Правило деления числа на 3. Старт в науке

Правило деления числа на 3. Старт в науке

Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра делится на 2, то есть является чётной.

Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Признак делимости на 4
Число делится на 4 тогда и только тогда, когда число из двух последних его цифр нули или делится на 4.

Признак делимости на 5
Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).

Признак делимости на 6
Число делится на 6 тогда и только тогда, когда оно делится на 2 и на 3.

Признак делимости на 7
Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 259 делится на 7, так как 25 - (2 · 9) = 7 делится на 7).

Признак делимости на 8
Число делится на 8 тогда и только тогда, когда три его последние цифры - нули или образуют число, которое делится на 8.

Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.

Признак делимости на 11
Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (то есть 182919 делится на 11, так как 1 - 8 + 2 - 9 + 1 - 9 = -22 делится на 11) - следствие факта, что все числа вида 10 n при делении на 11 дают в остатке (-1) n .

Признак делимости на 12
Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.

Признак делимости на 13
Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13 (например, 845 делится на 13, так как 84 + (4 · 5) = 104 делится на 13).

Признак делимости на 14
Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.

Признак делимости на 15
Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.

Признак делимости на 17
Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17). Признак не всегда удобен, но имеет определенное значение в математике. Есть способ немного попроще – Число делится на 17 тогда и только тогда, когда разность между числом его десятков и упятеренным числом единиц, кратно 17(например, 32952→3295-10=3285→328-25=303→30-15=15. поскольку 15 не делится на 17, то и 32952 не делится на 17)

Признак делимости на 19
Число делится на 19 тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно 19 (например, 646 делится на 19, так как 64 + (6 · 2) = 76 делится на 19).

Признак делимости на 23
Число делится на 23 тогда и только тогда, когда число его сотен, сложенное с утроенным числом десятков, кратно 23 (например, 28842 делится на 23, так как 288 + (3 * 42) = 414 продолжаем 4 + (3 * 14) = 46 очевидно делится на 23).

Признак делимости на 25
Число делится на 25 тогда и только тогда, когда две его последние цифры делятся на 25 (то есть образуют 00, 25, 50 или 75)или число кратно 5.

Признак делимости на 99
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп, считая их двузначными числами. Эта сумма делится на 99 тогда и только тогда, когда само число делится на 99.

Признак делимости на 101
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).

Два целых числа и равноостаточны при делении на натуральное число (или сравнимы по модулю ), если при делении на они дают одинаковые остатки, то есть существует такие целые числа что

Общие принципы построения

Пусть требуется определить, делится ли некоторое натуральное число на другое натуральное число Для этого будем строить последовательность натуральных чисел:

такую, что:

Тогда если последний член этой последовательности равен нулю, то делится на в противном случае на не делится.

Способ (алгоритм) построения такой последовательности и будет искомым признаком делимости на Математически он может быть описан с помощью функции определяющей каждый следующий член последовательности в зависимости от предыдущего:

Если требование равноделимости для всех членов последовательности заменить на более строгое требование равноостаточности, то последний член этой последовательности будет являться остатком от деления на а способ (алгоритм) построения такой последовательности будет признаком равноостаточности на В силу того, что из равенства остатка при делении на нулю следует делимость на , любой признак равноостаточности может применяться как признак делимости. Математически признак равноостаточности тоже может быть описан с помощью функции определяющей каждый следующий член последовательности в зависимости от предыдущего:

удовлетворяющей следующим условиям:

Примером такой функции, определяющей признак равноостаточности (и, соответственно, признак делимости), может быть функция

а последовательность, построенная с её помощью будет иметь вид:

По сути применение признака равноостаточности на базе этой функции эквивалентно делению при помощи вычитания.

Другим примером может служить общеизвестный признак делимости (а также равноостаточности) на 10.

Если последняя цифра в десятичной записи числа равна нулю, то это число делится на 10; кроме того, последняя цифра будет являться отстатком от деления исходного числа на 10.

Математически этот признак равноостаточности может быть сформулирован следующим образом. Пусть надо выяснить остаток от деления на 10 натурального числа представленного в виде

Тогда остатком от деления на 10 будет . Функция, описывающая это признак равноостаточности будет выглядеть как

Легко доказать, что эта функция удовлетворяет всем перечисленным выше требованиям. Причём последовательность, построенная с её помощью, будет содержать всего один или два члена.

Также легко видеть, что такой признак ориентирован именно на десятичное представление числа - так, например, если применять его на компьютере, использующем двоичную запись числа, то чтобы выяснить , программе пришлось бы сначала поделить на 10.

Для построения признаков равноостаточности и делимости чаще всего используется следующие теоремы:

Пример построения признаков делимости и равноостаточности на 7

Продемонстрируем применение этих теорем на примере признаков делимости и равноостаточности на

Пусть дано целое число

Тогда из первой теоремы полагая будет следовать, что будет равноостаточно при делении на 7 с числом

Запишем функцию признака равноостаточности в виде:

А из второй теоремы полагая и взаимно простое с 7, будет следовать, что будет равноделимы на 7 с числом

Учитывая, что числа и равноделимы на 7, запишем функцию признака делимости в виде:

И, наконец, остаётся найти такое , при котором для любого выполняется условие В данном случае и функция приобретает окончательный вид:

Признаки делимости в десятичной системе счисления

Признак делимости на 2

Соответствующая признаку функция (см. раздел ):

Признак делимости на 3

Эта функция помимо признака делимости задаёт и признак равноостаточности.

Признаки делимости на 11

Признак 1: число делится на тогда и только тогда, когда модуль разности между суммой цифр, занимающих нечётные позиции, и суммой цифр, занимающих чётные места делится на 11. Например, 9163627 делится на 11, так как делится на 11. Другой пример - 99077 делится на 11, так как делится на 11.

Соответствующая этому признаку функция:

Признак 2: число делится на 11 тогда и только тогда, когда на 11 делится сумма чисел, образующих группы по две цифры (начиная с единиц). Например, 103785 делится на 11, так как на 11 делятся и

Соответствующая признаку функция:

Эта функция помимо признака делимости задаёт и признак равноостаточности. Например, числа 123456, и равноостаточны при делении на 11.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

На уроках математики при изучении темы «Признаки делимости», где мы познакомились с признаками делимости на 2; 5; 3; 9; 10, меня заинтересовало, а есть ли признаки делимости на другие числа, и существует ли универсальный метод делимости на любое натуральное число. Поэтому я занялся исследовательской работой на данную тему.

Цель исследования: изучение признаков делимости натуральных чисел до 100, дополнение уже известных признаков делимости натуральных чисел нацело, изучаемых в школе.

Для достижения цели были поставлены задачи:

    Собрать, изучить и систематизировать материал о признаках делимости натуральных чисел, воспользовавшись различными источниками информации.

    Найти универсальный признак делимости на любое натуральное число.

    Научиться пользоваться признаком делимости Паскаля для определения делимости чисел, а также попытаться сформулировать признаки делимости на любое натуральное число.

Объект исследования: делимость натуральных чисел.

Предмет исследования: признаки делимости натуральных чисел.

Методы исследования: сбор информации; работа с печатными материалами; анализ; синтез; аналогия; опрос; анкетирование; систематизация и обобщение материала.

Гипотеза исследования: Если можно определить делимость натуральных чисел на 2, 3, 5, 9, 10, то должны быть признаки, по которым можно определить делимость натуральных чисел на другие числа.

Новизна проведённой исследовательской работы заключается в том, что данная работа систематизирует знания о признаках делимости и универсальном методе делимости натуральных чисел.

Практическая значимость : материал данной исследовательской работы можно использовать в 6 - 8 классах на факультативных занятиях при изучении темы «Делимость чисел».

Глава I. Определение и свойства делимости чисел

1.1.Определения понятий делимости и признаков делимости, свойства делимости.

Теория чисел - раздел математики, в котором изучаются свойства чисел. Основной объект теории чисел - натуральные числа. Главное их свойство, которое рассматривает теория чисел, это делимость. Определение: Целое число a делится на целое число b, не равное нулю, если существует такое целое число k, что a = bk (например, 56 делится на 8, т.к. 56 = 8х7). Признак делимости — правило, позволяющее установить, делится ли данное натуральное число на некоторые другие числа нацело, т.е. без остатка.

Свойства делимости:

    Всякое число a, отличное от нуля, делится само на себя.

    Нуль делится на любое b, не равное нулю.

    Если a делится на b (b0) и b делится на c (c0), то a делится на c.

    Если a делится на b (b0) и b делится на a (a0), то числа a и b либо равны, либо являются противоположными числами.

1.2. Свойства делимости суммы и произведения:

    Если в сумме целых чисел каждое слагаемое делится на некоторое число, то сумма делится на это число.

2) Если в разности целых чисел уменьшаемое и вычитаемое делится на некоторое число, то и разность делится на некоторое число.

3) Если в сумме целых чисел все слагаемые, кроме одного делятся, на некоторое число, то сумма не делится на это число.

4) Если в произведении целых чисел один из множителей делится на некоторое число, то и произведение делится на это число.

5) Если в произведении целых чисел один из множителей делится на m, а другой на n, то произведение делится на mn.

Кроме этого, изучая признаки делимости чисел, я познакомился с понятием «цифровой кореньчисла» . Возьмём натуральное число. Найдём сумму его цифр. У результата также найдём сумму цифр, и так до тех пор, пока не получится однозначное число. Полученный результат называется цифровым корнем числа. К примеру, цифровой корень числа 654321 равен 3: 6+5+4+3+2+1=21,2+1=3. А теперь можно задуматься над вопросом: «А какие существуют признаки делимости и есть ли универсальный признак делимости одного числа на другое?»

Глава II. Признаки делимости натуральных чисел.

2.1. Признаки делимости на 2,3,5,9,10.

Среди признаков делимости самые удобные и известные из школьного курса математики 6 класса:

    Делимость на 2. Если запись натурального числа оканчивается чётной цифрой или нулём, то число делится на 2.Число 52738 делится на 2, так как последняя цифра 8- четная.

    Делимость на 3 . Если сумма цифр числа делится на 3, то и число делится на 3 (число 567 делится на 3, т.к. 5+6+7 = 18, а 18 делится на 3.)

    Делимость на 5. Если запись натурального числа оканчивается цифрой 5 или нулём, то число делится на 5 (число 130 и 275 делятся на 5, т.к. последними цифрами чисел являются 0 и 5, но число 302 не делится на 5, т.к. последней цифрой числа не являются 0 и 5).

    Делимость на 9. Если сумма цифр делится на 9, то и число делится на 9 (676332 делится на 9 т.к. 6+7+6+3+3+2=27, а 27 делится на 9).

    Делимость на 10 . Если запись натурального числа оканчивается цифрой 0, то это число делится на 10 (230 делится на 10, т.к. последняя цифра числа 0).

2.2.Признаки делимости на 4,6,8,11,12,13 и т.д.

Поработав с различными источниками, я узнал другие признаки делимости. Опишу некоторые из них.

    Деление на 6 . Нужно проверить делимость интересующего нас числа на 2 и на 3. Число делится на 6 в том и только в том случае, если оно чётное, а его цифровой корень делится на 3. (Например,678 делится на 6, так как оно четное и 6+7+8=21, 2+1=3) Другой признак делимости: число делится на 6 тогда и только тогда, когда учетверённое число десятков, сложенное с числом единиц делится на 6. (73,7*4+3=31,31 не делится на 6, значит и 7 не делится на 6.)

    Деление на 8. Число делится на 8 в том и только в том случае, если его последние три цифры образуют число, делящееся на 8. (12 224 делится на 8 т.к. 224:8=28). Трёхзначное число делится на 8 тогда и только тогда, когда число единиц, сложенное с удвоенным числом десятков и учетверённым числом сотен, делится на 8. Например, 952 делится на 8 так как на 8 делится 9*4 + 5 *2 + 2 = 48.

    Деление на 4 и на 25. Если две последние цифры нули или выражают число, делящееся на 4 или (и) на 25, то число делится на 4 или (и) на 25 (число 1500 делится на 4 и 25, т. к. оно оканчивается двумя нулями, число 348 делится на 4, поскольку 48 делится на 4, но это число не делится на 25, т.к. 48 не делится на 25, число 675 делится на 25, т.к. 75 делится на 25, но не делится на 4, т.к. 75 не делится на 4).

Зная основные признаки делимости на простые числа, можно вывести признаки делимости на составные числа:

Признак делимости на 11 . Если разность между суммой цифр, стоящих на чётных местах и суммой цифр, стоящих на нечётных местах делится на 11, то и число делится на 11 (число 593868 делится на 11, т.к. 9 + 8 + 8 = 25, а 5 + 3 + 6 = 14, их разность равна 11, а 11 делится на 11).

Признак делимости на 12: число делится на 12 тогда и только тогда, когда две последние цифры делятся на 4 и сумма цифр делится на 3.

т.к. 12= 4 ∙ 3, т.е. число должно делиться на 4 и на 3.

Признак делимости на 13: Число делится на 13 тогда и только тогда, когда на 13 делится знакопеременная сумма чисел, образованных последовательными тройками цифр данного числа. Как узнать, например, что число 354862625 делится на 13? 625-862+354=117 делится на 13, 117:13=9, значит, и число 354862625 делится на 13.

Признак делимости на 14: число делится на 14 тогда и только тогда, когда оно заканчивается на чётную цифру и когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7.

т.к. 14= 2 ∙ 7, т.е. число должно делиться на 2 и на 7.

Признак делимости на 15: число делится на 15 тогда и только тогда, когда оно заканчивается на 5 и на 0 и сумма цифр делится на 3.

т.к. 15= 3 ∙ 5, т.е. число должно делиться на 3 и на 5.

Признак делимости на 18: число делится на 18 тогда и только тогда, когда оно заканчивается на чётную цифру и сумма его цифр делится на 9.

т.к18= 2 ∙ 9, т.е. число должно делиться на 2 и на 9.

Признак делимости на 20: число делится на 20 тогда и только тогда, когда число заканчивается на 0 и предпоследняя цифра четная.

т.к. 20 = 10 ∙ 2 т.е. число должно делиться на 2 и на 10.

Признак делимости на 25: число, содержащее не менее трех цифр, делится на 25 тогда и только тогда, когда делится на 25 число, образованное двумя последними цифрами.

Признак делимости на 30 .

Признак делимости на 59 . Число делится на 59 тогда и только тогда, когда число десятков, сложенное с числом единиц, умноженное на 6, делится на 59. Например, 767 делится на 59, так как на 59 делятся 76 + 6*7 = 118 и 11 + 6*8 = 59.

Признак делимости на 79 . Число делится на 79 тогда и только тогда, когда число десятков, сложенное с числом единиц, умноженное на 8, делится на 79. Например, 711 делится на 79, так как на 79 делятся 71 + 8*1 = 79.

Признак делимости на 99. Число делится на 99 тогда и только тогда, когда на 99 делится сумма чисел, образующих группы по две цифры (начиная с единиц). Например, 12573 делится на 99, так как на 99 делится 1 + 25 + 73 = 99.

Признак делимости на 100 . На 100 делятся только те числа, у которых две последние цифры нули.

Признак делимости на 125: число, содержащее не менее четырех цифр, делится на 125 тогда и только тогда, когда делится на 125 число, образованное тремя последними цифрами.

Все выше перечисленные признаки обобщены в виде таблицы. (Приложение 1)

2.3 Признаки делимости на 7.

1) Возьмем для испы-тания число 5236. Запишем это число следующим образом: 5236=5*1000+2*100+3*10+6=10 3 *5+10 2 *2+10*3+6 («систематическая» форма записи числа), и всюду основание 10 заменим основанием 3); 3 3 *5 + З 2 *2 + 3*3 + 6 = 168.Если получившееся число делится (не делится) на 7, то и данное число делится (не делится) на 7. Так как 168 делится на 7, то и 5236 делится на 7. 68:7=24, 5236:7=748.

2) В этом признаке надо действовать точно так же, как и в предыдущем, с той лишь разницей, что умножение следует начинать с крайней правой и умножать не на 3, а на 5. (5236 делится на 7, так как 6*5 3 +3*5 2 +2*5+5=840, 840:7=120)

3) Этот признак ме-нее легок для осуществления в уме, но тоже очень интересен. Удвойте последнюю цифру и вычтите вторую справа, удвойте результат и прибавьте третью справа и т. д., чередуя вычитание и сложение и уменьшая каждый резуль-тат, где возможно, на 7 или на число, кратное семи. Если окончательный результат делится (не делится) на 7, то и испытуемое число делится (не делится) на 7. ((6*2-3) *2+2) *2-5=35, 35:7=5.

4) Число делится на 7 тогда и только тогда, когда на 7 делится знакопеременная сумма чисел, образованных последовательными тройками цифр данного числа. Как узнать, например, что число 363862625 делится на 7? 625-862+363=126 делится на 7, 126:7=18, значит, и число 363862625 делится на 7, 363862625:7=51980375.

5) Один из самых старых признаков делимости на 7 состоит в следующем. Цифры числа нужно брать в обратном порядке, справа налево, умножая первую цифру на 1, вторую на 3, третью на 2, четвёртую на -1, пятую на -3, шестую на -2 и т.д. (если число знаков больше 6, последовательность множителей 1, 3, 2, -1,-3,-2 следует повторять столько раз, сколько нужно). Полученные произведения нужно сложить. Исходное число делится на 7, если вычисленная сумма де-лится на 7. Вот, например, что дает этот признак для числа 5236. 1*6+3*3+2*2+5*(-1) =14. 14: 7=2, значит и число 5236 делится на 7.

6) Число делится на 7 тогда и только тогда, когда утроенное число десятков, сложенное с числом единиц, делится на 7. Например, 154 делится на 7, так как на 7 число 49, которое получаем по этому признаку: 15* 3 + 4 = 49.

2.4.Признак Паскаля.

Большой вклад в изучение признаков делимости чисел внес Б. Паскаль (1623-1662), французский математик и физик. Он нашел алгоритм для нахождения признаков делимости любого целого числа на любое другое целое число, который опубликовал в трактате "О характере делимости чисел". Практически все известные ныне признаки делимости являются частным случаем признака Паскаля: «Если сумма остатков при делении числа a по разрядам на число в делится на в , то и число а делится на в ». Знать его полезно даже в наши дни. Как же доказать сформулированные выше признаки делимости (например, знакомый нам признак делимости на 7)? Постараюсь ответить на этот вопрос. Но прежде условимся о способе записи чисел. Чтобы записать число, цифры которого обозначены буквами, условимся проводить над этими буквами черту. Таким образом, abcdef будет обозначать число, имеющее f единиц, е десятков, d сотен и т.д.:

abcdef = a . 10 5 + b . 10 4 + c . 10 3 + d . 10 2 + e . 10 + f. Теперь докажу сформулированный выше признак делимости на 7. Мы имеем:

10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1

1 2 3 1 -2 -3 -1 2 3 1

(остатки от деления на 7).

В результате, мы получаем сформулированное выше 5-е правило: чтобы узнать остаток от деления натурального числа на 7, нужно справа налево подписать под цифрами этого числа коэффициенты (остатки от деления): затем нужно умножить каждую цифру на стоящий под ней коэффициент и полученные произведения сложить; найденная сумма будет иметь тот же остаток от деления на 7, что и взятое число.

Возьмем для примера числа 4591 и 4907 и, действуя, как указано в правиле, найдем результат:

-1 2 3 1

4+10+27+1 = 38 - 4 = 34: 7 = 4 (остаток 6) (не делится нацело на 7)

-1 2 3 1

4+18+0+7 = 25 - 4 = 21: 7 = 3 (делится нацело на 7)

Этим способом можно найти признак делимости на любое число т. Надо только найти, какие коэффициенты (остатки от деления) следует подписывать под цифрами взятого числа А. Для этого нужно каждую степень десяти 10 заменить по возможности имеющим тот же остаток при делении на т, что и число 10. При т = 3 или т = 9 эти коэффициенты получились очень простые: все они равны 1. Поэтому и признак делимости на 3 или на 9 получился очень простой. При т = 11 коэффициенты тоже были не сложными: они попеременно равны 1 и - 1. А при т =7 коэффициенты получились сложнее; поэтому и признак делимости на 7 получился более сложный. Рассмотрев признаки деления до 100, я убедился, что самые сложные коэффициенты у натуральных чисел 23 (с 10 23 коэффициенты повторяются), 43 (с 10 39 коэффициенты повторяются).

Все перечисленные признаки делимости натуральных чисел можно разделить на 4 группы:

1группа - когда делимость чисел определяется по последней(им) цифрой (ми)- это признаки делимости на 2, на 5, на разрядную единицу, на 4, на 8, на 25, на 50.

2 группа - когда делимость чисел определяется по сумме цифр числа- это признаки делимости на 3, на 9, на7, на 37, на 11 (1 признак).

3 группа - когда делимость чисел определяется после выполнения каких-то действий над цифрами числа- это признаки делимости на 7, на 11(1 признак), на 13, на 19.

4 группа - когда для определения делимости числа используются другие признаки делимости- это признаки делимости на 6, на 15, на 12, на14.

Экспериментальная часть

Опрос

Анкетирование проводилось среди обучающихся 6-х, 7-х классов. В опросе приняли участие 58 обучающихся МОБУ Караидельская СОШ № 1 МР Караидельский район РБ. Им было предложено ответить на следующие вопросы:

    Как вы думаете, существуют ли другие признаки делимости отличные от тех, которые изучались на уроке?

    Есть ли признаки делимости для других натуральных чисел?

    Хотели бы вы узнать эти признаки делимости?

    Известны ли вам какие-либо признаки делимости натуральных чисел?

Результаты проведенного опроса показали, что 77% опрошенных считают, что существуют и другие признаки делимости кроме тех, которые изучаются в школе; Так не считают - 9%, затруднились ответить - 13% опрашиваемых. На второй вопрос «Хотели бы вы узнать признаки делимости для других натуральных чисел?» утвердительно ответили 33%, дали ответ «Нет» - 17% респондентов и затруднились ответить - 50%. На третий вопрос 100% опрашиваемых ответили утвердительно. На четвертый вопрос положительно ответили 89%, ответили «Нет» - 11% обучающихся, участвовавших в опросе в ходе проведения исследовательской работы.

Заключение

Таким образом, в ходе выполнения работы были решены поставленные задачи:

    изучен теоретический материал по данному вопросу;

    кроме известных мне признаков на 2, 3, 5, 9 и 10, я узнал, что существуют еще признаки делимости на 4, 6, 7, 8, 11, 12, 13, 14, 15, 19 и т.д.;

3) изучен признак Паскаля - универсальный признак делимости на любое натуральное число;

Работая с разными источниками, анализируя найденный материал по исследуемой теме, я убедился в том, что существуют признаки делимости и на другие натуральные числа. Например, на 7, 11, 12, 13, 14, 19, 37, что и подтвердило правильность выдвинутой мной гипотезы о существовании других признаков делимости натуральных чисел. Также я выяснил, что существует универсальный признак делимости, алгоритм которого нашел французский математик паскаль Блез и опубликовал его в своем трактате «О характере делимости чисел». С помощью этого алгоритма, можно получить признак делимости на любое натуральное число.

Результатом исследовательской работы стал систематизированный материал в виде таблицы «Признаки делимости чисел», который можно использовать на уроках математики, во внеклассных занятиях с целью подготовки учащихся к решению олимпиадных задач, при подготовке обучающихся к ОГЭ и ЕГЭ.

В дальнейшем предполагаю продолжить работу над применением признаков делимости чисел к решению задач.

Список использованных источников

    Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика. 6 класс: учеб. для общеобразоват. учреждений /— 25-е изд., стер. — М. : Мнемозина, 2009. — 288 с.

    Воробьев В.Н. Признаки делимости.-М.:Наука,1988.-96с.

    Выгодский М.Я. Справочник по элементарной математике. - Элиста.: Джангар, 1995. - 416 с.

    Гарднер М. Математические досуги. / Под. Ред. Я.А.Смородинского. - М.: Оникс, 1995. - 496 с.

    Гельфман Э.Г., Бек Е.Ф. и др. Дело о делимости и другие рассказы: Учебное пособие по математике для 6 класса. - Томск: Изд-во Том.ун-та, 1992. - 176с.

    Гусев В. А., Мордкович А. Г. Математика: Справ. материалы: Кн. для учащихся. — 2-е изд.— М.: Просвещение, 1990. — 416 с.

    Гусев В.А., Орлов А.И., Розенталь А.В.Внеклассная работа по математике в 6-8 классах. Москва.: Просвещение, 1984. - 289с.

    Депман И.Я., Виленкин Н.Я. За страницами учебника математики. М.: Просвещение, 1989. - 97с.

    Куланин Е.Д.Математика. Справочник. -М.: ЭКСМО-Пресс,1999-224с.

    Перельман Я.И. Занимательная алгебра. М.: Триада-Литера,1994. -199с.

    Тарасов Б.Н. Паскаль. -М.:Мол. Гвардия,1982.-334с.

    http://dic.academic.ru/ (Википедии — свободной энциклопедии).

    http://www.bymath.net (энциклопедия).

Приложение 1

ТАБЛИЦА ПРИЗНАКОВ ДЕЛИМОСТИ

Признак

Пример

Число заканчивается на чётную цифру.

………………2(4,6,8,0)

Сумма цифр делится на 3.

3+7+8+0+1+5 = 24. 24:3

Число из двух последних его цифр нули или делится на 4.

………………12

Число заканчивается на цифру 5 или 0.

………………0(5)

Число заканчивается на чётную цифру и сумма цифр делится на 3.

375018: 8-четное число

3+7+5+0+1+8 = 24. 24:3

Результат вычитания удвоенного последней цифры из этого числа без последней цифры делится на 7.

36 — (2 × 4) = 28, 28:7

Три его последние цифры числа - нули или образуют число, которое делится на 8.

……………..064

Сумма его цифр числа делится на 9.

3+7+8+0+1+5+3=27. 27:9

Число оканчивается на ноль

………………..0

Сумма цифр числа с чередующимися знаками делится на 11.

1 — 8 + 2 — 9 + 1 — 9 = −22

Две последние цифры числа делятся на 4 и сумма цифр делится на 3.

2+1+6=9, 9:3 и 16:4

Число десятков данного числа, сложенное с учетверённым числом единиц, кратно 13.

84 + (4 × 5) = 104,

Число заканчивается на чётную цифру и когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7.

364: 4 - четное число

36 — (2 × 4) = 28, 28:7

Число 5 и на 0 и сумма цифр делится на 3.

6+3+4+8+0=21, 21:3

Четыре его последние цифры числа - нули или образуют число, которое делится на 16.

…………..0032

Число десятков данного числа, сложенное с увеличенным в 12 раз числом единиц, кратно 17.

29053→2905+36=2941→294+12=

306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17

Число заканчивается на чётную цифру и сумма его цифр делится на 9.

2034: 4 - четное число

Число десятков данного числа, сложенное с удвоенным числом единиц, кратно 19

64 + (6 × 2) = 76,

Число заканчивается на 0 и предпоследняя цифра четная

…………………40

Число, состоящее из двух последних цифр делится на 25

…………….75

Число делится на 30 тогда и только тогда, когда оно заканчивается на 0, и сумма всех цифр делится на 3.

……………..360

Число делится на 59 тогда и только тогда, когда число десятков, сложенное с числом единиц, умноженное на 6, делится на 59.

Например, 767 делится на 59, так как на 59 делятся 76 + 6*7 = 118 и 11 + 6*8 = 59.

Число делится на 79 тогда и только тогда, когда число десятков, сложенное с числом единиц, умноженное на 8, делится на 79..

Например, 711 делится на 79, так как на 79 делятся 71 + 8*1 = 79

Число делится на 99 тогда и только тогда, когда на 99 делится сумма чисел, образующих группы по две цифры (начиная с единиц).

Например, 12573 делится на 99, так как на 99 делится 1 + 25 + 73 = 99.

на 125

Число, состоящее из трех последних цифр делится на 125

……………375


Серию статей о признаках делимости продолжает признак делимости на 3 . В этой статье сначала дана формулировка признака делимости на 3 , и приведены примеры применения этого признака при выяснении, какие из данных целых чисел делятся на 3 , а какие – нет. Дальше дано доказательство признака делимости на 3 . Также рассмотрены подходы к установлению делимости на 3 чисел, заданных как значение некоторого выражения.

Навигация по странице.

Признак делимости на 3, примеры

Начнем с формулировки признака делимости на 3 : целое число делится на 3 , если сумма его цифр делится на 3 , если же сумма цифр данного числа не делится на 3 , то и само число не делится на 3 .

Из приведенной формулировки понятно, что признаком делимости на 3 не удастся воспользоваться без умения выполнять . Также для успешного применения признака делимости на 3 нужно знать, что из всех на 3 делятся числа 3 , 6 и 9 , а числа 1 , 2 , 4 , 5 , 7 и 8 – не делятся на 3 .

Теперь можно рассмотреть простейшие примеры применения признака делимости на 3 . Выясним, делится ли на 3 число −42 . Для этого вычисляем сумму цифр числа −42 , она равна 4+2=6 . Так как 6 делится на 3 , то в силу признака делимости на 3 можно утверждать, что и число −42 делится на 3 . А вот целое положительное число 71 на 3 не делится, так как сумма его цифр равна 7+1=8 , а 8 не делится на 3 .

А делится ли на 3 число 0 ? Чтобы ответить на этот вопрос, признак делимости на 3 не понадобится, здесь нужно вспомнить соответствующее свойство делимости , которое утверждает, что нуль делится на любое целое число. Таким образом, 0 делится на 3 .

В некоторых случаях чтобы показать, что данное число обладает или не обладает способностью делиться на 3 , к признаку делимости на 3 приходится обращаться несколько раз подряд. Приведем пример.

Пример.

Покажите, что число 907 444 812 делится на 3 .

Решение.

Сумма цифр числа 907 444 812 равна 9+0+7+4+4+4+8+1+2=39 . Чтобы выяснить, делится ли 39 на 3 , вычислим его сумму цифр: 3+9=12 . А чтобы узнать, делится ли 12 на 3 , находим сумму цифр числа 12 , имеем 1+2=3 . Так как мы получили число 3 , которое делится на 3 , то в силу признака делимости на 3 число 12 делится на 3 . Следовательно, 39 делится на 3 , так как сумма его цифр равна 12 , а 12 делится на 3 . Наконец, 907 333 812 делится на 3 , так как сумма его цифр равна 39 , а 39 делится на 3 .

Для закрепления материала разберем решение еще одного примера.

Пример.

Делится ли на 3 число −543 205 ?

Решение.

Вычислим сумму цифр данного числа: 5+4+3+2+0+5=19 . В свою очередь сумма цифр числа 19 равна 1+9=10 , а сумма цифр числа 10 равна 1+0=1 . Так как мы получили число 1 , которое не делится на 3 , из признака делимости на 3 следует, что 10 не делится на 3 . Поэтому 19 не делится на 3 , так как сумма его цифр равна 10 , а 10 не делится на 3 . Следовательно, исходное число −543 205 не делится на 3 , так как сумма его цифр, равная 19 , не делится на 3 .

Ответ:

Нет.

Стоит заметить, что непосредственное деление данного числа на 3 также позволяет сделать вывод о том, делится ли данное число на 3 нацело, или нет. Этим мы хотим сказать, что не нужно пренебрегать делением в пользу признака делимости на 3 . В последнем примере, 543 205 на 3 , мы бы убедились, что 543 205 не делится нацело на 3 , откуда можно было бы сказать, что и −543 205 не делится на 3 .

Доказательство признака делимости на 3

Доказать признак делимости на 3 нам поможет следующее представление числа a . Любое натуральное число a мы можем , после чего позволяет получить представление вида , где a n , a n−1 , …, a 0 – цифры, стоящие слева направо в записи числа a . Для наглядности приведем пример такого представления: 528=500+20+8=5·100+2·10+8 .

Теперь запишем ряд достаточно очевидных равенств: 10=9+1=3·3+1 , 100=99+1=33·3+1 , 1 000=999+1=333·3+1 и так далее.

Подставив в равенство a=a n ·10 n +a n−1 ·10 n−1 +…+a 2 ·10 2 +a 1 ·10+a 0 вместо 10 , 100 , 1 000 и так далее выражения 3·3+1 , 33·3+1 , 999+1=333·3+1 и так далее, получим
.

И позволяют полученное равенство переписать так:

Выражение есть сумма цифр числа a . Обозначим ее для краткости и удобства буквой А , то есть, примем . Тогда получим представление числа a вида , которым и воспользуемся при доказательстве признака делимости на 3 .

Также для доказательства признака делимости на 3 нам потребуются следующие свойства делимости:

  • чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы a делился на модуль числа b ;
  • если в равенстве a=s+t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Теперь мы полностью подготовлены и можем провести доказательство признака делимости на 3 , для удобства этот признак сформулируем в виде необходимого и достаточного условия делимости на 3 .

Теорема.

Для делимости целого числа a на 3 необходимо и достаточно, чтобы сумма его цифр делилась на 3 .

Доказательство.

Для a=0 теорема очевидна.

Если a отлично от нуля, то модуль числа a является натуральным числом, тогда возможно представление , где - сумма цифр числа a .

Так как сумма и произведение целых чисел есть целое число, то - целое число, тогда по определению делимости произведение делится на 3 при любых a 0 , a 1 , …, a n .

Если сумма цифр числа a делится на 3 , то есть, А делится на 3 , то в силу свойства делимости, указанного перед теоремой, делится на 3 , следовательно, a делится на 3 . Так доказана достаточность.

Если a делится на 3 , то и делится на 3 , тогда в силу того же свойства делимости число А делится на 3 , то есть, сумма цифр числа a делится на 3 . Так доказана необходимость.

Другие случаи делимости на 3

Иногда целые числа задаются не в явном виде, а как значение некоторого при данном значении переменной. Например, значение выражения при некотором натуральном n является натуральным числом. Понятно, что при таком задании чисел для установления их делимости на 3 не поможет непосредственное деление на 3 , да и признак делимости на 3 удастся применить далеко не всегда. Сейчас мы рассмотрим несколько подходов к решению подобных задач.

Суть этих подходов заключается в представлении исходного выражения в виде произведения нескольких множителей, и если хотя бы один из множителей будет делиться на 3 , то в силу соответствующего свойства делимости можно будет сделать вывод о делимости на 3 всего произведения.

Иногда реализовать такой подход позволяет . Рассмотрим решение примера.

Пример.

Делится ли значение выражения на 3 при любом натуральном n ?

Решение.

Очевидно равенство . Воспользуемся формулой бинома Ньютона:

В последнем выражении мы можем вынести 3 за скобки, при этом получим . Полученное произведение делится на 3 , так как содержит множитель 3 , а значение выражения в скобках при натуральных n представляет собой натуральное число. Следовательно, делится на 3 при любом натуральном n .

Ответ:

Да.

Во многих случаях доказать делимость на 3 позволяет . Разберем его применение при решении примера.

Пример.

Докажите, что при любом натуральном n значение выражения делится на 3 .

Решение.

Для доказательства применим метод математической индукции.

При n=1 значение выражения равно , а 6 делится на 3 .

Предположим, что значение выражения делится на 3 при n=k , то есть, делится на 3 .

Учитывая, что делится на 3 , покажем, что значение выражения при n=k+1 делится на 3 , то есть, покажем, что делится на 3 .

Еткарева Алина

Исследовательский учебный проект для 6 класса

Скачать:

Предварительный просмотр:

Районная научная конференция учащихся

Секция «Математика»

«Признаки делимости натуральных чисел »

Еткарева Алина,

Ученица 6 класса

ГБОУ СОШ ж.-д.ст. Погрузная

Научный руководитель:

Степанова Галина Алексеевна

учитель математики

ГБОУ СОШ ж.-д.ст. Погрузная

С. Кошки

Введение………………………………………………………………………...3

1. Глава 1. Немного истории …………………………………………….4 -5

2. Глава 2. Признаки делимости

2.1.Признаки делимости натуральных чисел на 2, на 3(9) на 5, на 10, изучаемые в школе……………………………………………………………….5-6

2.2. Признаки делимости натуральных чисел на 4, 6, 8, 15, 25, 50, 100, 1000, полученные самостоятельно……………………………………………………..6-7

2.3. Признаки делимости на 7, 11, 12, 13, 14, 19, 37, описанные в разных источниках.............................................................................................................8-11

3.Глава 3. Применение признаков делимости натуральных чисел при решении задач...................................................................................................11-14

Заключение. …………………………………………………………..15

Список использованной литературы………………………………………16

Введение

Актуальность: При изучении темы: «Признаки делимости натуральных чисел на 2, 3, 5, 9, 10» меня заинтересовал вопрос о делимости чисел. Известно, что не всегда одно натуральное число делится на другое натуральное число без остатка. При делении натуральных чисел, мы получаем остаток, допускаем ошибки, в результате - теряем время. Признаки делимости помогают, не выполняя деления, установить, делится ли одно натуральное число на другое. Я решила написать исследовательскую работу по данной теме.

Гипотеза: Если можно определить делимость натуральных чисел на 2, 3, 5, 9, 10, то должны быть признаки, по которым можно определить делимость натуральных чисел и на другие числа.

Объект исследования: Делимость натуральных чисел.

Предмет исследования: Признаки делимости натуральных чисел.

Цель: Дополнить уже известные признаки делимости натуральных чисел нацело, изученные мною.

Задачи:

  1. Изучить историографию вопроса.
  2. Повторить признаки делимости на 2, 3. 5, 9, 10, изученные мною в школе.
  3. Исследовать самостоятельно признаки делимости натуральных чисел на 4, 6, 8, 15, 25, 50, 100, 1000.
  4. Изучить дополнительную литературу, подтверждающую правильность гипотезы о существовании других признаков делимости натуральных чисел и правильность выявленных мной признаков делимости.
  5. Выписать найденные из дополнительной литературы признаки делимости натуральных чисел на 7, 11, 12, 13, 14, 19, 37.
  6. Сделать вывод.
  7. Составить слайдовую презентацию на тему: «Признаки делимости».
  8. Составить брошюру «Признаки делимости натуральных чисел».

Новизна:

В ходе выполнения проекта я пополнила свои знания о признаках делимости натуральных чисел.

Методы исследования: Сбор материала, обработка данных, наблюдение, сравнение, анализ, обобщение.

Глава 1. Немного из истории.

Признак делимости – это правило, по которому, не выполняя деления можно определить, делится ли одно натуральное число на другое. Признаки делимости всегда интересовали ученых разных стран и времен.

Признаки делимости на 2, 3, 5, 9, 10, были известны с давних времен. Признак делимости на 2 знали древние египтяне за 2 тысячи лет до нашей эры, а признаки делимости на 2, 3, 5 были обстоятельно изложены итальянским математиком Леонардо Фибоначчи (1170-1228г.г.).

При изучении темы: «Простые и составные числа» меня заинтересовал вопрос о составлении таблицы простых чисел, так как простые числа играют важную роль в изучении всех остальных чисел. Оказывается, над этим же вопросом в свое время задумался живший в 3 веке до нашей эры александрийский ученый Эратосфен. Его метод составления списка простых чисел назвали «решето Эратосфена». Пусть надо найти все простые числа до 100. Напишем подряд все числа до 100.

1 , 2, 3, 4, 5, 6, 7 , 8, 9, 10 , 11, 12 , 13, 14, 15, 16 , 17, 18 , 19, 20, 21, 22 , 23 , 24, 25, 26, 27, 28, 29, 30 , 31, 32, 33, 34, 35, 36, 37 , 38, 39, 40, 41 , 42, 43, 44, 45, 46 , 47, 48, 49, 50, 51, 52 , 53, 54, 55, 56, 57, 58, 59, 60 , 61 , 62, 63, 64, 65, 66 , 67, 68, 69, 70 , 71, 72, 73, 74, 75, 76, 77, 78 , 79, 80, 81, 82 , 83 , 84, 85, 86, 87, 88 , 89, 90, 91, 92, 93, 94, 95, 96 , 97, 98, 99, 100 .

Оставив число 2, зачеркнем все остальные четные числа. Первым уцелевшим числом после 2 будет 3. Теперь, оставив число 3, зачеркнем числа, делящиеся на 3. Затем зачеркнем числа, делящиеся на 5. В результате все составные числа окажутся вычеркнутыми и останутся только простые числа: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. По этому методу можно составлять списки простых чисел, больших 100.

Вопросы делимости чисел рассматривались пифагорейцами. В теории чисел ими была проведена большая работа по типологии натуральных чисел. Пифагорейцы делили их на классы. Выделялись классы: совершенных чисел (число равное сумме своих собственных делителей, например: 6=1+2+3), дружественных чисел (каждое из которых равно сумме делителей другого, например 220 и 284: 284=1+2+4+5+10+20+11+22+44+55+110; 220=1+2+4+71+142), фигурных чисел (треугольное число, квадратное число), простых чисел и др.

Блез Паскаль Пифагор. Леонардо Пизанский Эратосфен

(Фибоначчи)

Большой вклад в изучение признаков делимости чисел внес Блез Паскаль (1623-1662г.г.). Юный Блез очень рано проявил выдающиеся математические способности, научившись считать раньше, чем читать. Вообще, его пример - это классический случай детской математической гениальности. Свой первый математический трактат «Опыт теории конических сечений» он написал в 24 года. Примерно в это же время он сконструировал механическую суммирующую машинку, прообраз арифмометра. В ранний период своего творчества (1640-1650г.г.) разносторонний ученый нашел алгоритм для нахождения признаков делимости любого целого числа на любое другое целое число, из которого следуют все частные признаки. Его признак состоит в следующем: Натуральное число а разделится на другое натуральное число b только в том случае, если сумма произведений цифр числа a на соответствующие остатки, получаемые при делении разрядных единиц на число b, делится на это число.

Т.о., признаки делимости были известны с давних времен и интересовали математиков.

Глава 2. Признаки делимости

2.1.Признаки делимости натуральных чисел, изучаемые в школе.

При изучении данной темы необходимо знать понятия делитель, кратное, простое и составное числа.

Делителем натурального числа а называют натуральное число b , на которое а делится без остатка.

Часто утверждение о делимости числа а на число b выражают другими равнозначными словами: а кратно b , b - делитель а , b делит а .

Простыми называются натуральные числа, которые имеют два делителя: 1 и само число. Например, числа 5,7,19 – простые, т.к. делятся на 1 и само себя.

Числа, которые имеют более двух делителей, называются составными. Например, число 14 имеет 4 делителя: 1, 2, 7, 14, значит оно составное.

Т.о…..

2.2.Признаки делимости натуральных чисел на 4, 6, 8, 15, 25, 50, 100, 1000, полученные самостоятельно .

Выполняя действия деления, умножения натуральных чисел, наблюдая за результатами действий, я нашла закономерности и получила следующие признаки делимости.

Признак делимости на 4.

25·4=1 00 ; 56·4=2 24 ; 123·4=4 92 ; 125·4=5 00 ; 2345·4=93 80 ; 2500·4=100 00 ;

Умножая натуральные числа на 4, я заметила, что числа, образованные из двух последних цифр числа, делятся на 4 без остатка.

Признак делимости на 4 читается так: Натуральное ч

Признак делимости на 6.

Заметим, что 6=2·3 Признак делимости на 6 : Если натуральное число одновременно делится на 2 и на 3, то оно делится на 6.

Примеры:

216 делится на 2 (оканчивается 6) и делится на 3 (8+1+6=15, 15׃3), значит, число делится на 6.

Признак делимости на 8.

Умножая натуральное число на 8, я заметила такую закономерность, числа оканчиваются на три 0-ля или три последние цифры составляют число, которое делится на 8.

Значит, признак таков. Натуральное ч

Признак делимости на 15.

Заметим, что 15=3·5

Примеры:

Признак делимости на 25.

Выполняя умножение натуральных различных чисел на 25, я увидела такую закономерность: произведения оканчиваются на 00, 25, 50, 75.

Значит, натуральное число делится на 25, если оканчивается на 00, 25, 50, 75.

Признак делимости на 50.

На 50 делятся числа: 50, 1

Значит, натуральное число делится на 50 тогда и только тогда, когда оканчивается двумя нулями или 50.

Если в конце натурального числа стоят столько же нулей сколько в разрядной единице, то это число делится на эту разрядную единицу.

Примеры:

25600 делится на 100, т.к. числа оканчиваются на одинаковое количество нулей. 8975000 делится на 1000, т.к. оба числа оканчиваются на 000.

Т.о., выполняя действия с числами и подмечая закономерности, я сформулировала признаки делимости и из дополнительной литературы нашла подтверждение правильности сформулированных мною признаков делимости натуральных чисел на 4, 6, 8, 15, 25, 50, 100, 1000.

2.3.Признаки делимости натуральных чисел на 7, 11, 12, 13, 14, 19, 37, описанные в различных источниках.

Из дополнительной литературы я нашла несколько признаков делимости натуральных чисел на 7.

П ризнаки делимости на 7:

Примеры:

479345 не делится на 7, т.к. 479-345=134, 134 не делится на 7.

Примеры:

4592 делится на 7, т.к. 45·2=90, 90+92=182, 182 делится на 7.

57384 не делится на 7, т.к. 573·2=1146, 1146+84=1230,1230 не делится на 7

аbа

Примеры:

bаа

Примеры:

ааb

Примеры:

bаа

Примеры:

Примеры:

Примеры:

10׃7=1 (ост 3)

100׃7=14 (ост 2)

1000׃7=142 (ост 6)

10000׃7=1428 (ост 4)

100000׃7=14285 (ост 5)

6 +3· 2 +1· 3 +6=21, 21/7(6-ост. от деления 1000 на 7; 2-ост. от деления 100 на 7; 3- ост. от деления 10 на 7).

Число 354722 не делится на7,т.к. 3·5+5·4+4·6+7·2+2·3+2=81, 81 не делится на 7(5-ост. от деления 100 000 на 7; 4 -ост. от деления 10 000 на 7; 6-ост. от деления 1000 на 7; 2-ост. от деления 100 на 7; 3-ост. от деления 10 на 7).

Признаки делимости на 11.

Пример:

2 1 3 5 7 0 4

1 3 5 2 7 3 6

Примеры:

Признак делимости на 12.

Примеры:

Признаки делимости на 13.

Примеры:

Примеры:

Признак делимости на 14.

Примеры:

Число 35882 делится на 2 и на 7, значит, оно делится на 14.

Признак делимости на 19.

Примеры:

153 4

182 4 182+4·2=190, 190/19, значит, число 1824/19.

Признаки делимости на 37 .

Пример:

Т.о., в се перечисленные признаки делимости натуральных чисел можно разделить на 4 группы:

1группа- когда делимость чисел определяется по последней(им) цифрой (ми) – это признаки делимости на 2, на 5,на разрядную единицу, на 4, на 8, на 25, на 50;

2 группа – когда делимость чисел определяется по сумме цифр числа – это признаки делимости на3, на 9, на 7(1 признак), на 11, на 37;

3 группа – когда делимость чисел определяется после выполнения каких-то действий над цифрами числа – это признаки делимости на 7, на 11, на 13, на 19;

4 группа – когда для определения делимости числа используются другие признаки делимости –это признаки делимости на 6, на12, на 14, на 15.

Глава 3. Применение признаков делимости натуральных чисел при решении задач.

Признаки делимости применяются при нахождении НОД и НОК, а также при решении текстовых задач на применении НОД и НОК.

Задача 1:

Ученики 5 класса купили 203 учебника. Каждый купил одинаковое количество книг. Сколько было пятиклассников, и сколько учебников купил каждый из них?

Решение: Обе величины, которые требуется определить должны быть целыми числами, т.е. находиться среди делителей числа 203. Разложив 203 на множители, получаем: 203 = 1 ∙ 7 ∙ 29.

Из практических соображений .

Ответ :

Задача 2 .

Решение:

Ответ:

Задача 3: В 9 классе за контрольную работу 1/7 учеников получили пятёрки, 1/3 – четверки, 1/2 - тройки. Остальные работы оказались неудовлетворительными. Сколько было таких работ?

Решение:

Математические отношения задачи допускают, что число учеников в классе 84, 126 и т.д. человек. Но из соображений здравого смысла следует, что наиболее приемлемым ответом является число 42.

Ответ: 1 работа.

Задача 4.

Решение : В первом из этих классов могло быть: 17, 34, 51… - числа, кратные 17. Во втором классе: 9, 18, 27, 36, 45, 54… - числа, кратные 9. Нам нужно выбрать 1 число из первой последовательности, а 2 число из второй так, чтобы они в сумме давали 70. Причем в этих последовательностях только небольшое число членов могут выражать возможное количество детей в классе. Это соображение существенно ограничивает перебор вариантов. Возможным единственным вариантом оказалась пара (34, 36).

Ответ:

Задача 5.

Решение:

Ответ:

Задача 6. Два автобуса отправляются от одной площади по разным маршрутам. У одного из автобусов рейс туда и обратно длится 48 мин, а у другого 1 ч 12 мин. Через сколько времени автобусы снова встретятся на этой же площади?

Решение:

Ответ:

Задача 7 . Дана таблица:

Ответ:

Задача 8.

Ответ:

Задача 9.

Ответ:

Т.о, мы убедились в применении признаков делимости натуральных чисел при решении задач.

Заключение.

В процессе работы я познакомилась с историей развития признаков делимости. Сама правильно сформулировала признаки делимости натуральных чисел на 4, 6, 8, 15, 25, 50, 100, 1000., чему нашла подтверждение из дополнительной литературы. Рботая с разными источниками, я убедилась в том, что существуют другие признаки делимости натуральных чисел (на 7, 11, 12, 13, 14, 19, 37), что подтвердило правильность гипотезы о существовании других признаков делимости натуральных чисел.

Из дополнительной литературы нашла задачи, при решении которых применяются признаки делимости натуральных чисел.

Знание и использование выше перечисленных признаков делимости натуральных чисел значительно упрощает многие вычисления, экономит время; исключает вычислительные ошибки, которые можно сделать при выполнении действия деления. Следует отметить, что формулировки некоторых признаков сложноваты. Может быть, поэтому они не изучаются в школе.

Собранный мной материал я оформила в виде брошюры, которую можно использовать на занятиях математикой, на занятиях математического кружка. Учителя математики могут использовать его при изучении данной темы. Также рекомендую ознакомиться со своей работой тем сверстникам, которые хотят знать о математике больше, чем рядовой школьник.

В дальнейшем можно рассмотреть такие вопросы:

Вывод признаков делимости;

Выяснить,существуют ли еще признаки делимости, для исследования которых у меня не хватает пока знаний?

Список использованной литературы (источников):

  1. Галкин В.А. Задачи по теме «Признаки делимости ».// Математика, 1999.-№5.-С.9.
  2. Гусев В.А., Орлов А.И., Розенталь А.Л. Внеклассная работа по математике в 6-8 классах.- М.: Просвещение, 1984.
  3. Каплун Л.М. НОД и НОК в задачах. // Математика, 1999.- №7. – С. 4-6.
  4. Пельман Я.И. Математика – это интересно! – М.: ТЕРРА – Книжный клуб, 2006.
  5. Энциклопедический словарь юного математика./ Сост. Савин А.П. – М.: Педагогика, 1989. – С. 352.
  6. Internet

Признаки делимости

На 5.

Если число оканчивается на 0, 5.

На 2.

Если число оканчивается на 0, 2, 4, 6, 8

На 10.

Если число оканчивается на 0

На 3 (9).

Если сумма цифр числа делится на 3 (9).


Предварительный просмотр:

Ответ:

Задача 8.

Напишите какое – нибудь девятизначное число, в котором нет повторяющихся цифр (все цифры разные) и которое делится без остатка на 11. Напишите наибольшее из таких чисел, наименьшее из них.

Ответ: Наибольшее – 987652413, наименьшее – 102347586.

Задача 9.

Ваня задумал простое трехзначное число, все цифры которого различны. На какую цифру оно может оканчиваться, если его последняя цифра равна сумме первых двух. Приведите примеры таких чисел.

Ответ: Может оканчиваться только на цифру 7. Таких чисел 4: 167, 257, 347, 527.

Признак делимости на 2

Если натуральное число оканчивается на 2, 4, 6, 8, 0, то оно делится на 2 без остатка.

Признак делимости на 5.

Если число оканчивается на 0 или 5, то оно делится на 5 без остатка.

Признак делимости на 3

Если сумма цифр числа делится на 3, то и число делится на 3.

Примеры

684: 3, т. к. 6+ 8 + 4=18 , 18: 3, значит и число: на 3.

763 не: на3, т.к. 7+6+3=16, 16 не: на 3,значит 763 не: на 3.

Признак делимости на 9

Если сумма цифр числа делится на 9, то и само число делится на 9.

Примеры

765: 9, т. к. 7+6+5=18, 18: 9, значит 765: 9

881 не: на9, т.к. 8+8+1=17, 17 не: на 9, значит 881 не: на 9.

Признак делимости на 4.

25·4=1 00 ; 56·4=2 24 ; 123·4=4 92 ; 125·4=5 00 ; 2345·4=93 80 ; 2500·4=100 00 ; …

Натуральное ч исло делится на 4 тогда и только тогда, когда две его последние цифры 0 или образуют число, делящееся на 4.

Признак делимости на 6.

Заметим, что 6=2·3 Признак делимости на 6 :

Если натуральное число одновременно делится на 2 и на 3, то оно делится на 6.

Примеры:

816 делится на 2 (оканчивается 6) и делится на 3 (8+1+6=15, 15׃3), значит, число делится на 6.

625 не делится ни на 2, ни на 3, значит, не делится на 6.

2120 делится на 2 (оканчивается 0), но не делится на 3 (2+1+2+0=5, 5 не делится на 3), значит, число не делится на 6.

279 делится на 3 (2+7+9=18, 18:3), но не делится на 2 (оканчивается нечетной цифрой), значит, число не делится на 6.

Признак делимости на 7.

Ι. Натуральное число делится на 7 тогда и только тогда, когда разность числа тысяч и числа, выражаемого последними тремя цифрами, делится на 7.

Примеры:

478009 делится на 7, т.к. 478-9=469, 469 делится на 7.

475341 не делится на 7, т.к. 475-341=134, 134 не делится на 7.

ΙΙ. Натуральное число делится на 7, если сумма удвоенного числа, стоящего до десятков и оставшегося числа делится на 7.

Примеры:

4592 делится на 7, т.к. 45·2=90, 90+92=182, 182/7.

мин, а у другого 1 ч 12 мин. Через сколько времени автобусы снова встретятся на этой же площади?

Решение: НОК(48, 72) = 144 (мин). 144 мин = 2 ч 24 мин.

Ответ: Через 2 ч 24 мин автобусы снова встретятся на этой же площади.

Задача 7 . Дана таблица:

В пустые клетки впишите следующие числа: 17, 22, 36, 42, 88, 48, 57, 77, 81.

Решение : В первом из этих классов могло быть: 17, 34, 51… - числа, кратные 17. Во втором классе: 9, 18, 27, 36, 45, 54… - числа, кратные 9. Нам нужно выбрать 1 число из первой последовательности, а 2 число из второй так, чтобы они в сумме давали 70. Причем в этих последовательностях только небольшое число членов могут выражать возможное кол-во детей в классе. Это соображение существенно ограничивает перебор вариантов. Возможным единственным вариантом оказалась пара (34, 36).

Ответ: В первом классе – 34 ученика, во втором классе – 36 учеников.

Задача 5.

Какое наименьшее число одинаковых подарков можно сделать из 320 орехов, 240 конфет, 200 яблок? Сколько орехов, конфет и яблок будет в каждом подарке?

Решение: НОД(320, 240, 200) = 40 (подарков), тогда в каждом подарке будет: 320:40 = 8 (орехов); 240: 40 = 6 (конфет); 200:40 = 5 (яблок).

Ответ: В каждом подарке по 8 орехов, 6 конфет, 5 яблок.

Задача 6.

Два автобуса отправляются от одной площади по разным маршрутам. У одного из автобусов рейс туда и обратно длится 48

57384 не делится на 7, т.к. 573·2=1146, 1146+84=1230, 1230 не делится на 7.

ΙΙΙ. Трехзначное натуральное число вида аbа будет делиться на 7, если а+b делится на 7.

Примеры:

252 делится на 7, т.к. 2+5=7, 7/7.

636 не делится на 7, т.к. 6+3=9, 9 не делится на 7.

IV. Трехзначное натуральное число вида bаа будет делиться на 7, если сумма цифр числа делится на 7.

Примеры:

455 делится на 7, т.к. 4+5+5=14, 14/7.

244 не делится на 7, т.к. 2+4+4=12, 12 не делится на 7.

V. Трехзначное натуральное число вида ааb будет делиться на 7, если 2а-b делится на 7.

Примеры:

882 делится на 7,т.к. 8+8-2=14, 14/7.

996 не делится на 7, т.к. 9+9-6=12, 12 не делится на 7.

VI. Четырехзначное натуральное число вида bаа , где b-двухзначное число, будет делиться на 7, если b+2а делится на 7.

Примеры:

2744 делится на 7, т.к. 27+4+4=35, 35/7.

1955 не делится на 7, т.к. 19+5+5=29, 29 не делится на 7.

VII. Натуральное число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7.

Примеры:

483 делится на 7, т.к. 48-3·2=42, 42/7.

564 не делится на 7, т.к. 56-4·2=48, 48 не делится на 7.

VIII. Натуральное число делится на 7 тогда и только тогда, когда сумма произведений цифр числа на соответствующие остатки получаемые при делении разрядных единиц на число 7, делится на 7.

Примеры:

10׃7=1 (ост 3)

100׃7=14 (ост 2)

1000׃7=142 (ост 6)

10000׃7=1428 (ост 4)

100000׃7=14285 (ост 5)

1000000׃7=142857 (ост 1) и снова повторяются остатки.

Число 1316 делится на 7, т.к. 1· 6 +3· 2 +1· 3 +6=21, 21/7 (6-остаток от деления 1000 на 7; 2-остаток от деления 100 на 7; 3- остаток от деления 10 на 7).

Число 354722 не делится на7,т.к. 3·5+5·4+4·6+7·2+2·3+2=81, 81 не делится на 7(5-остаток от деления 100 000 на 7; 4 -остаток от деления 10 000 на 7; 6-остаток от деления 1000 на 7; 2-остаток от деления 100 на 7; 3-остаток от деления 10 на 7).

Количество подарков должно быть делителем каждого из чисел, выражающих количество апельсинов, конфет и орехов, причем наибольшим из этих чисел. Поэтому надо найти НОД данных чисел. НОД (60, 175, 225) = 15. Каждый подарок будет содержать: 60: 15 = 4 – апельсина, 175: 15 = 11 – орехов и 225: 15 = 15 – конфет.

Ответ: В одном подарке – 4 апельсина, 11 орехов, 15 конфет.

Задача 3: В 9 классе за контрольную работу 1/7 учеников получили пятёрки, 1/3 – четверки, ½ - тройки. Остальные работы оказались неудовлетворительными. Сколько было таких работ?

Решение: Решением задачи должно являться число, кратное числам: 7, 3, 2. Найдем сначала наименьшее из таких чисел. НОК (7, 3, 2) = 42. Можно составить выражение по условию задачи: 42 – (42: 7 + 42: 3 + 42: 2) = 1 – 1 неуспевающий.

Математические отношение отношения задачи допускают, что число учеников в классе 84, 126 и т.д. человек. Но из соображений здравого смысла следует, что наиболее приемлемым ответом является число 42.

Ответ: 1 работа.

Задача 4.

В двух классах вместе 70 учеников. В одном классе 7/17 учеников не явились на занятия, а в другом 2/9 получили отличные отметки по математике. Сколько учеников в каждом классе?

Примеры:

25600 делится на 100, т.к. числа оканчиваются на одинаковое количество нулей.

8975000 делится на 1000, т.к. оба числа оканчиваются на 000.

Задача 1: (Использование общих делителей и НОД)

Ученики 5 «А» класса купили 203 учебника. Каждый купил одинаковое количество книг. Сколько было пятиклассников, и сколько учебников купил каждый из них?

Решение: Обе величины, которые требуется определить должны быть целыми числами, т.е. находиться среди делителей числа 203. Разложив 203 на множители, получаем:

203 = 1 ∙ 7 ∙ 29.

Из практических соображений следует, что учебников не может быть 29. также число учебников не может равняться 1, т.к. в этом случае учеников было бы 203. Значит, пятиклассников – 29 и каждый из них купил по 7 учебников .

Ответ : 29 пятиклассников; 7 учебников

Задача 2 . Имеется 60 апельсинов, 165 орехов и 225 конфет. Какое наибольшее число одинаковых подарков для детей можно сделать из этого запаса? Что войдёт в каждый набор?

Решение:

Признак делимости на 8.

125·8=1 000 ; 242·8=1 936 ; 512·8=4 096 ; 600·8=4 800 ; 1234·8=9 872 ; 122875·8=983 000 ;…

Натуральное ч исло делится на 8 тогда и только тогда, когда три его последние цифры делятся 0 или составляют число, делящееся на 8.

Признаки делимости на 11.

I. Число делится на 11, если разность суммы цифр стоящих на нечетных местах, и суммы цифр, стоящих на четных местах кратна 11.

Разность может быть отрицательным числом или 0, но обязательно должна быть кратной 11. Нумерация идет слева направо.

Пример:

2 1 3 5 7 0 4 2+3+7+4=16, 1+5+0=6, 16-6=10, 10 не кратно 11, значит, это число не делится на 11.

1 3 5 2 7 3 6 1+5+7+6=19, 3+2+3=8, 19-8=11, 11 кратно 11, значит, это число делится на 11.

2 1 3 5 7 0 4 2+3+7+4=16, 1+5+0=6, 16-6=10, 10 не кратно 11, значит, это число не делится на 11.

1 3 5 2 7 3 6 1+5+7+6=19, 3+2+3=8, 19-8=11, 11 кратно 11, значит, это число делится на 11.

II. Натуральное число разбивают справа налево на группы по 2 цифры в каждой и складывают эти группы. Если получаемая сумма кратна 11, то испытуемое число кратно 11.

Пример: Определим, делится ли число 12561714 на 11.

Разобьем число на группы по две цифры в каждой: 12/56/17/14; 12+56+17+14=99, 99 делится на 11, значит, данное число делится на 11.

III. Трехзначное натуральное число делится на 11, если сумма боковых цифр числа равна цифре, которая в середине. Ответ будет состоять из тех самых боковых цифр.

Примеры:

594 делится на11, т.к. 5+4=9, 9-в середине.

473 делится на 11, т.к. 4+3=7, 7- в середине.

861 не делится на 11, т.к. 8+1=9, а в середине 6.

Признак делимости на 12.

Натуральное число делится на 12 тогда и только тогда, когда оно делится на 3 и 4 одновременно.

Примеры:

636 делится на 3 и на 4, значит, оно делится на 12.

587 не делится ни на 3, ни на 4, значит, оно не делится на 12.

27126 делится на 3, но не делится на 4, значит, оно не делится на 12.

Признаки делимости на 37 .

I. Натуральное число делится на 37, если сумма чисел, образованных тройками цифр данного числа в десятичной записи делится соответственно на 37.

Пример: Определим, делится ли число 100048 на 37.

100/048 100+48=148, 148 делится на 37, значит, и число делится на 37.

II. Трехзначное натуральное число, написанное одинаковыми цифрами делится на 37.

Пример:

Числа 111, 222, 333, 444, 555, …делятся на 37.

Признак делимости на 25

Натуральное число делится на 25, если оно оканчивается на 00, 25, 50, 75.

Признак делимости на 50.

На 50 делятся числа: 50, 1 00 , 1 50 , 2 00 , 2 50 , 3 00 ,… Они оканчиваются либо на 50, либо на 00.

Натуральное число делится на 50 тогда и только тогда, когда оканчивается двумя нулями или 50.

Объединенный признак делимости на 10, 100, 1000, …

Если в конце натурального числа стоят столько же нулей сколько в разрядной единице, то это число делится на эту разряд-

ную единицу.

Признаки делимости на 13.

I. Натуральное число делится на 13, если разность числа тысяч и числа, образованного последними тремя цифрами, делится на 13.

Примеры:

Число 465400 делится на 13, т.к. 465 – 400 = 65, 65 делится на 13.

Число 256184 не делится на 13, т.к. 256 – 184 = 72, 72 не делится на 13.

II. Натуральное число делится на 13 тогда и только тогда, когда результат вычитания последней цифры, умноженной на 9, из этого числа без последней цифры, делится на 13.

Примеры:

988 делится на 13, т.к. 98 - 9·8 = 26, 26 делится на 13.

853 не делится на 13, т.к. 85 - 3·9 = 58, 58 не делится на 13.

Признак делимости на 14.

Натуральное число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7 одновременно.

Примеры:

Число 45826 делится на 2, но не делится на 7, значит, оно не делится на 14.

Число 1771 делится на 7, но не делится на 2, значит, оно не делится на 14.

Признак делимости на 15.

Заметим, что 15=3·5. Если натуральное число одновременно делится и на 5 и на 3, то оно делится на 15.

Примеры:

346725 делится на 5 (оканчивается 5) и делится на 3 (3+4+6+7+2+5=24, 24:3), значит, число делится на 15.

48732 делится на 3 (4+8+7+3+2=24, 24:3), но не делится на 5,значит, число не делится на 15.

87565 делится на 5 (оканчивается 5), но не делится на 3 (8+7+5+6+5=31, 31 не делится на 3), значит, число не делится на 15.

Признак делимости на 19.

Натуральное число делится на 19 без остатка тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, делится на 19.

Следует учесть, что число десятков в числе надо считать не цифру в разряде десятков, а общее число целых десятков во всем числе.

Примеры:

153 4 десятков-153, 4·2=8, 153+8=161, 161 не делится на 19,значит, и 1534 не делится на 19.

182 4 182+4·2=190, 190:19, значит, число 1824: 19.


ГБОУ СОШ ж.-д. ст. Погрузная

ПРИЗНАКИ ДЕЛИМОСТИ

НАТУРАЛЬНЫХ

ЧИСЕЛ


Составила Еткарева Алина.


2013 год