Устройство генератора переменного тока – как обеспечить себя энергией, при ее отсутствии в розетке

Устройство генератора переменного тока – как обеспечить себя энергией, при ее отсутствии в розетке

Здравствуйте, ценители мира электрики и электроники. Если вы частенько заглядываете на наш сайт, то наверняка помните, что совсем недавно у нас вышел достаточно объемный материал про то, как устроен и работает генератор постоянного тока. Мы подробно описали его строение от самых простых лабораторных прототипов, до современных рабочих агрегатов. Обязательно почитайте, если еще этого не сделали.

Сегодня мы разовьем эту тему, и разберемся, в чем заключается принцип действия генератора переменного тока. Поговорим о сферах его применения, разновидностях и много еще о чем.

Начнем с самого основного – переменный ток отличается от постоянного тем, что он с некоторой периодичностью меняет свое направление движения. Также он меняет и величину, о чем мы подробнее поговорим далее.

Спустя определенный промежуток времени, который мы назовем «Т» значения параметров тока повторяются, что на графике можно изобразить в виде синусоиды – волнистой линии, проходящей с одинаковой амплитудой через центральную линию.

Базовые принципы

Итак, назначение и устройство генераторов переменного тока, называемого раньше альтернатором, заключается в преобразовании кинетической энергии, то есть механической, в электрическую. Подавляющее большинство современных генераторов используют вращающееся магнитное поле.

  • Работают такие устройства за счет электромагнитной индукции, когда при вращении в магнитном поле катушки из токопроводящего материала (обычно медная проволока), в ней возникает электродвижущая сила (ЭДС).
  • Ток начинает образовываться в тот момент, когда проводники начинают пересекать магнитные линии силового поля.

  • Причем пиковое значение ЭДС в проводнике достигается при прохождении им главных полюсов магнитного поля. В те моменты, когда они скользят вдоль силовых линий, индукция не возникает и ЭДС падает до нуля. Взгляните на любую схему из представленных – первое состояние будет наблюдаться, когда рамка примет вертикальное положение, а второе – когда горизонтальное.
  • Для лучшего понимания протекающих процессов нужно вспомнить правило правой руки, изучавшееся всеми в школе, но мало кем помнящееся. Суть его заключается в том, что если расположить правую руку так, чтобы силовые линии магнитного поля входили в нее со стороны ладони, большой палец, отведенный в сторону, укажет направление движения проводника, а остальные пальцы будут указывать на направление возникающей в нем ЭДС.
  • Взгляните на схему выше, положение «а». В этот момент ЭДС в рамке равно нулю. Стрелочками показано направление ее движения – часть рамки А двигается в сторону северного полюса магнита, а Б – южного, достигнув которых ЭДС будет максимальным. Применяя описанное выше правило правой руки, мы видим, что ток начинает течь в части «Б» в нашу сторону, а в части «А» – от нас.
  • Рамка вращается дальше и ток в цепи начинает падать, пока рамка снова не займет горизонтальное положение (в).
  • Дальнейшее вращение приводит к тому, что ток начинает течь в обратном направлении, так как части рамки поменялись местами, если сравнивать с начальным положением.

Спустя половину оборота, все снова вернется в изначальное состояние, и цикл повторится снова. В итоге мы получили, что за время совершения полного оборота рамки, ток дважды возрастал до максимума и падал до нуля, и единожды менял свое направление относительно нчального движения.

Переменный ток

Принято считать, что длительность периода обращения равняется 1 секунде, а число периодов «Т» является частотой электрического тока. В стандартных электрических сетях России и Европы за одну секунду ток меняет свое направление 50 раз – 50 периодов в секунду.

Обозначают в электронике один такой период особой единицей, названной в честь немецкого физика Г. Герца. То есть в приведенном примере российских сетей частота тока составляет 50 герц.

Вообще, переменный ток нашел очень широкое применение в электронике благодаря тому, что: величину его напряжения очень просто изменять при помощи трансформаторов, не имеющих движущихся частей; его всегда можно преобразовать в постоянный ток; устройство таких генераторов намного надежнее и проще, чем для выработки постоянного тока.

Строение генератора переменного тока

Как устроен генератор переменного тока, в принципе, понятно, но вот, сравнивая его с собратом для выработки постоянного, не сразу можно уловить разницу.

Основные рабочие части и их подключение

Если вы прочли предыдущий материал, то наверняка помните, что рамка в простейшей схеме была соединена с коллектором, разделенным на изолированные контактные пластины, а тот, в свою очередь, был связан со щетками, скользящими по нему, через которые и была подключена внешняя цепь.

За счет того, что пластины коллектора постоянно меняются щетками, не происходит смены направления тока – он просто пульсирует, двигаясь в одном направлении, то есть коллектор является выпрямителем.

  • Для переменного тока такого приспособления не нужно, поэтому его заменяют контактные кольца, к которым привязаны концы рамки. Вся конструкция вместе вращается вокруг центральной оси. К кольцам примыкают щетки, которые также по ним скользят, обеспечивая постоянный контакт.
  • Как и в случае с постоянным током, ЭДС, возникающие в разных частях рамки, будут суммироваться, образуя результирующее значение этого параметра. При этом во внешней цепи, подключенной через щетки (если подсоединить к ней резистор нагрузки RH), будет протекать электрический ток.
  • В рассмотренном выше примере «Т» равняется полному обороту рамки. Отсюда можно сделать логичный вывод, что частота тока, вырабатываемая генератором, напрямую зависит от скорости вращения якоря (рамки), или другими словами ротора, в секунду. Однако это касается только такого простейшего генератора.

Если увеличить число пар полюсов, то в генераторе пропорционально возрастет и число полных изменений тока за один оборот якоря, и частота его будет измерять иначе, по формуле: f = np, где f – это частота, n – число оборотов в секунду, p – количество пар магнитных полюсов устройства.

  • Как мы уже писали выше, течение переменного тока графически изображается синусоидой, поэтому такой ток еще называется и синусоидальным. Сразу можно выделить основные условия, задающие постоянство характеристик такого тока – это равномерность магнитного поля (постоянная его величина) и неизменная скорость вращения якоря, в котором он индуктируется.
  • Для того чтобы сделать устройство достаточно мощным, в нем применяются электрические магниты. Обмотка ротора, в которой индуцируется ЭДС, в действующих агрегатах тоже не является рамкой, как мы показывали в схемах выше. Применяется очень большое количество проводников, которые соединены друг с другом по определенной схеме

Интересно знать! Образование ЭДС происходит не только тогда, когда проводник смещается относительно магнитного поля, но и наоборот, когда двигается само поле относительно проводника, чем активно и пользуются конструкторы электродвигателей и генераторов.

  • Данное свойство позволяет размещать обмотку, в которой индуктируется ЭДС, не только на вращающейся центральной части устройства, но и на неподвижной части. При этом в движение приводится магнит, то есть полюсы.

  • При таком строении внешняя обмотка генератора, то есть силовая цепь, не нуждается ни в каких подвижных частях (кольцах и щетках) – соединение выполняется жесткое, чаще болтовое.
  • Да, но можно резонно возразить, мол, эти же элементы потребуется установить на обмотке возбуждения. Так и есть, однако сила тока, протекающая здесь, будет намного меньше итоговой мощности генератора, что значительно упрощает организацию подвода тока. Элементы будут малы по размерам и массе и очень надежны, что делает именно такую конструкцию самой востребованной, особенно для мощных агрегатов, например, тяговых, устанавливаемых на тепловозах.
  • Если же речь идет о маломощных генераторах, где токосъем не представляет каких-то сложностей, поэтому часто применяется «классическая» схема, с вращающейся якорной обмоткой и неподвижным магнитом (индуктором).

Совет! Кстати, неподвижная часть генератора переменного тока называется статором, так как она статична, а вращающаяся – ротором.

Виды генераторов переменного тока

Классифицировать и отличить генераторы можно по нескольким признакам. Давайте назовем их.

Трехфазные генераторы

Отличаться они могут по количеству фаз и быть одно-, двух- и трехфазными. На практике наибольшее распространение получил последний вариант.

  • Как видно из картинки выше, силовая часть агрегата имеет три независимые обмотки, расположенные на статоре по окружности, со смещением друг относительно друга на 120 градусов.
  • Ротор в данном случае представляет собой электромагнит, который, вращаясь, индуктирует в обмотках переменные ЭДС, которые сдвинуты друг относительно друга во времени на одну третью периода «Т», то есть такта. По сути, каждая обмотка представляет собой отдельный однофазный генератор, который питает переменным током свою внешнюю цепь R. То есть мы имеет три значения тока I(1,2,3) и такое же количество цепей. Каждая такая обмотка вместе с внешней цепью получила название фазы.
  • Чтобы сократить число проводов, ведущих к генератору, три обратных провода, ведущих к нему от потребителей энергии, заменяют одним общим, по которому будут проходить токи от каждой фазы. Такой общий провод называют нулевым
  • Соединение всех обмоток такого генератора, когда их концы соединяются друг с другом, называется звездой. Отдельные три провода, соединяющие начала обмоток с потребителями электроэнергии называются линейными – по ним и идет передача.
  • Если нагрузка всех фаз будет одинаковой, то необходимость в нулевом проводе полностью отпадет, так как общий ток в нем будет равен нулю. Как так получается, спросите вы? Все предельно просто – для понятия принципа достаточно сложить алгебраические значения каждого синусоидального тока, сдвинутых по фазе на 120 градусов. Схема выше поможет понять этот принцип, если представить, что кривые на нем – это изменение тока в трех фазах генератора.
  • Если же нагрузка в фазах будет неодинаковой, то нулевой провод начнет пропускать ток. Именно поэтому распространена 4-х проводная схема подключения звездой, так как она позволяет сохранять электрические приборы, включенные в этот момент в сеть.
  • Напряжение между линейными проводами называется линейным, тогда как напряжение на каждой фазе – фазным. Токи, протекающие в фазах, являются и линейными.
  • Схема подключения звездой не является единственной. Существует и другой вариант последовательного подключения трех обмоток, когда конец одной соединен с началом второй, и так далее, пока не образуется замкнутое кольцо (см. схему выше «б»). Исходящие от генератора провода подключаются в местах соединения обмоток.
  • В таком случае фазовые и линейные напряжения будут одинаковыми, а ток линейного провода будет больше фазного, при их одинаковой нагрузке.
  • Такое соединение также не нуждается в нулевом проводе, в чем и заключается основное преимущество трехфазного генератора. Наличие меньшего количества проводов делают его проще, и цена его ниже, из-за меньшего количества используемых цветных металлов.

Еще одной особенностью трехфазной схемы подключения является появление вращающегося магнитного поля, что позволяет создавать простые и надежные асинхронные электродвигатели.

Но и это не все. При выпрямлении однофазного тока на выходе выпрямителя получается напряжение с пульсациями от нуля до максимального значения. Причина, думаем, ясна, если вы поняли основной принцип работы такого устройства. Когда же присутствует сдвиг по времени фаз, пульсации сильно уменьшаются, не превышая 8%.

Различие по виду

Отличаются генераторы и по виду, которых существует 2:

  • Синхронный генератор переменного тока – главная особенность такого агрегата заключается в жесткой связи частоты переменной ЭДС, которая наведена в обмотке и синхронной частотой вращения, то есть вращения ротора.

  1. Взгляните на схему выше. На ней мы видим статор с трехфазной обмоткой, соединенной по треугольной схеме, которая мало чем отличается от той, что стоит на асинхронном двигателе.
  2. На роторе генератора располагается электромагнит с обмоткой возбуждения, питающаяся от постоянного тока, который может быть подан на него любым известным способом – об этом подробнее будет расписано далее.
  3. Вместо электромагнита может быть применен постоянный, тогда необходимость в скользящих частях схемы, в виде щеток и контактных колец, отпадает вовсе, на такой генератор не будет достаточно мощным и не сможет нормально стабилизировать выходные напряжения.
  4. К валу ротора подключается привод – любой двигатель, создающий механическую энергию, и он приводится в движение с определенной синхронной скоростью.
  5. Так как магнитное поле главных полюсов вращается вместе с ротором, начинается индукция переменных ЭДС в обмотке статора, которые можно обозначить как Е1, Е2 и Е3. Эти переменные будут одинаковыми по значению, но как уже не раз говорилось, смещенными на 120 градусов по фазе. Вместе эти значения образуют трехфазную систему ЭДС, которая симметрична.
  6. К точкам С1,С2 и С3 подключается нагрузка, и на фазах обмотки в статоре появляются токи I1,I2,и I В это время каждая фаза статора сама становится мощным электромагнитом и создает вращающееся магнитное поле.
  7. Частота вращения магнитного поля статора будет соответствовать частоте вращения ротора.

  • Асинхронные генераторы – их отличает от описанного выше примера то, что частоты ЭДС и вращения ротора жестко не привязаны друг к другу. Разница между этими параметрами называется скольжением.
  1. Электромагнитное поле такого генератора в обычном рабочем режиме оказывает под нагрузкой тормозной момент на вращение ротора, поэтому частота изменения магнитного поля будет меньшим.
  2. Эти агрегаты не требуют для создания сложных узлов и применения дорогих материалов, поэтому нашли широкое применение, как электрические двигатели для транспорта, из-за легкого обслуживая и простоты самого устройства. Данные генераторы устойчивы к перегрузкам и коротким замыканиям, однако на устройствах сильно зависящих от частоты тока они неприменимы.

Способы возбуждения обмотки

Последнее различие моделей, которое хотелось бы затронуть, связано со способом запитки возбуждающей обмотки.

Тут можно выделить 4 типа:

  1. Питание на обмотку подается через сторонний источник.
  2. Генераторы с самовозбуждением – питание берется от самого генератора, при этом напряжение выпрямляется. Однако находясь в неактивном состоянии, такой генератор не сможет выработать достаточного напряжения, чтобы стартовать, для чего в схеме применяется аккумулятор, который будет задействован во время старта.
  3. Вариант с обмоткой возбуждения, питающейся от другого генератора меньшей мощности, установленного с ним на одном валу . Второй генератор уже должен стартовать от стороннего источника, например, того же аккумулятора.
  4. Последняя разновидность вообще не нуждается в подаче питания на обмотку возбуждения, так как ее у него нет, ведь применяется в устройстве постоянный магнит.

Применение генераторов переменного тока на практике

Применяются такие генераторы практически во всех сферах человеческой деятельности, где требуется электрическая энергия. Причем принцип ее добычи отличается только способом приведения в движение вала устройства. Так работают и гидро-, и тепло- и даже атомные станции.

Данные станции запитывают по проводам общественные сети, к которым подключается конечный потребитель, то есть все мы. Однако существует множество объектов, к которым невозможно доставить электрическую энергию таким способом, например, транспорт, стройплощадки вдали от линий электропередач, очень далекие поселки, вахты, буровые установки и прочее.

Это означает только одно – требуется свой генератор и двигатель, приводящий его в движение. Давайте рассмотрим несколько небольших и часто встречающихся в нашей жизни устройств.

Автомобильные генераторы

На фото — электрический генератор для автомобиля

Кто-то возможно тут же скажет: «Как? Это же генератор постоянного тока!». Да, действительно, так оно и есть, однако таковым его делает лишь наличие выпрямителя, который этот самый ток делает постоянным. Основной принцип работы ничем не отличается – все тот же ротор, все тот же электромагнит и прочее.

Это устройство функционирует таким образом, что вне зависимости от скорости вращения вала, оно вырабатывает напряжение в 12В, что обеспечивается регулятором, через который идет питание обмотки возбуждения. Обмотка возбуждения стартует, запитываясь от автомобильного аккумулятора, ротор агрегата приводится в движение двигателем автомобиля через шкив, после чего начинает индуцироваться ЭДС.

Для выпрямления трехфазного тока используется несколько диодов.

Генератор на жидком топливе

Устройство бензинового генератора переменного тока, ровно, как и дизельного, мало чем отличается от того, что установлен в вашем автомобиле, за исключением нюанса, что ток он будет выдавать, как положено, переменный.

Из особенностей можно выделить то, что ротор агрегата всегда должен вращаться с одной скоростью, так как при перепадах выработка электроэнергии становится хуже. В этом кроется существенный недостаток подобных устройств – подобный эффект происходит при износе деталей.

Интересно знать! Если к генератору подключить нагрузку, которая будет ниже рабочей, то он не будет использовать свою мощность на полную, съедая часть жидкого топлива впустую.

На рынке представлен большой выбор подобных агрегатов, рассчитанных на разную мощность. Они пользуются большой популярность за счет своей мобильности. При этом инструкция по пользованию предельно проста – заливаем своими руками топливо, запускаем двигатель поворотом ключа и подключаемся…

На этом, пожалуй, закончим. Мы разобрали назначение и общее устройство этих приборов максимально просто. Надеемся, генератор переменного тока и принцип его действия стали к вам чуточку ближе, и с нашей подачи вы захотите погрузиться в увлекательный мир электротехники.