкам добавляем «Thingspeak.com», компилируем прошивку и прошиваем по аналогии. К сожалению, все настройки на модуле придётся произвести заново, т.к. OTA-обновления с сохранением оных доступны только в платной версии ПО (цена вопроса всего 100 рублей на модуль).

Возвращаемся на страницу созданного нами канала в сервисе Thingspeak.com и открываем вкладку «Api Keys». Нам понадобится код из поля «Write Api Key». Его нужно скопировать и вставить в соответствующее поле на странице «Servers» в веб-интерфейсе нашей метеостанции, предварительно не забыв установить отметку на «Enable Thingspeak.com send.».

Показания будут отправляться каждые 5 минут. А выглядеть это в итоге будет следующим образом:

Внешний вид графиков поддается редактированию, так что вы вольны творить! 🙂

Итоги

Наверное кто-то спросит: «Почему итоговый результат отличается от представленного на приведенной выше и заглавной картинках?». Как минимум потому, что информации в этом материале новичкам в теме точно хватит на вечер-другой, а подключение дисплея и барометра потребуют наличия базовых навыков пайки и соответствующего оборудования. Если вы заинтересованы в дальнейшем совершенствовании метеостанции и моих заметках по этой теме, то обязательно напишите об этом в комментариях.

МБОУ СОШ Селихинского сельского поселения

Тема проекта

« Метеостанция в домашних условиях»

Выполнил:

Пюви Райнис, ученик 5 кл.

Руководитель:

Бессмертная О.А.

2016г

Тема : «Метеостанция в домашних условиях».

Гипотеза: Можно ли создать метеостанцию в домашних условиях.

Цель: Изготовление метеостанции в домашних условиях и наблюдение за изменениями погоды.

Задачи:

    Узнать что такое метеостанция.

    Изучить историю фенологии.

    Изучить строение метеостанции.

    Изготовить метеостанцию в домашних условиях;

    Наблюдать за погодой и записывать результаты наблюдений в таблицу;

Методы исследования:

    поисковый (сбор информации по теме)

    наблюдения

    практический (изготовление приборов)

    аналитический (сравнение результатов)

    Введение.

При изучении на уроке географии темы: «Погода и метеорологические наблюдения», нам задали на дом изготовить своими руками метеорологический прибор и провести наблюдения за погодой согласно этого прибора. У меня возник вопрос: «Можно ли создать метеорологическую станцию в домашних условиях и проводить по ней наблюдения за погодой?».

Наш далекий предок находился в большой зависимости от превратностей погоды. Он не понимал сути и закономерности природных явлений и все непонятное объяснял наличием сверхъестественной, «божественной» силы. По «воле богов» всходило солнце, шел дождь, пересыхали реки, налетал ветер.

Все народы обожествляли Солнце, Луну, ветер, молнию и гром. У восточных славян до принятия ими христианства особо почитался Перун- земледельческий бог, податель дождя, творец молнии и грома, в его власти было появление весенней зелени на земле и деревьях. Приняв новую веру, наши предки стали чтить Илью- громовержца.

Многие народы считали Солнце главным источником жизни на Земле. Они называли его «князем Земли и царем неба». Луну почитали как княгиню.

До появления специальных приборов прогноз погоды основывался исключительно на визуальных наблюдениях за атмосферными явлениями, позволивших еще в древности установить некоторые закономерности. Приобретенный опыт продолжал развиваться и накапливаться и в течение многих веков передавался из поколения в поколение.

    Из истории фенологии.

Фенология - наука о закономерностях сезонного развития природы. Развитие фенологии определяется запросами практики (сельского, рыбного, охотничьего, лесного хозяйства, охраны природы, здравоохранения и др.) .

Фенология позволяет прогнозировать сезонные явления и планировать хозяйственную деятельность (природоохранные мероприятия, сроки сельскохозяйственных работ и т. п.) в соответствии со сроками этих явлений.

(№1.)

Имеются свидетельства, что древнейшие народы земли - китайцы и египтяне - в своей земледельческой практике умели следить за сезонным развитием природы. Сезонные явления нашли отражение в ряде трудов античных авторов (например, у греческого философа Феофраста (372-287 г. до н. э.) и римского писателя Плиния Младшего (62-114 г. н. э.)).

В средние века в русских и зарубежных летописях и хрониках иногда велись записи о сроках наступления важнейших сезонных явлений (например, в монастыре Кракова за 1490- 1527 г., во дворце японского микадо с 812 г. и др.). Однако эти материалы оставались без систематизации и научной обработки.

В России самым старинным считается рукописный календарь, датированный 1670 годом, а первым печатным календарем следует считать «Святцы или календарь, изданный Копиевским в Амстердаме и датированный 1702 годом.

Первая мысль о необходимости вести наблюдения за сезонными явлениями природы в России принадлежала Петру I.

В 1721 году Петр I писал из Москвы в Петербург А.Д. Менишкову: «Когда деревья станут раскидываться, тогда велите присылать нам весточки оных, понедельно, наклеивши на бумагу с подписями чисел, дабы узнать, где ранее началась весна». А указом государя, изданным 28 марта 1722 года, предписывалось адмиралу Крюйсу вести систематические записи о состоянии погоды в Петербурге.

Во второй половине XVIII века караульным у Кремлевской стены вменялось в обязанность отмечать состояние мороза, наступление метели, толщину снежного покрова, характер ветра, града, грозы и другие показатели погоды.

С1864 года начал издаваться «Киевский народный календарь» с предсказаниями погоды на каждый месяц. Его целью было «дать народу знание в популярной форме на строго научно изложенных статьях и в справочном отделе, приноровленном к нуждам народа». Теперь эта задача метеорологии- науке о погоде. Она получила свое название от греческого слова «метеора»- «нечто в небе».

После революции 1917 года метеорология продолжала совершенствоваться. В настоящее время гидрометеорологическая служба располагается тысячами наблюдательных станций, множеством обсерваторий и целым рядом научно-исследовательских учреждений. Работники метеослужбы стремятся дать информацию не только на ближайшую, но и на отдаленную перспективу.

№2.

    Понятие метеостанции, её состав.

Метеостанция - совокупность различных приборов для метеорологических измерений (наблюдения за погодой).

В узком смысле метеостанция - учреждение, проводящее метеорологические наблюдения. Основным официальным метеостанциям мира присвоены синоптические индексы. В России большинство метеостанций находятся в ведении Росгидромета. В зависимости от установленного объёма наблюдений, метеостанции имеют определённый разряд. Данные метеостанций СССР публиковались в «Метеорологическом ежемесячнике».

Различают аналоговые и цифровые метеорологические станции.

На классической (аналоговой) метеостанции имеется:

1.Термометр для измерения температуры воздуха и почвы.

2. Барометр для измерения давления.

3. Анемометр для направления ветра.

4. Осадкомер (плювиограф) для измерения осадков.

5. Гигрометр для измерения влажности воздуха

6. Снегомерная рейка - рейка, предназначенная для измерения толщины снежного покрова при метеонаблюдениях.

7.Термограф- самописец, непрерывно регистрирующий температуру воздуха.

№3.

4.Метеорологические приборы:

Термо́метр (греч. θέρμη - тепло; μετρέω - измеряю) - прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометра: жидкостные; механические; электронные;

Баро́метр (др.-греч. βάρος - «тяжесть» и μετρέω - «измеряю») - прибор для измерения атмосферного давления. Ртутный барометр был изобретён итальянским математиком и физиком Эванджелистой Торричелли в 1644 году, это была тарелка с налитой в неё ртутью и пробиркой(колбой), поставленной отверстием вниз. Когда атмосферное давление повышалось, ртуть поднималась в пробирке, когда же оно понижалось - ртуть опускалась. Из-за неудобства такая конструкция перестала применяться и уступила место барометру-анероиду, но метод, по которому такой барометр был изготовлен, стал применяться в термометрах.

А.А. Летягин. География. Начальный курс:5 класс: учебник для учащихся общеобразовательных организаций/А.А. Летягин; под ред. В.П. Дронова.-3-еизд.,дораб. и доп.-М.: Вентана-Граф, 2015г.-160с.