АК12 алюминиевый литейный сплав. Алюминиевые литейные сплавы Получение жидкого металла

АК12 алюминиевый литейный сплав. Алюминиевые литейные сплавы Получение жидкого металла

Спектральный химический анализ алюминиевого сплава. Расчет литниковой системы для изготовления проб из указанного сплава. Изменение жидкотекучести сплава при различной температуре перегрева. Обоснование наличия дендритных зон в микроструктуре силумина.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Влияние температуры нагрева расплава на механические и литейные свойства алюминиевого сплава (АК 12)

УДК 621.74.041

Щербинин В.А ., с тудент ,

к афедра « Литейные технологии »

Научный руководитель: С.Л. Тимченко ,

к андидат физико-математических наук, доцент кафедры « физика » (ФН-4)

Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана,

vowa . scherbinin 2014@ yandex . ru

Ключевые слова: сплав (alloy) , эвтектика (eutectic um ) , жидкотекучесть (f lowability ) , твердость (hardness) , прочность (lasting quality ) , ударная вязкость (impact hardness ) , дендритная ликвация (dendrific segregation ), зональная ликвация (zonal segregation ), трещина (clinc ), песчаные раковины (sand hole ), газовые раковины (blow hole ).

Аннотация: Автор проводит исследование влияния температуры нагрева расплава на механические и литейные свойства сплава АК12. В работе описывается эксперимент на выявления химического состава данного сплава (спектральный химический анализ), который показывает весомый процент содержания кремния в сплаве (10 -12 %) . Автор детально рассчитывает литниковую систему для изготовления проб из сплава АК12 и излагает дальнейшее проведение экспериментов на удар и растяжение, которые также представлены в статье, полученных заготовок. Затрагивается такой вопрос, как изменение жидкотекучести сплава при различной температуре перегрева. Автор убедительно доказывает налич ие дендритных зон в микроструктуре силумина, а также их уменьшения с увеличением температуры заливки.

Введение

Несмотря на то, что литейные технологии уже давно используются для получения изделий, идея создания новых методов литья остается актуальной. Также актуальным является использование более широкого спектра литейных сплавов с целью получения качественных изделий.

Современные технологии, включающие литейный процесс, подразумевает не только получение необходимой конфигурации изделия, но и возможность контроля механических и литейных свойств получившихся отливок. Это дает огромный скачок в различных сферах деятельности общества (от ювелирного производства до военной промышленности). Логичным является вывод, что изучение механических и литейных свойств изделия необходимо для технологического прогресса.

Изучение свойств сплавов является довольно распространенной темой в научных исследованиях. Например, в статье экспериментально изучалось влияние электрического тока плотностью j ~ (10 5 - 10 7) А/м 2 на процесс кристаллизации алюминиевого сплава (АК12) при литье в песчаные формы и показана возможность управления процессом кристаллизации с помощью внешнего электрического воздействия.

В статье экспериментально установлена зависимость механических и литейных свойств алюминиевого сплава от термовременной обработки (нагрев расплава до критической температуры), при которой начинается распад микро- неоднородностей в расплаве, унаследованных от шихты и оптимальную изотермическую выдержку, позволяющую значительно повысить уровень однородности расплава. Кристаллизация расплава из состояния, близкого к гомогенному, способствует получению мелкозернистой структуры и повышенным эксплуатационным свойствам.

В настоящей работе была поставлена задача изучения влияния перегрева расплава

АК12 на его литейные и механические свойства.

Сплавы системы Al-Si известны под общим названием силумины. Силумины характеризуются хорошими литейными свойствами и герметичностью, средней прочностью и достаточной коррозионной стойкостью. Они применяются для изготовления сложных отливок.

АК12 - эвтектический сплав, матричным компонентом которого является алюминий, содержит 12 % кремния .

Плотность силуминовых сплавов находится в диапазоне от 2,5 до 2,94 г/см 3 . По сравнению с алюминием силуминовые сплавы обладают большей прочностью и износостойкостью.

Силумины устойчивы к коррозии во влажной атмосфере и морской воде, в слабокислой и щелочной среде.

Экспериментальная часть

С целью изучения влияния температуры перегрева расплава на механические и литейные свойства были изготовлены образцы из алюминиевого сплава АК12, полученные при следующих температурах перегрева расплава: 800, 850 и 925 С°. Для набора статистики были изготовлены по четыре образца при одной заливке. Заливка расплава проводилась в песчано-глинистые и кокильные формы.

Для подтверждения химического состава используемого сплава были изготовлены шлифы и проведен его спектральный химический анализ. На снимке (рис.1) видны характерные следы от воздействия лазера, используемого для получения паров сплава (марка: LAES MATRIX). Впоследствии был проведен анализ спектра этих паров.

Рис. 1. Шлифы для химического анализа

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Результаты спектрального анализа образцов, заливка которых осуществлена при температуре 925 С° представлены в таблице 1, а при температуре заливки 800 С° - в таблице 2.

Таблица 1. Процентное содержание химических элементов в образце при температуре заливки 925 С°

Таблица 2. Процентное содержание химических элементов в образце при температуре заливки 800 С°

Для объяснения результатов химического анализа используемого сплава воспользуемся фазовой диаграммой состояния силуминовых сплавов , представленной на рис. 2.

Рис. 2. Диаграмма состояния Al-Si

Оптимальными литейными свойствами обладают сплавы с минимальной температурой плавления и минимальным температурным интервалом кристаллизации, содержащие 12-13 % Si. Обычный силумин по структуре является заэвтектическим сплавом (процент содержания кремния в сплаве превышает 12 %). Структура такого сплава состоит из игольчатой грубой эвтектики (б+Si) и первичных кристаллов кремния (рис. 3а). Кремний при кристаллизации эвтектики выделяется в виде грубых хрупких кристаллов игольчатой формы, которые играют роль внутренних концентраторов напряжений. Такой сплав обладает низкими механическими свойствами: у b = 120 МПа; д= 2 %. Для повышения механических свойств, силумины модифицируют натрием (0,05 -0,08 %) путем присадки к расплаву смеси солей 67 % NaF и 33 % NaCl .

Подтверждением этого является эксперимент «Анализ структуры шлифов», описанный ниже. При детальном изучении структуры шлифа АК12, полученной в ходе работы, можно наблюдать игольчатую грубую эвтектику (б+Si) и кристаллы кремния Si, которые описаны выше. На рисунке 3б показана структура шлифа АК12 при температуре заливки 800 С°.

Рис.3. Микроструктура силумина: а) заэвтектический сплав; б) структура шлифа АК12 при температуре заливки 800 С°(увеличение x 500)

Изменения в структуре приводят к повышению механических свойств: у b =200 МПа; д = 12 %. Одновременно улучшаются и литейные свойства сплавов (возрастает жидкотекучесть, повышается плотность отливок и т.д.).

Из процентного содержания кремния в выделившихся парах можно сделать вывод что экспериментальный сплав является доэвтектическим, но по своим свойствам близким к эвтектическому.

В работе проводились исследования жидкотекучести сплава и механических свойств образцов при различных температурах заливки. Ниже приведен расчет литниково-питающей системы для получения отливок.

образцов для испытания на удар.

На рис. 4 показана схема отливки с припуском. Данная отливка является заготовкой для изготовления стандартной пробы на удар . Схема литниково-питающей системы показана на рис. 5. Способ изготовления отливок - литье в песчаные формы.

Рис. 4. Схема отливки

Рис. 5. Схема литниково-питающей системы

Расчет литниковой системы после выбора ее конструкции сводится к определению оптимальной продолжительности заливки формы и площади поперечного сечения всех элементов системы. Длину каждого литникового канала принимают конструктивно, т. е. без расчета, исходя из размещения элементов литниковой системы в габаритах формы.

1. Расчет времени заполнения формы.

Время заполнения формы зависит от литейно-технологических свойств сплава, температуры заливки, теплоаккумулирующей способности материала формы, размеров и особенностей конструкции отливки. Законы неразрывности струи не позволяют учесть все эти параметры и поэтому теоретически полученная зависимость определяет время заполнения формы приближенно.

Чаще всего для вычисления времени заливки используют формулу Г.М. Дубицкого, К.А. Соболева :

где ф - время заполнения, с; S - эмпирический коэффициент; д - преобладающая толщина стенки отливки, мм; G - металлоемкость отливки, кг

Эмпирический коэффициент, согласно , равен S=1,6.

Металлоемкость отливки определяют, как сумму масс отливки, литников и прибылей, если они заполняются через общую с отливкой литниковую систему. В этом случае удобно пользоваться следующим выражением :

где G O , G Л, G П - соответственно массы отливки, литников и прибылей, кг;

Так как прибыли нет, G П =0.

2. Определим скорость заливки .

где ф - время заполнения отливки с прибылью, c; Q - высота отливки с прибылью, заполняемой из общей литниковой системы, мм.

3. Определим суммарную площадь сечения питателей.

Для определения суммарной площади сечения питателей удобно использовать формулу Б. Ованна :

где м - коэффициент расхода литниковой системы; г - плотность жидкого алюминия г/см 3 ; g - ускорение свободного падения, 980 см/с 2 ; H p - расчетный напор металла, см.

Определим расчетный напор металла в опоке, схема которой изображена на рис.6 ;

где H - первоначальный напор, см; Р - расстояние от самой верхней точки отливки до уровня подвода, см; C - высота отливки по положению при заливке, см.

При выбранной схеме заливки, используемой следует считать, что P=С.

Рис. 6. Схема опоки

4. Определение площади поперечного сечения литникового хода, стояка и питателя .

Используя расчеты по (1)-(3), рассчитали площадь питателя F пит =0,98 см 2 , затем из соотношения (6) получим: F л.х =1,176 см 2 ; F c =1,64 см 2 .

Расчет литниково-питающей системы образцов, предназначенных для испытания на растяжение.

На рис. 7 показана схема отливки с припуском. Данная отливка является заготовкой для изготовления пробы на растяжение . Схема литниково-питающей системы показана на рис. 8. Способ изготовления отливок - литье в песчаные формы.

Рис. 7. Размеры отливки (с припуском)

Рис. 8. Схема литниковой системы

Расчет проведен в той же последовательности, что и предыдущий.

Получены следующие результаты:

F л.х =1,54 см 2 ; F c =2,13 см 2 ; F пит =1,27 см 2 .

В итоге былиполучены величины площадей поперечных сечений всех элементов литниковой системы для образцов на удар и на растяжение.

Описания процесса заливки и обработки заготовок .

Согласно расчетам была изготовлена оснастка для получения литейных форм. Модель литниковой системы для испытаний на удар выточена из деревянных брусков с учетом расчетных размеров.

Формы (песчано-глинистые) для заливки гагаринских образцов (испытания на растяжение) формовались из готовых стандартных моделей.

Плавка металла АК12 производилась в печи индукционного нагрева (ТВЧ модель: SP-15) при нагреве его до различной температуры (рис. 9).

Были выбраны следующие температуры заливки расплава в форму: 925 С°, 850 С°, 800°С°.

Рис. 9. Плавка металла АК12 в печи индукционного нагрева

Рис. 10. Заливка в формы

алюминиевый сплав дендритный силумин

Контроль температуры осуществлялся с помощью хромель-алюмелевой термопары. Показания термопары записывались с помощью цифрового мультиметра (PeakTech 2010 DMM). Далее расплав заливали в готовые формы (рис. 10) при указанных температурах. Полученные отливки были подвергнуты дальнейшей механической обработке на фрезировочном станке. Образцы на разрыв обрабатывали точением (с помощью резцов) на токарном станке с ЧПУ 16К20Т1, образцы на удар обрабатывали концевой фрезой на станке 2А430.

Измерение жидкотекучести сплава А К12 при различных температурах.

В данной работе жидкотекучесть исследовалось с помощью кокиля (проба Самарина-Нехендзи) (рис. 11). Исследовались результаты заливок при различных температурах нагрева жидкого металла с помощью печи сопротивления. Размер зерна вблизи поверхности отливки в случае литья в кокиль и в песчанно-глинястые формы будет значительно различаться. В кокиле величина зерна больше. Это объясняется разной скоростью остывания отливки при которой происходит формирование зерна. На рис. 12 показаны части металлической пробы на жидкотекучесть при различных температурах заливки.

По рисунку 12 можно определить различие жидкотекучести при различных температурах заливки. При 925 С° она высшая, так как замечается характерная плоская «шапка», что свидетельствует о уменьшение поверхностного натяжения с ростом температуры. При 850 С° хорошо видна более выпуклая поверхность, это свидетельствует о большем поверхностном натяжении по сравнению с первой пробой.

Рис. 11. Форма для исследование на Жидкотекучесть (проба Самарина-Нехендзи)

Рис. 12. Концы проб на жидкотекучесть при разных температурах

Эксперимент на растяжение.

Испытание на растяжени проводилось на станке марки Zwick/Roel Z100. Заготовку растягивали до полного разрыва. Проведен анализ величин механических характеристик данного сплава. Испытанию подверглись 5 образцов: 3 при температуре 850 С°, и 2 при 925 С°.

Полученные данные показаны в таблице 3.

Таблица 3. Анализ величин механических характеристик сплава АК12 при перегреве 925 С°

где у 0,2 - условный предел текучести, который соответствует напряжению, при котором остаточная деформация составляют 0,2 % от длины испытываемого образца; у в - предел прочности; д - удлинение при разрыве; ш - относительное сужение.

На рис. 13 представленна обобщенная диаграмма растяжения заготовок, результаты испытаний которых занесены в таблицу 3. По оси абсцисс отложено деформация загатовки в миллиметрах, по оси ординат усилие растяжения в мегапаскалях.

Рис. 13. Диаграмма растяжения заготовки IX №2(925)

Вывод .

При квалифицированной формовке предел прочности сплава при 850 С° существенно больше чем при 925 С°. Относительное сужение и удлинение при разрыве обратно пропорционально температуре заливки.

Это объясняется тем, что разность температур заливки сплава и охлаждающей среды дает разный градиент температуры, который влияет на формирование структуры сплава. При температуре перегрева 925 С° тепловая анергия сплава, залитого в полость литейной формы, частично передается формовочной смеси, которая при последующем затвердевании слитка играет роль «аккумулятора». Таким образом, опока с помощью полученной энергии увеличивает время кристаллизации слитка, что способствует формированию зерен с большим размером (в сравнении с зернами, полученными при кристаллизации слитка с температурой перегрева 850 С°), способствует образованию дендритной и зональной ликвации.

По литературным данным для данного сплава имеются следующие результаты: у в =200 МПа, у 0.2 =140 МПа, д =5 %. Разница в экспериментальных и теоритических данных связано с образованием дефектов отливки (трещины, песчаные и газовые раковины).

Эксперимент на удар .

Для проведения эксперимента использовалась установка walter + bai ag модели PH450. Схема испытания показана на рис. 14.

Суть эксперимента заключается в том, что молот, закрепленный в установке и обладающий некоторой потенциальной энергией, разрушает заготовку, размеры которой приняты согласно . Одновременно происходит измерение энергии разрушения отливки с последующим нахождением ударной вязкости сплава АК12. Данные эксперимента приведены в таблице 4. Испытанию подверглись 5 образцов: 2 при температуре заливки 800 С° и 3 при 850 С°. Ударная вязкость находилась в соответствии с формулой 6.

где КС- ударная вязкость, Дж/см 2 ; U - энергия, необходимая на разрушение заготовки, Дж;

S - площадь поперечного сечения заготовки в месте надреза, см 2 ;

Рис. 14. Схема испытания на удар

Таблица 4 . Значения ударной вязкости,полученной в ходе эксперимента, при температуре заливки 800 С° и 850 С°

Ударная вязкость Дж/см 2

1 образец

2 образец

3 образец

По полученным данным можно сделать вывод: ударная вязкость больше при меньшей температуры заливки.

С точки зрения литейных технологий, согласно , при заливке в формы возникает внутреннее напряжение. При повышении температуры заливки напряжения в отливке становятся больше, а из-за этого и ударная вязкость падает. Так же причиной понижения ударной вязкости при повышении температуры заливки является тот факт, что образуется большее количество пор в сердцевине отливки.

Анализ структуры шлифов .

Форма растущих в расплаве кристаллов зависит от степени переохлаждения жидкости, направления теплоотвода, содержания примесей в стали и других параметров. На рис. 15 схематически представлены основные структурные зоны, которые могут встречаться в непрерывно-литом слитке. Кристаллы, образующиеся в процессе затвердевания металла, могут иметь различную форму в зависимости от скорости охлаждения, характера и количества примесей. Чаще в процессе кристаллизации образуются разветвленные (древовидные) кристаллы, получившие название дендритов.

При затвердевании слитка кристаллизация начинается у поверхности более холодной формы и происходит вначале преимущественно в примыкающем к поверхности тонком слое сильно переохлажденной жидкости. Вследствие большой скорости охлаждения это приводит к образованию на поверхности слитка очень узкой зоны 1 сравнительно мелких равноосных зерен. Далее образуется зона дендритов (2) направление распространения которой совпадает с направлением отвода тепла. Зона 3 кристаллизуется в последнюю очередь и имеет хрупкую структуру с содержанием большого количества пор. Зона 4 образуется вследствие усадки (уменьшения объема).

Рис. 15. Структурные зоны

Анализировались структуры шлифов сплава АК12 при различных температурах заливки (850 С°, 900 С° и 925 С°). На рис. 16 -18 изображена микроструктура данного сплава.

Рис. 16. Структура шлифа (800 С°): а) увеличение (х200); б) увеличение (х500)

Рис. 17. Структура шлифа (850 С°): а)увеличение (х200); б)увеличение (х500)

Рис18. Структура шлифа (925 С°): а)увеличение (х200); б)увеличение (х500)

Так как скорость отвода тепла во всех данных случаях кристализвции одинакова, то вероятность зарождения дендритных зерен зависит от разницы температуры формы и температуры заливки, то есть от величины первоначального переохлаждения. На рис. 19 представлена зависимость скорости роста кристаллов (с. к.) и скорости зарождени центров кристализации от (ч. ц.) от величины переохлаждения .

Рис. 19. Зависимость ч.ц. и с.к. от велечины переохлаждения

Вывод: Из рис. 16-18 видно уменьшение количества дендритных зон с увелечением температуры заливки, а значит литейные и механические свойства улучшаются. Также видно, что эвтектика является более дисперсной при Т зал = 850 С°.

Заключение

В данной работе были представлены эксперименты с литейным сплавом АК12, исследовано влияние температуры нагрева расплава на механические и литейные сплавы.

Проведен спектральный анализ данного сплава. Результаты этого анализа образцов, заливка которых осуществлена при температуре 925 С° представлены в таблице 1, а при температуре заливки 800 С° - в таблице 2.

Микроструктура шлифа АК12 показала наличие грубой, игольчатой эвтектики (б+Si), и кристаллы кремния Si (рис.3).

По расчетам литниково-питающей системы были отлиты образцы при различной температуры заливки. По результатам дальнейших экспериментов на растяжение и на удар выявлены предел прочности, условный предел текучести (у в, у 0,2) и ударная вязкость (КС). Относительное сужение и удлинение при разрыве обратно пропорционально температуре. При повышении температуры заливки напряжения в отливке становятся больше, а из-за этого и ударная вязкость падает.

Также из эксперимента на жидкотекучесть видно, что с ростом температуры заливки сплава поверхностное натяжение уменьшается, что свидетельствует об увеличении жидкотекучести.

Список литературы

1. Тимченко С.Л. Исследование кристаллизации сплава под действием электрического тока // Расплавы. 2011. №4. С. 53-61.

2. Деев В.Б., Морин С.В., Селянин И.Ф., Хамитов Р.М.. Перегрев расплавов литейных алюминиевых сплавов // Ползуновский альманах. 2004.№4. С. 23-24.

3. ГОСТ 1583-93. Cплавы алюминиевые литейные. Технические условия. Введ. 1993-10-04. М.: Издательство стандартов, 1996. 3с.

4. Мельников В.П., Давыдов С.В. Лабораторная работа. Изучение структуры и свойств цветных сплавов // «Технология металлов и металловедение» БГТУ. 2008. № 3. 14с.

5. Мельников В.П., Давыдов С.В. Лабораторная работа. Изучение структуры и свойств цветных сплавов // «Технология металлов и металловедение» БГТУ. 2008. № 3. С. 3-5.

6. ГОСТ 9454-78. Металлы. Метод испытания на ударный изгибпри пониженных, комнатной и повышенной температурах. Введ. 1979-01-01. М.: Издательство стандартов, 1978. С. 3-4.

7. Вирт А. Э., Лаврентьев А. М.. Расчет литниковых систем стальных отливок // 2012. С. 7-11.

8. ГОСТ 1497-84. Металлы. Метод испытаний на растяжение. Введ 86-01-01. М.: Издательство стандартов, 1984. С. 21-26.

9. Лецик В.И. Литьё цветных металлов в металлические формы // 2003.

10. Гуляев А.П. Металловедение // Металлургия. 1986. 43с.

11. Коротких М. Т. Технология конструкционных материалов и материаловедение: учебное пособие // Алюминий и сплавы на его основе. 2004. 23с.

Размещено на Allbest.ru

...

Подобные документы

    Обоснование выбора марки сплава для изготовления каркаса самолета, летающего с дозвуковыми скоростями. Химический состав дуралюмина, его механические и физические свойства, и технологические методы их обеспечения. Анализ конечной структуры сплава.

    контрольная работа , добавлен 24.01.2012

    Изучение свойств алюминиевого деформируемого сплава, где основным легирующим элементом является марганец. Влияние легирующих элементов на свойства и структуру сплава и основных примесей. Условия эксплуатации и области применения алюминиевых сплавов.

    реферат , добавлен 23.12.2014

    Разработка технологического процесса изготовления прессованного профиля ПК-346 из сплава АД1. Расчет оптимальных параметров прессования и оборудования, необходимого для изготовления заданного профиля. Описание физико-механических свойств сплава АД1.

    курсовая работа , добавлен 17.05.2012

    Характеристика сплава ВТ22, его химические свойства, плотность, процессы ковки и штамповки, применение. Расчет массы заготовки. Определение производственной программы для производства прутков из сплава Вт22, выбор режима работы и расчет фонда времени.

    курсовая работа , добавлен 11.11.2010

    Методика построения диаграмм состояния. Специфика их использования для сплавов, образующих механические смеси из чистых компонентов. Особенности определение температуры кристаллизации сплава. Кривые охлаждения сплава Pb-Sb, применение правила отрезков.

    презентация , добавлен 14.10.2013

    Химический состав, назначение сплава марки ХН75МБТЮ. Требования к металлу открытой выплавки. Разработка технологии выплавки сплава марки. Выбор оборудования, расчет технологических параметров. Материальный баланс плавки. Требования к дальнейшему переделу.

    курсовая работа , добавлен 04.07.2014

    Металлофизическое описание алюминиевого сплава и расчет цеха по производству алюминиевого профиля для строительных нужд. Температурный интервал прессования и технические требования к профилю. Расчет производительности пресса и правила приемки изделия.

    курсовая работа , добавлен 25.01.2013

    Зависимость между составом и структурой сплава, определяемой типом диаграммы состояния и свойствами сплава. Состояния сплавов, компоненты которых имеют полиморфные превращения. Состояние с полиморфным превращением двух компонентов. Микроструктура сплава.

    контрольная работа , добавлен 12.08.2009

    Основные требования к изделию, схема технологического процесса производства, характеристика основного оборудования. Механические свойства сплава. Требования к прокату. Методика расчета Б.В. Кучеряева. Расчет производительности основного агрегата.

    курсовая работа , добавлен 09.01.2013

    Алюминий и его сплавы. Характеристика и классификация алюминиевых сплавов. Деформируемые, литейные и специальные алюминиевые сплавы. Литые композиционные материалы на основе алюминиевого сплава для машиностроения. Состав промышленных дюралюминов.

Сплавы алюминиевые литейные регламентируются ГОСТ 1583-93, который распространяется на сплавы в чушках, используемых в качестве металлошихты, и сплавы в готовых отливках (всего 39 марок). В соответствии с ГОСТ1583-93 при маркировке сплава используется комбинированное (двойное) обозначение: сначала указывается марка сплава в чушках, затем в скобках - марка сплава для готовых фасонных отливок, например: АК12 (АЛ2), АК13 (АЛ13), АК5М (АЛ5).

Сплавы в чушках маркируются следующим образом. Вначале указывается буква "А", которая обозначает, что сплав алюминиевый. Затем буквами обозначают наименование основных или легирующих элементов, за которыми следует цифра, означающая среднее содержание в процентах этих компонентов. Принято следующее обозначение компонентов, входящих в состав алюминиевых литейных сплавов: К - кремний; Су - сурьма; Мц - марганец; М - медь; Мг - магний; Н - никель; Ц - цинк. Например: АК12 - это алюминиевый сплав со средним содержанием Si = 12%; АК10Су- содержит 10% кремния и в качестве легирующего элемента имеется сурьма, остальное - А1; АМг4К1, 5М - сплав, содержащий магния - 40%, кремния - 1,5, меди около 1,0%, остальные - А1.

Марка сплава в отливках обозначается двумя способами:

Первый - буквами АЛ (А - алюминий, Л - литейный), за которыми следуют цифры, показывающие номер сплава. Эти цифры условные, не имеющие никакой связи с химическим составом или механическими свойствами. Пример обозначения - АЛ2, АЛ4, АЛ19;

Второй - аналогично сплавам в чушках.

В конструкторской документации при маркировке фасонных отливок стандарт допускает указывать марку сплава без дополнительного обозначения марки в скобках или только марку, обозначенную в скобках.

В учебном процессе, когда указывается химический состав металла готовой отливки, допускается использовать обозначение по первому способу (АЛ...), когда речь идет о шихте (чушках), используемой для плавки, то можно указывать марку чушек по второму способу (АК...).

3.2.1. Классификация и свойства алюминиевых сплавов

По назначению конструкционные алюминиевые литейные сплавы можно условно разделить на следующие группы:

сплавы, отличающиеся высокой герметичностью: АК12 (АЛ2), АК9ч (АЛ4), АК7ч (АЛ9), АК8МЗч (ВАЛ8), АК7пч (АЛ9-1), АК8л (АЛ34), АК8М (АЛ32);

сплавы высокопрочные, жаропрочные: АМ5 (АЛ 19), АК5М (АЛ5), АК5Мч (АЛ5-1), АМ4,5 Кд (ВАЛ10);

сплавы коррозионно-стойкие: АМч11 (АЛ22), АЦ4Мг (АЛ24), АМг10 (АЛ27), АМг10ч (АЛ27-1).

Буквы в конце марки обозначают: ч - чистый; пч - повышенной чистоты; оч - особой чистоты; л - литейные сплавы; с - селективный.

Рафинированные сплавы в чушках обозначают буквой "р", которую ставят после обозначения марки сплава. Сплавы, предназначенные для изготовления изделий пищевого назначения, обозначают буквой "П", которую также ставят после обозначения марки сплава.

Алюминиевые литейные сплавы в чушках (металлошихта) и в отливках получают для нужд народного хозяйства и на экспорт по ГОСТ 1583-93.

Марки и химический состав алюминиевых литейных сплавов должны соответствовать приведенным в табл. 3.14.

Силумины в чушках изготовляют со следующим химическим составом:

АК12ч (СИЛ-1): кремний 10-13%, алюминий - основа; примесей, %, не более: железо 0,50, марганец 0,40, кальций 0,08, титан 0,13, медь 0,02, цинк 0,06;

АК12пч (СИЛ-0): кремний 10-13%, алюминий - основа; примесей, %, не более: железо 0,35, марганец 0,08, кальций 0,08, титан 0,08, медь 0,02, цинк 0,06;

АК12оч (СИЛ-00): кремний 10-13%, алюминий - основа; примесей, %, не более: железо 0,20, марганец 0,03, кальций 0,04, титан 0,03, медь 0,02, цинк 0,04;

АК12ж (СИЛ-2): кремний 10-13%, алюминий - основа; примесей, %, не более: железо 0,7, марганец 0,5, кальций 0,2, титан 0,2, медь 0,03, цинк 0,08.

По соглашению изготовителя с потребителем в силумине марки АК12ж (СИЛ-2) допускается содержание железе до 0,9%, марганца до 0,8%, титана до 0,25%.

Для изготовления изделий пищевого назначения применяются сплавы АК7, АК5М2, АК9, АК12. Использование других марок сплавов для изготовления изделий и оборудования, предназначенных для контакта с пищевыми продуктами и средами, в каждом отдельном случае должно быть разрешено органами здравоохранения.

В алюминиевых сплавах, предназначенных для производства изделий пищевого назначения, массовая доля свинца должна быть не более 0,15%, мышьяка не более 0,015%, цинка не более 0,3%, бериллия не более 0,0005%.

В рафинированных сплавах содержание водорода должно быть не более 0,25 см 3 /100 г металла для доэвтектических силуминов, 0,35 см э /100 г - для заэвтектических силуминов, 0,5 см 3 /100 г - для алюминиево-магниевых сплавов; пористость должна быть не более трех баллов.

В зависимости от химического состава алюминиевые сплавы подразделяются на пять групп (табл. 3.14).

Первая группа - сплавы на основе А1-Si-Мg; для получения мелкозернистой структуры необходимо применять модифицирование.

Вторая группа - сплавы на основе системы А1-Si-Сu; хорошие литейные свойства объясняются оптимальным сочетанием содержания кремния и меди; такое содержание легирующих элементов позволяет применять термическую обработку для повышения механических свойств сплавов.

Третья группа - сплавы на основе системы А1-Сu; обладают способностью к термической обработке, после чего улучшаются их механические свойства, литейные свойства хуже, чем у силуминов.

Четвертая группа - сплавы на основе системы А1-Мg; имеют повышенные механические свойства за счет легирования титаном, бериллием, цирконием; сплавы этой группы выдерживают высокие статические и ударные нагрузки.

Пятая группа - сплавы на основе системы А1-прочие элементы (Ni-Тi и др.); обладают, жаропрочными свойствами, то есть хорошо работают при повышенных температурах; то же можно сказать и о давлениях.

Анализируя ГОСТ 1583-93, видно, что некоторые сплавы одной марки, используемые для металлошихты и фасонных отливок, имеют отличия в химическом составе: у сплавов для отливок допускается небольшое уменьшение содержания магния и увеличение содержания вредных примесей.


* Сумма учитываемых примесей зависит от вида литья.

Примечания:

  1. В скобках указаны обозначения марок сплавов по ГОСТ 1583-89, ОСТ 48-178 и по техническим условиям.
  2. В дробях в числителе приведены данные для чушек, в знаменателе - для отливок.
  3. Допускается не определять массовую долю примесей в сплавах при производстве отливок из металлошихты известного химсостава (за исключением примеси железа).
  4. При применении сплавов марок АК12 (АЛ2) и АМг3Мц (АЛ28) для деталей, работающих в морской воде, массовая доля меди не должна превышать: в сплаве марки АК12 (АЛ2) - 0,30%, в сплаве марки АМг5Мц (АЛ28) - 0,1%.
  5. При применении сплавов для литья под давлением допускается в сплаве марки АК7Ц9 (АЛ 11) отсутствие магния; в сплаве марки АМг11 (АЛ22) содержание магния 8,0-13,0%, кремния 0,8-1,6%, марганца до 0,5% и отсутствие титана.
  6. Сплавы марок АК5М7 (А5М7), АМг5К (АЛ13), АМг10ч (АЛ27), АМг10ч (АЛ27-1) не рекомендуются к использованию в новых конструкциях.
  7. В сплаве АК8М3ч (ВАЛ8) допускается отсутствие бора при условии обеспечении уровня механических характеристик, предусмотренных настоящим стандартом. При изготовлении деталей из сплава АК8М3ч (ВАЛ8) методом жидкой штамповки массовая доля железа должна быть не более 0,4%.
  8. При литье под давлением в сплаве АК8 (АЛ34) допускается снижение предела массовой доли бериллия до 0,06%, повышение допустимой массовой доли железа до 0,1% при суммарной массовой доле примесей не более 1,2% и отсутствие титана.
  9. Для модифицирования структуры в сплавы АК9ч (АЛ4), АК9пч (АЛ4-1), АК7ч (АЛ9), АК7пч (АЛ9-1) допускается введение стронция до 0,08%.
  10. Примеси, обозначенные прочерком, учитываются в общей сумме примесей, при этом содержание каждого из элементов не превышает 0,020%.
  11. По соглашению с потребителем допускается изготовлять чушки, состав которых по массовым долям отдельных элементов (основных компонентов и примесей) отличается от указанного в табл. 3.14.
  12. При применении сплавов для литья под давлением допускается в сплаве АМг7 (АЛ29) содержание примесей бериллия до 0,03% и кремния до 1,5%.
  13. В сплаве марки АМг11 (АЛ22) допускается отсутствие титана.

Вторичные чушковые литейные сплавы получают при переработке стружки, отходов, металлического привозного лома. Химический состав вторичных алюминиевых литейных сплавов в чушках, используемых в качестве шихтовых материалов, должен соответствовать требованиям ГОСТ 1583-93.

Возможность применения того или иного сплава определяют по его механическим, физическим и технологическим свойствам, а также с учетом экономической характеристики сплава, которая во многих случаях является решающей.

Механические свойства алюминиевых литейных сплавов по ГОСТ 153-93 должны соответствовать приведенным в табл. 3.17.

Примечания:

Условные обозначения способов литья: 3 - литье в песчаные формы; В - литье по выплавляемым моделям; К - литье в кокиль; Д - литье под давлением; ПД - литье с кристаллизацией под давлением (жидкая штамповка); О - литье в оболочковой форме; М - сплав подвергается модифицированию.

Условные обозначения видов термической обработки: Т1 - искусственное старение без предварительной закалки; Т2 - отжиг; Т4 - закалка; Т5 - закалка и кратковременное (неполное) старение; Т6 - закалка и полное искусственное старение; Т7 - закалка и стабилизационный отпуск; Т8 - закалка и смягчающий отпуск.

Механические свойства сплавов АК7Ц9 и АК9Ц6 определяют спустя не менее одних суток естественного старения.

Механические свойства, указанные для способа литья В, распространяются также на литье в оболочковые формы.

Технологические свойства алюминиевых сплавов (табл. 3.24) влияют на качество отливок . К этим свойствам сплавов относятся: жидкотекучесть, усадка (объемная и линейная), склонность к образованию пористости и раковин, склонность к образованию литейных напряжений и трещин, газопоглощение и образование неметаллических включений, пленообразование и склонность к образованию грубозернистой и столбчатой структуры.

3.2.2. Влияние химических элементов на свойства алюминиевых сплавов

Влияние отдельных химических элементов на свойства литейных алюминиевых сплавов приведено в табл. 3.25 .

3.2.3. Особенности алюминиевых сплавов и области их применения

Литейные алюминиевые сплавы имеют ряд особенностей: повышенную жидкотекучесть, обеспечивающую получение тонкостенных и сложных по конфигурации отливок; сравнительно невысокую линейную усадку; пониженную склонность к образованию горячих трещин. Кроме того, алюминиевые сплавы обладают высокой склонностью к окислению, насыщению водородом, что приводит к таким видам брака отливок, как газовая пористость, шлаковые включения и оксидные включения. Поэтому при разработке технологии плавки и изготовлении фасонных отливок любым из способов литья необходимо учитывать особенности отдельных групп алюминиевых сплавов .

Наибольшее распространение в промышленности имеют сплавы А1-Si-Мg, которые отличаются хорошими технологическими свойствами, определяемыми видом диаграммы состояния. Их структура - α-твердый раствор кремния в алюминии и эвтектика, состоящая из а-твердого раствора и зерен кремния. Литейные свойства обеспечиваются наличием в сплавах большого количества двойной эвтектики α + Si (40-75%) каркасно-матричного типа, основой которой является α-твердый раствор, что обусловливает высокую жидкотекучесть сплавов, а также низкую литейную усадку и пониженную склонность к образованию горячих трещин.

При увеличении количества эвтектики в сплавах уменьшается склонность к образованию усадочных микрорыхлот, что повышает герметичность отливок.

Процесс кристаллизации этих сплавов протекает в узком температурном интервале и идет сплошным фронтом от периферийной зоны (стенок формы) к внутренним зонам отливок, что вызывает образование между первичными кристаллами сплошного слоя мелкозернистой эвтектики. Это препятствует образованию сквозных усадочных каналов между зернами твердого раствора.

С повышением содержания кремния в сплавах понижается коэффициент термического расширения и получается более грубая структура, что приводит к охрупчиванию сплава и ухудшению обрабатываемости резанием. Для измельчения включений кремния в эвтектике используют модифицирование Nа, Li, Ка, Sr, повышающее пластические свойства (δ = 5-8 %).

Для модифицирования силуминов применяют смеси хлористых и фтористых солей натрия и калия различного состава, при этом сплавом усваивается около 0,01% Na. При модифицировании Nа отмечается переохлаждение эвтектики на 15-30 °С, а эвтектическая точка сдвигается к 13-15% Si. Эффект модифицирования тем больше, чем выше содержание кремния в сплаве, так как модификатор воздействует только на эту фазу. Для силуминов, содержащих менее 5-7% Si, модифицирование не оказывает влияние на механические свойства.

Железо в сплавах А1-Si образует соединение β(А1-Fе-Si) в виде хрупких пластин, которые резко снижают пластичность. Отрицательное влияние железа эффективно снижает добавка 0,2-0,5% Мп, при этом образуется новая фаза а (А1-Fе-Si-Мn) в виде компактных равноосных полиэдров, которые в меньшей степени влияют на пластичность.

Сплав АЛ2 (эвтектический) - единственный двойной сплав первой группы, относится к простым силуминам. Эвтектический состав сплава (10-13% Si) обеспечивает высокую жидкотекучесть, отсутствие склонности к пористости и образованию трещин. Из сплава получают плотные, герметичные отливки с концентрированной усадочной раковиной. Применяют сплав в модифицированном состоянии, в основном без термической обработки. Изготовляют мало­нагруженные детали различными способами литья. Наиболее низкие свойства получаются при литье в песчаные формы, при литье в кокиль или под давлением прочностные и пластические свойства заметно увеличиваются.

Доэвтектические специальные силумины (АЛ4, АЛ9, АЛ4-1, АЛ9-1) имеют более высокие механические свойства, но уступают по технологическим свойствам эвтектическому сплаву АЛ2. Упрочнение достигается за счет образования соединения Мg 2 Si. Пониженное содержание кремния позволяет использовать сплавы при литье под давлением и в кокиль без модифицирования. При литье в песчаные формы и по выплавляемым моделям сплавы рекомендуется модифицировать.

Сплавы АК7 и АК9 отличаются от сплавов АЛ4 и АЛ9 повышенным содержанием примесей, но меньшей пластичностью.

Достоинством сплавов на основе системы А1-Si-Мg является повышенная коррозионная стойкость во влажной и морской атмосфере - АК12 (АЛ2), АК9ч (АЛ4), АК7ч (АЛ9).

Недостатки этих сплавов - повышенная газовая пористость и пониженная жаропрочность. Технология литья этих сплавов более сложная и требует применения операций модифицирования и кристаллизации под давлением в автоклавах. Особенно это относится к сплаву АК9ч (АЛ4).

Сплавы на основе системы А1-Si-Сu, которые отличаются высокой жаропрочностью (рабочие температуры 250-270 °С), но уступают сплавам А1-Si-Мg по литейным свойствам, коррозионной стойкости и герметичности; не требуют модифицирования и кристаллизации под давлением.

Жаропрочность сплавов обеспечивается содержанием устойчивых тугоплавких фаз, которые кристаллизуются в тонкой разветвленной форме и хорошо блокируют границы зерен твердого раствора, что тормозит развитие диффузионных процессов.

Сплавы на основе системы А1-Сu характеризуются высокими механическими свойствами. Фазовый состав в литом состоянии: α-твердый раствор меди в алюминии + СuА1 2 . При наличии в сплаве примесей кремния и железа могут образовываться фазы А1 7 Сu 2 Fе, АlCuFеSi и тройная эвтектика α + Si + А1Сu 2 с температурой плавления 525 °С. Увеличение содержания кремния в сплавах до 3% приводит к повышению количества эвтектики и улучшению литейных свойств, но к значительному снижению прочности. Наличие 0,05% Мg сильно снижает свариваемость сплавов и их пластичность.

Прочность сплавов на основе системы А1-Мg с увеличением концентрации магния до 13% возрастает, но пластичность начинает снижаться при содержании более 11% Мg; основной упрочняющей фазой является химическое соединение β (А1 3 Мg 2).

Для литейных сплавов используют сплавы с содержанием Мg, % (маc. доля):

4,5-7 - сплавы средней прочности, применяемые без термической обработки АКМг5К (АЛ13), АМг6л (АЛ23);

9,5-13 - сплавы повышенной прочности, применяемые в закаленном состоянии АМг10 (АЛ27), АМг11 (АЛ22).

Для улучшения технологических свойств в большинство сплавов вводят до 0,15-0,2% титана и циркония. Образующиеся на их основе интерметаллиды ТiА1 3 и ZrА1 3 более тугоплавкие, чем основа сплава, и являются модификаторами первого рода. Механические свойства возрастают на 20-30%.

Сплавы на основе системы А1-Мg обладают повышенной склонностью к образованию газовой и газоусадочной пористости, а при взаимодействии с азотом и парами воды образуются неметаллические включения и оксидные плены. Плавку сплавов следует проводить под слоем флюса, а если в их состав входит Ве, - без флюса.

К сплавам на основе системы А1 и прочих компонентов (сложнолегированные сплавы) относятся сплавы: жаропрочные многокомпонентные и самозакаливающийся коррозийно-стойкий АЦ4Мг (АЛ24), поршневые АК12М2МгН (АЛ25), а также цинковый силумин АК7Ц9 (АЛ11).

Сплав АЦ4Мг (АЛ24) относится к системе Аl-Zn-Мg, основной упрочняющей фазой является Т (А1 2 Мg 3 Zn 3). Высокая устойчивость твердых растворов цинка и магния в алюминии обеспечивает "самозакалку" сплава в процессе охлаждения отливки. Сплав может применяться без специальной закалки, в литом и естественно или искусственно состаренном состоянии. Сплав обладает удовлетворительными свойствами, которые улучшаются добавкой титана (0,1-0,2%). Его рекомендуется применять для литья в песчаные формы, оболочковые формы по выплавляемым моделям, свариваемых деталей, а также для деталей с повышенными стабильностью размеров и коррозионной стойкостью.

Эвтектические специальные силумины АК12М2МгН (АЛ25), обладая хорошими литейными свойствами, отличаются более высокой жаропрочностью, так как содержат 0,8-1,3% Ni, образующего сложные фазы в виде жесткого каркаса; добавка титана улучшает технологические свойства. Сплавы имеют малую склонность к объемным изменениям в процессе эксплуатации при повышенных температурах; применяются для изготовления поршней; в этом случае отливки используют без закалки. Для снятия внутренних напряжений поршни термически обрабатывают по режиму Т1.

Цинковый силумин АК7Ц9 (АЛ11), содержащий 7-12% Zn, который хорошо растворим в твердом алюминии, создает растворное упрочнение, что позволяет использовать сплав в литом состоянии (без термической обработки). Он обладает хорошими технологическими свойствами, способность сохранять прочность, твердость и сопротивление действию знакопеременных нагрузок после кратковременных и длительных нагревов до температур 300-500 °С. Применяют сплав для литых деталей в моторостроении и других отраслях про­мышленности, используют при литье в песчано-глинистые формы, кокиль и под давлением. Имеет пониженную коррозионную стойкость и сравнительно высокую плотность.

С кремнием и незначительной долей магния, а также прочих примесей. Для силуминов характерна низкая литейная усадка, герметичность, стойкость к коррозии и высокая твёрдость по сравнению с другими сплавами на основе Al. Однако, не все силумины проявляют свои качества одинаково и по-разному ведут себя в условиях повышенной нагрузки, в морской воде и при высоких температурах.

У нас Вы можете приобрести:

  • Чушки АК12пч (повышенной чистоты).

Химический состав и механические свойства АК12

Так как АК12 – это литейный сплав алюминия, то химический состав и другая важная информация о нём изложена в ГОСТ 1583-93.

Литейно-технологические свойства

Заготовки из АК12 в ряду прочих заготовок из алюминия выделяются малой литейной усадкой в процентном соотношении 0,8 %, высокой текучестью в жидком состоянии и малой плотностью. Кроме того, во время литья этот материал не даёт трещин. Однако, предел кратковременной прочности у этого силумина меньше, поэтому спектр его применения ограничен деталями, работающими под небольшой нагрузкой.

Отливки из АК12 получаются с минимальной литейной усадкой, они обладают хорошей плотностью и высокой герметичностью. Прочность деталей не сильно колеблется в меньшую сторону, при отливке толстостенных изделий. Коррозионная стойкость в обычной воде и атмосфере – хорошая. Свариваемость АК12 – без ограничений аргонно-дуговой или точечной сваркой, при достаточной квалификации сварщика. Более подробно мы расскажем о применении этого материала ниже.

Эксплуатационные особенности АК12

Стоит отметить, что детали из данного сплава не предназначены для функционирования в морской воде. Причиной тому служит высокое содержание меди в его составе. Содержание Cuв АК12 составляет около 0,6 %, а для использования в морской воде применяются только сплавы алюминия с содержанием меди ниже 0,3 %. Поэтому для этих целей АК12 применять не рекомендуется.

Что же касается температурного режима работы, то многие силумины относятся к ковочным и жаропрочным сплавам, но АК12 занимает особую нишу среди прочих силуминов. Он также может применяться для ковки, но детали из него нельзя использовать при температуре выше 200 °C. За пределами этой температуры сплав начнёт утрачивать стойкость к коррозии и прочность. Эти изменения несут необратимый характер.

Продукция из силумина АК12

В виду хорошей текучести, герметичности, коррозионной стойкости этот материал рекомендуется применять для отливки деталей техники, аппаратуры, приборов сложной формы. Однако хрупкость этого сплава не позволяет использовать его для отливки ответственных деталей, работающих под нагрузкой.

АК12 применяют для отливки деталей в кокиль, песчаные формы, под давлением, по моделям, в формы в виде оболочек. Из него изготавливают корпусы помп, детали двигателей, аппаратуры и бытовых приборов. В прочем из силумина этой марки повышенной чистоты выпускают и пищевую продукцию, но только со специального разрешения: казаны, кастрюли и т.д. Возможно также его применение и в оружейном деле.

Запросить цену

Задать вопрос

Перечень продукции, предлагаемой ООО «Орион-Спецсплав-Гатчина», включает алюминиевые литейные сплавы АК12, АК12Ч, АК12ПЧ, АК12ОЧ. Компания реализует металл собственного производства и гарантирует стабильно высокое качество благодаря тщательному контролю характеристик. ООО «Орион-Спецсплав-Гатчина» является постоянным поставщиком крупных российских и зарубежных предприятий.


Описание, особенности и применение сплавов АК12, АК12ч, АК12пч, АК12оч

Сплавы представляют собой алюминий с добавлением 10-13 % кремния, выполняющего легирующие функции. В зависимости от марки, данные сплавы имеют четкие ограничения по содержанию железа, марганца, кальция, титана, меди, цинка.

Пониженная температура литья способствует уменьшению производственных затрат при производстве деталей. Благодаря содержанию в составе кремниевых добавок, сплавы серии АК12 имеет малую плотность, повышенную текучесть, минимальную линейную усадку. Сплавы не склонны к образованию трещин при литье и хорошо поддаются сварке

Силумины АК12, АК12Ч, АК12ПЧ, АК12ОЧ широко востребованы в машиностроении (теплообменники, насосное оборудование, переходники, элементы трубопроводной арматуры),

при изготовлении герметичных отливок сложной формы, при изготовлении изделий для пищевой промышленности и других целей.

Марка Форма Состав Маркировка Стандарт Цена, долл./тн., без НДС
АК12 Вафельный слиток
Размер 400*200*40 мм
Вес 5-7 кг
Al-84,3-90 %
Si 10-13%
Полоса белая,
Полоса зеленая
Полоса зеленая
ГОСТ 1583-93
ТУ Заказчика
G-AlSi12
по запросу
АК12ч Вафельный слиток
Размер 400*200*40 мм
Вес 5-7 кг
Al-85,8-90 %
Si-10-13%
ГОСТ 1583-93
ТУ Заказчика
по запросу
АК12пч Вафельный слиток
Размер 400*200*40 мм
Вес 5-7 кг
Al-86,3-90 % ,
Si 10-13%
ГОСТ 1583-93
ТУ Заказчика
по запросу
АК12оч Вафельный слиток
Размер 400*200*40 мм
Вес 5-7 кг
Al-86,6-90 %,
Si 10-13%
ГОСТ 1583-93
ТУ Заказчика
по запросу

Прибыли служат для питания утолщенных мест отливки и располагаются так, чтобы металл в них застывал последним. Усадочная раковина должна полно-

стью располагаться в прибыли.

Литейные формы изготовляют в основном в опоках.

Опока - жесткая рамка (прямоугольная, квадратная, круглая), изготовлен-

ная из чугуна, стали, алюминиевых сплавов, предохраняет форму от разрушения во время ее сборки, транспортировки и заливки жидким металлом. Обычно форму изготавливают в двух опоках, которые центрируются с помощью штырей: в ушки верхней опоки устанавливают штыри и вместе с опокой наводят на ушки нижней опоки.

2 Литейные сплавы

В современном машиностроении для получения отливок наиболее часто применяют чугун, сталь, цветные сплавы (алюминиевые, медные, магниевые). В

данной работе для получения отливок будем использовать силумин марки АК12

(АЛ2) Силумин марки АК12 - это сплав алюминия с 10-13% кремния.

Свойства силумина марки АК12:

3 Получение жидкого металла

Исходные материалы, применяемые для выплавки металлов и сплавов, на-

зываются шихтовыми материалами (шихтой). В качестве шихты используют чистые металлы, специальные сплавы, отходы производства, а также флюсы,

служащие для образования шлака, который защищает жидкий металл от окисле-

Для получения силумина марки АК12 в данной работе используются отхо-

ды производства с добавлением свежего силумина. Для расплавления силумина применяют тигельную печь сопротивления.

Устройство электрической печи сопротивления показано на рисунке 4

Рисунок 4 - Схема электрической печи сопротивления 1 - теплоизоляция, 2 - огне-

упорный кирпич, 3 - кожух, 4 - крышка, 5 - тигель. 6 - нагреватель Электрическая печь сопротивления состоит из цилиндрического сварного

кожуха 3, футерованного огнеупорным кирпичом 2. Между кожухом 3 и футе-

ровкой находится теплоизолирующий асбестовый экран 1. В качестве нагревате-

ля используется нихромовая спираль6. Внутри печи установлен чугунный ти-

гель 5, закрытый крышкой 4

Заливка металлом литейных форм производится разливочным ковшом. Заливка металла должна производиться непрерывной струей, чтобы исключить попадание шлака и воздуха в полость формы.

4 Последовательность изготовления литейной формы

1. Изготовить нижнюю полуформу (рисунок 5), для чего:

- установить нижнюю половину модели 5 и модель питателя 3 на подмодель-

ную плиту 1;

Накрыть модели нижней опокой 2 так, чтобы расстояние от края модели до опоки было не менее 20 мм. Ушки 4 на опоке должны быть внизу (рисунок 5);

Рисунок 5 - Установка нижней половины модели и питателя в нижней опоке: 1 – подмодельная плита, 2- - нижняя опока, 3- питатель, 4 – ушки, 5- нижняя по-

ловина модели

Толщиной20-30 мм и плотно обжать руками смесь;

- добавить слой формовочной смеси до 50-60 мм и утрамбовать;

- полностью заполнить формовочной смесью опоку и уплотнить трамбовкой.

У стенок опоки плотность набивки должна быть наибольшей, так как смесь мо-

жет высыпаться при переворачивании опоки;

- удалить излишки смеси линейкой;

- наколоть душником (иглой) вентиляционные каналы. Они недолжны находиться ближе 10-15 мм от модели (рисунок 6);

Рисунок 6 - Эскиз разреза нижней полуформы: 1 - формовочная смесь; 2 - вентиляционные каналы, 3 - нижняя половина модели,

4-питатель, 5- подмодельная плита

2. Изготовить верхнюю полуформу (рисунок 7), для чего:

- перевернуть нижнюю опоку 1 на 180 0 ;

- установить по шипам вторую половину модели 2;

- установить по направляющим штырям верхнюю опоку 3;

- посыпать плоскость разъема разделительным слоем песка;

- установить модели шлакоуловителя 4, стояка 5 и выпора 6 (рисунок 7);

Рисунок 7 - Изготовление верхней полуформы: 1 - заформованная нижняя опока, 2 - верхняя половина модели. 3 - верхняя опока, 4 – модель шлакоуловителя,

5 - модель стояка, 6 - модель выпора, 7- штырь

Модель шлакоуловителя и часть модели стояка показаны пунктирными ли-

ниями, так как они находятся за моделью детали

- засыпать модели слоем формовочной смеси толщиной20-50мм и плотно обжать руками смесь вокруг моделей;

- заформовать верхнюю опоку подобно нижней (рисунок 8).

Рисунок 8 - Заформованная модель детали

3. Извлечь элементы модельного комплекта из формы, для чего:

- извлечь модели стояка и выпора. Расширить верхнюю часть стояка для образо-

вания литниковой чаши;

Раскрыть опоки (снять верхнюю опоку с нижней) и положить плоскостью разъе-

ма вверх;

- извлечь из обеих опок модели отливки, питателя, шлакоуловителя;

- исправить гладилкой поврежденные места и продуть литейную форму струей воздуха.

4. Собрать литейную форму, для чего (рисунок 9):

- установить в нижнюю опоку стержень на отпечатки знаков;

- закрыть форму, т.е. накрыть нижнюю опоку верхней;

- подать опоки под заливку.

5. Запить металл в литейную форму.

6. Выбить и очистить отливку.