Примерные темы курсовых работ по дисциплине «Математическая логика. Исследовательская работа по математике Тема: «Логические игры Типы логических задач

Примерные темы курсовых работ по дисциплине «Математическая логика. Исследовательская работа по математике Тема: «Логические игры Типы логических задач

Муниципальное бюджетное образовательное учреждение

Досчатинская средняя школа

городского округа г. Выкса Нижегородской области

Решение логических задач.

Физико-математическое отделение

Секция математическая

Работу выполнил:

ученица 5 класса

Папотина Елена Сергеевна

научный руководитель:

учитель МБОУ Досчатинская СШ

Рощина Людмила Валерьевна

Нижегородская область

р/п Досчатое

2016г.

Аннотация

Цель данной работы выявить умения рассуждать и делать правильные выводы, при решении логических задач. Эти задачи носят занимательный характер и не требуют большого запаса математических знаний, поэтому они привлекают даже тех учащихся, которые не очень любят математику. В работе поставлены следующие задачи:

1) ознакомление с понятиями «логика» и «математическая логика»;

2) изучение основных методов решения логических задач;

3) изучение умения решать логические задачи учащимися 5-7 класса.

Методами исследования данной работы являются:

    Сбор и изучение информации.

    Обобщение экспериментального и теоретического материала.

Гипотеза : учащиеся нашей школы умеют решать логические задачи.

В ходе написания работы были исследованы типы и способы решения логических задач. Была проведена практическая работа с учениками среднего звена, на то, как они умеют решать логические задачи. Результаты работы показали, что не все учащиеся могут справиться с логическими задачами. Чаще всего способности школьников так и остаются не раскрыты для них самих, они не уверены в своих силах, равнодушны к математике. Для таких школьников я и предлагаю применять логические задачи. Эти задачи могут быть рассмотрены на кружковых и факультативных занятиях.

2.3 Метод кругов Эйлера

Этот метод является еще одним наглядным и довольно интересным способом решения логических задач. В основе этого метода лежит построение знаменитых кругов Эйлера-Венна, задачи, в которых требуется найти некоторое пересечение множеств или их объединение, соблюдая условия задачи . Разберем пример применения данного метода.

Решим задачу 6:

Из 52 школьников 23 собирают значки, 35 собирают марки, а 16 - и значки, и марки. Остальные не увлекаются коллекционированием. Сколько школьников не увлекается коллекционированием?

Решение. В условии этой задачи не так легко разобраться. Если сложить 23 и 35, то получится больше 52. Это объясняется тем, что некоторых школьников мы здесь учли дважды, а именно тех, которые собирают и значки, и марки. Чтобы облегчить рассуждения, воспользуемся кругами Эйлера

На рисунке большой круг обозначает 52 школьника, о которых идет речь; круг 3 изображает школьников, собирающих значки, а круг М - школьников, собирающих марки.

Большой круг разбивается кругами 3 и М на несколько областей. Пересечению кругов 3 и М соответствуют школьники, собирающие и значки, и марки (рис.). Части круга 3, не принадлежащей кругу М, соответствуют школьники, собирающие только значки, а части круга М, не принадлежащей кругу 3, - школьники, собирающие только марки. Свободная часть большого круга обозначает школьников, не увлекающихся коллекционированием.

Будем последовательно заполнять нашу схему, вписывая в каждую область соответствующее число. По условию и значки, и марки собирают 16 человек, поэтому в пересечение кругов 3 и М впишем число 16 (рис.).

Так как значки собирают 23 школьника, а и значки, и марки - 16 школьников, то только значки собирают 23 - 16 = 7 человек. Точно так же только марки собирают 35 - 16 = 19 человек. Числа 7 и 19 впишем в соответствующие области схемы.

Из рисунка ясно, сколько всего человек занимается коллекционированием. Чтобы узнать это, надо сложить числа 7, 9 и 16. Получим 42 человека. Значит, не увлеченных коллекционированием остается 52 - 42 = 10 школьников. Это и есть ответ задачи, его можно вписать в свободное поле большого круга.

Метод Эйлера является незаменимым при решении некоторых задач, а также значительно упрощает рассуждения.

2.4 Метод блок- схем

Задача 7. В школьной столовой на первое можно заказать борщ, солянку, грибной суп, на второе -мясо с макаронами, рыбу с картошкой, курицу с рисом, а на третье - чай и компот. Сколько различных обедов можно составить из указанных блюд?

Решение. Оформим решение в виде блок схемы:

Ответ: 18 вариантов.

2.5 Истинностные задачи

Задачи, в которых требуется установить истинность или ложность высказываний назовем истинностными задачами.

Задача 7 . Три друга Коля, Олег и Петя играли во дворе, и один из них случайно разбил мячом оконное стекло. Коля сказал: «Это не я разбил стекло». Олег сказал: «Это Петя разбил стекло». Позднее выяснилось, что одно из этих утверждений верное, а другое - нет. Кто из мальчиков разбил стекло?

Решение. Предположим, что Олег сказал правду, тогда и Коля сказал правду, а это противоречит условию задачи. Следовательно, Олег сказал неправду, а Коля - правду. Из их утверждений следует, что стекло разбил Олег.

Задача 8. Четыре ученика - Витя, Петя, Юра и Сергей - заняли на математической олимпиаде четыре первых места. На вопрос, какие места они заняли, были даны ответы:

а) Петя - второе, Витя - третье;

б) Сергей - второе, Петя - первое;

в) Юра - второе, Витя - четвертое.

Указать, кто какое место занял, если в каждом ответе правильна лишь одна часть.

Решение. Предположим, что высказывание «Петя - II» верно, тогда оба высказывания второго человека неверны, а это противоречит условию задачи. Предположим, что высказывание «Сергей - II» верно, тогда оба высказывания первого человека неверны, а это противоречит условию задачи. Предположим, что высказывание «Юра - II» верно, тогда первое высказывание первого человека неверно, а второе верно. И первое высказывание второго человека неверно, а второе верно.

Ответ: первое место – Петя, второе место - Юра, третье место - Витя, четвертое место Сергей.

2.6 Задачи, решаемые с конца.

Есть такой вид логических задач, которые решаются с конца. Рассмотрим пример решения таких задач.

Задача 9. Вася задумал число, прибавил к нему 5, потом разделил сумму на 3, умножил на 4, отнял 6, разделил на 7 и получил число 2. Какое чило задумал Вася.

Решение: 2·7=14

14+6=20

20˸4=5

5·3=15

15-5=10

Ответ: Вася задумал число 10.

Глава 3. Изучение умения решать логические задачи.

В практической части научно-исследовательской работы я подобрала логические задачи типа: задачи, решаемые с конца; кто есть кто?; текстовые задачи.

Задачи соответствовали уровню знаний 5-го, 6-го и 7-го класса соответственно. Учащиеся решили эти задачи, а я проанализировала полученные результаты (рис. 1). Рассмотрим полученные результаты более подробно.

*Для 5-го класса были предложены следующие задачи:

Задача №1. Задача, решаемая с конца.

Я задумала число, умножила его на два, прибавила три и получила 17. Какое число я задумала?

Задача №2. Задачи типа "Кто есть Кто?»

Катя, Соня и Лиза имеют фамилию Васнецова, Ермолаева и Кузнецова. Какую фамилию имеет каждая девочка, если Соня, Лиза и Ермолаева - члены математического кружка, а Лиза и Кузнецова занимаются музыкой?

Задача №3. Текстовая задача.

В школьной спортивной олимпиаде участвовало 124 человека из них мальчиков на 32 больше, чем девочек. Сколько мальчиков и девочек участвовало в олимпиаде.

С задачей типа: «решаемая с конца», справились большинство учащиеся пятых классов. Такие задачи встречаются в учебниках 5-6 классов. С типом тектовых задач, эта задачи более сложные, над ней надо было порассуждать, с ней справились лишь 5 человек. (рис.2)

*Для 6-го класса были предложены следующие задачи:

Задача №1. Задача, решаемая с конца.

Я задумал число, отнял 57, разделил на 2 и получил 27. Какое число я задумал?

Задача №2. Задачи типа "Кто есть Кто?»

Атос, Портос, Арамис и Д’Артаньян – четыре талантливых молодых мушкетёра. Один из них лучше всех сражается на шпагах, другой не имеет равных в рукопашном бою, третий лучше всех танцует на балах, четвертый без промаха стреляет с пистолетов. О них известно следующее:

Атос и Арамис наблюдали на балу за их другом – прекрасным танцором.

Портос и лучший стрелок вчера с восхищением следили за боем рукопашника.

Стрелок хочет пригласить в гости Атоса.

Портос был очень большой комплекции, поэтому танцы были не его стихией.

Кто чем занимается?

Задача №3. Текстовая задача. На одной полке в 5 раз больше книг, чем на второй. После того как с первой полки переложили на вторую 12 книг, на полках книг стало поровну. Сколько книг было первоначально на каждой полке?

Среди учащихся 6-х классов, в количестве 18 человек, справились со всеми задачами 1 человек. С задачей типа: «решаемая с конца» справились все учащиеся 6-ого класса. С задачей №2 , типа «Кто есть кто?» справились 4 человека. С текстовой задачей справился лишь один человек (рис.3).

*Для 7-го класса были предложены следующие задачи:

Задача №1. Задача, решаемая с конца.

Я задумал число, прибавил к нему 5, потом разделил сумму на 3, умножил на 4, отнял 6, разделил на 7 и получил число 2. Какое число я задумал.

Задача №2. Задачи типа "Кто есть Кто?»

Ваня, Петя, Саша и Коля носят фамилии начинающееся на буквы В, П, С, и К. Известно, что 1) Ваня и С. – отличники; 2) Петя и В. – троечники; 3) В ростом выше П.; 4) Коля ростом ниже П.; 5) Саша и Петя имеют одинаковый рост. На какую букву начинаются фамилии каждого?

Задача №3. Метод рассуждений.

Для ремонта школы прибыла бригада, в которой было в 2,5 раза больше маляров, чем плотников. Вскоре прораб включил в бригаду еще 4-х маляров, а двух плотников перевел на другой объект. В результате маляров в бригаде оказалось в 4 раза больше, чем плотников. Сколько маляров и сколько плотников было в бригаде первоначально?

Среди учащихся 7-х классов, в количестве 20 человек, справились со всеми задачами 1 человек. С задачей типа: «рещаемая с конца» справились 13 учащиеся. С текстовой задачей справился один ученик (рис.4).

Заключение

В ходе исследовательской работы по изучению методов решения логических задач. Поставленные мной цель и задачи считаю выполненными. В первой главе я ознакомилась с понятием логики, как науки, основными этапами её развития и учеными, которые являются её основоположниками. Во-второй главе я изучила различные методы решения логических задач и разобрала их на конкретных примерах. Мной были рассмотрены следующие методы: м етод рассуждений, метод таблиц, метод графов, метод блок-схем, метод кругов Эйлера, истинностные задачи, метод решения задачи с конца. В третьей главе провела практическое исследование среди учеников 5-7 классов, проверив их умения решать логические задачи. Проведенные мною исследования показали следующее. С задачами которые справились большинство учеников, это задачи, решаемые с конца. С задачей «Кто есть кто?» (метод таблиц) справились половина учащихся. Текстовую задачу (метод рассуждений) решили лишь наименьшее количество человек. Я считаю, что моя гипотеза подтвердилась частично, так как половина учащимся тяжело далось решение логических задач.

Логические задачи помогают развивать логическое и образное мышление. У любого нормального ребенка есть стремление к познанию, желание проверить себя. Чаще всего способности школьников так и остаются не раскрыты для них самих, они не уверены в своих силах, равнодушны к математике. Для таких школьников я и предлагаю применять логические задачи. Эти задачи могут быть рассмотрены на кружковых и факультативных занятиях. Они должны быть доступны, будить сообразительность, овладевать их вниманием, удивлять, пробуждать их к активной фантазии и самостоятельному решению. Также я считаю, что логика помогает нам в нашей жизни справиться с любыми трудностями, и все что мы делаем, должно быть логически осмысленно и построено. С логикой и логическими задачами мы сталкиваемся не только в школе на уроках математики, но и на других предметах.

Литература

    Виленкин Н.Я. Математика 5класс.-Мнемозина, М:2015. 45 стр.

    Виленкин Н.Я. Математика 5класс.-Мнемозина, М:2015. 211 стр.

    Орлова Е. Методы решения логических задач и задач на числа //

Математика. -1999. № 26. - С. 27-29.

    Тарский А. Введение в логику и методологию дедуктивных наук –Москва,: 1948г.

Интернет-ресурсы:

http:// wiki . iteach .

Рис. 3 Анализ работ 6-ого класса.

Рис. 4 Анализ работ 7-го класса

Муниципальное бюджетное общеобразовательное учреждение

"Многопрофильный лицей" городского поселения "Рабочий поселок Чегдомын" Верхнебуреинского муниципального

района Хабаровского края.

Реферативно-исследовательская работа по математике:

Тема: "Метод математической индукции"

Выполнила: Антонова Светлана

ученица 11"Б" класса

Руководитель: Терентьева О. А.

учитель математики

пгт Чегдомын

1.Введение 3

2.История возникновения

метода математической индукции 4-5

3.Основные результаты исследования 6-14

4.Предпологаемые задания на ЕГЭ 15-18

5.Заключение 19 6.Список литературы 20

Введение:

В начале 10 класса мы приступили к изучению метода математической индукции, еще тогда меня очень заинтересовала эта тема, но только для изучения. Когда же мы начали интенсивную подготовку к сдаче ЕГЭ по математике, задания по этой теме мне довались очень легко и меня заинтересовали возможности данного методы при решении более сложных заданий. Вместе с преподавателем мы решили более подробно и тщательно изучить данный метод и его возможности при работе над проектом по этой теме.

Цель моей работы:

Познакомиться с методом математической индукции, систематизировать знания по данной теме и применить данный метод при решении математических задач и доказательстве теорем.

Задачи работы:

1. Актуализация практической значимости математических знаний.

2.Развитие нравственных представлений о природе математике, сущности и происхождении математической абстракции.

3. Освоение разных методов и методик работы.

4.Обобщение и систематизация знаний по данной теме.

5. Применение полученных знаний при решении заданий ЕГЭ.

Проблема:

Показать практическую значимость метода математической индукции.

Из истории возникновения метода математической индукции:

Чрезвычайное расширение предмета математики привлекло в XIX веке усиленное внимание к вопросам ее «обоснования», т.е. критического пересмотра ее исходных положений (аксиом), построения строгой системы определений и доказательств, а также критического рассмотрения логических примеров, употребляемых при этих доказательствах.

Только к концу XIX века сложился стандарт требований к логической строгости, остающейся и до настоящего времени господствующими в практической работе математиков над развитием отдельных математических теорий.

Современная математическая логика дала на этот вопрос, определенный ответ: никакая единая дедуктивная теория не может исчерпать разнообразия проблем теории чисел.

Слово индукция по-русски означает наведение, а индуктивными называют выводы, сделанные на основе наблюдений, опытов, т.е. полученные путем заключения от частного к общему.

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом – частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.

Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно.

Роль индуктивных выводов в экспериментальных науках очень велика. Они дают те положения, из которых потом путем дедукции делаются дальнейшие умозаключения. И хотя теоретическая механика основывается на трех законах движения Ньютона, сами эти законы явились результатом глубокого продумывания опытных данных, в частности законов Кеплера движения планет, выведенных им при обработке многолетних наблюдений датского астронома Тихо Браге. Наблюдение, индукция оказываются полезными и в дальнейшем для уточнения сделанных предположений. После опытов Майкельсона по измерению скорости света в движущейся среде оказалось необходимым уточнить законы физики, создать теорию относительности.

В математике роль индукции в значительной степени состоит в том, что она лежит в основе выбираемой аксиоматики. После того как длительная практика показала, что прямой путь всегда короче кривого или ломанного, естественно было сформулировать аксиому: для любых трех точек А, В и С выполняется неравенство

Лежащее в основе арифметики понятие «следовать за…» тоже появилось при наблюдениях за строем солдат, кораблей и другими упорядоченными множествами.

Не следует, однако, думать, что этим исчерпывается роль индукции в математике. Разумеется, мы не должны экспериментально проверять теоремы, логически выведенные из аксиом: если при выводе не было сделано логических ошибок, то они постольку верны, поскольку истинны принятые нами аксиомы. Но из данной системы аксиом можно вывести очень много утверждений. И отбор тех утверждений, которые надо доказывать, вновь подсказывается индукцией. Именно она позволяет отделить полезные теоремы от бесполезных, указывает, какие теоремы могут оказаться верными, и даже помогает наметить путь доказательства.

В математике уже издавна используется индуктивный метод, основанный на том, что то или иное общее утверждение делается на основании рассмотрения лишь нескольких частных случаев. История, например, сохранила следующее высказывание Э й л е р а: « У меня нет для доказательства никаких других доводов, за исключением длинной индукции, которую я провел так далеко, что никоим образом не могу сомневаться в законе, управляющем образованием этих членов… И кажется невозможным, чтобы закон, который, как было обнаружено, выполняется, например, для 20 членов, нельзя было бы наблюдать и для следующих».

Веря в непогрешимость индукции, ученые иногда допускали грубые ошибки.

К середине семнадцатого столетия в математике накопилось немало ошибочных выводов. Стала сильно ощущаться потребность в научно обоснованном методе, который позволял бы делать общие выводы на основании рассмотрения нескольких частных случаев. И такой метод был разработан. Основная заслуга в этом принадлежит французским математикам Паскалю (1623 - 1662) и Декарту, а также швейцарскому математику Якобу Бернулли (1654-1705).

Основные результаты исследовательского этапа.

    В процессе работы я выяснила, что все утверждения можно разделить на общие и частные. Примером общего утверждения является, например, утверждение:«В любом треугольнике сумма двух сторон больше третьей стороны». Частным является, например, утверждение: «Число 136 делится на 2».

    Переход от общих утверждений кчастным называется дедук­ цией. В математике дедуктивный метод мы применяем, например, в рассуждениях такого типа: данная фигура - прямоугольник; у каждого прямоугольника диагонали равны, следовательно, и у данного прямоугольника диагонали равны.

    Но наряду с этим в математике часто приходится от частных утверждений переходить к общим, т.е. использовать метод, противоположный дедуктивному, который называется индукцией .

Индуктивный подход обычно начинается с анализа и сравнения, данных наблюдения или эксперимента. Многократность повторения какого-либо факта приводит к индуктивному обобщению. Результат, полученный индукцией, вообще говоря, не является логически обоснованным, доказанным. Известно много случаев, когда утверждения, полученные индукцией, были неверными. Т. е. индукция может привести как к верным, так и к неверным выводам.

    Рассмотрим пример . Подставляя в квадратный трехчлен P (х)= х 2 + х+ 41 вместо х натуральные числа 1,2,3,4,5, найдем: Р(1)= 43; Р(2)=47; Р(3)= 53; Р(4)= 61; Р(5)= 71. Все значения данного трехчлена являются простыми числами. Подставляя вместо х числа 0, -1, -2, -3, -4, получим: Р(0)=41; Р(-1)=41; Р(-2)=43; Р(-3)=47; Р(-4) =53. Значения данного трехчлена при указанных значениях переменной х также являются простыми числами. Возникает гипотеза , что значение трехчлена Р(х) является простым числом при любом целом значении х . Но высказанная гипотеза ошибочна , так как, например, Р(41)= 41 2 +41+41=41∙43.

Так как при этом методе вывод делается после разбора нескольких примеров, не охватывающих всех возможных случаев, то этот метод называется неполной или несовершенной индукцией.

Метод неполной индукции, как мы видим, не приводит к вполне надежным выводам, но он полезен тем, что позволяет сформулировать гипотезу , которую потом можно доказать точным математическим рассуждением или опровергнуть. Иными словами, неполная индукция в математике не считается законным методом строгого доказательства, но является мощным эвристическим методом открытия новых истин .

    Если же вывод делается на основании разбора всех случаев, то такой метод рассуждений называют полной индукцией.

Вот пример подобного рассуждения. Пусть требуется установить, что каждое натуральное чётное число п в пределах 10п этого возьмём все такие числа и выпишем соответствующие разложения: 10=7+3; 12=7+5; 14=7+7; 16=11+5; 18=13+5; 20=13+7 . Эти шесть равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых.

    Пусть некоторое утверждение справедливо в нескольких част­ных случаях. Рассмотрение всех остальных случаев или совсем невозможно, или требует большого числа вычислений. Как же узнать, справедливо ли это утверждение вообще? Этот вопрос иногда удается решить посредством применения особого метода рассуждений, называемого методом математической индукции .В основе данного метода лежит принцип математической индукции .

Если предположение, зависящее от натурального числа n , истинно для n =1 и из того, что оно истинно для n = k (где k -любое натуральное число), следует, что оно истинно и для следующего числа n = k +1, то предположение истинно для любого натурального числа n .

Метод математической индукции - есть эффективный метод доказательства гипотез (утверждений), основанный на использовании принципа математической индукции, поэтому он приводит только к верным выводам.

Методом математической индукции можно решать не все задачи , а только задачи, параметризованные некоторой переменной. Эта переменная называется переменной индукции.

    Метод математической индукции имеет наибольшее применение в арифметике, алгебре и теории чисел.

Пример 1 . Найти сумму S п =

Сначала найдем суммы одного, двух и трех слагаемых. Имеем:

S 1 = ; S 2 = ; S 3 = .

В каждом из этих случаев получается дробь, в числителе которой стоит число слагаемых, а в знаменателе - число, на единицу большее числа слагаемых. Это позволяет высказывать гипотезу ( предположение), что при любом натуральном п Sп = .

Для проверки этой гипотезы воспользуемся методом матема­тической индукции.

1) При п = 1 гипотеза верна, так как S 1 = .

2) Предположим, что гипотеза верна при п = k, то есть

S k = .

Докажем, что тогда гипотеза должна бытьверной и при п = k + 1, то есть

S k +1 = .

Действительно, S k +1 = S k

S k +1 =

Таким образом, исходя из предположения, что гипотезаS п =

верна при п = k , мы доказали, что она верна и при п = k + 1.

Поэтому формула S п = верна при любом натуральном п .

Пример 2. Доказать, что для любого натурального числа п и любого действительного числа а -1 имеет место неравенство, называемое неравенством Бернулли (названо в честь швейцарского математика XVII в. Якова Бернулли): (1+ a ) п ≥ 1 + ап.

1) Если п=1 , то очевидно, что неравенство верно: (1+а) 1 ≥ 1+а.

2) Предположим, что неравенство верно при n = k : (1+ a ) k ≥ 1 + ak .

Умножим обе части последнего неравенства на положительное число 1+ а, в результате чего получим (1+ a ) k +1 ≥ 1+ ak + a + a 2 k .

Отбрасывая последнее слагаемое в правой части неравенства, мы уменьшаем правую часть этого неравенства, а поэтому (1+ a ) k +1 a (k +1).

Полученный результат показывает, что неравенство верно и при n = k +1.

Обе части доказательства методом математической индукции проведены, и, следовательно, неравенство справедливо при любом натуральном п.

Заметим, что всё решение было разбито на четыре этапа :

1.база (показываем, что доказываемое утверждение верно для некоторых простейших частных случаев (п = 1);

2.предположение (предполагаем, что утверждение доказано для первых к случаев; 3 .шаг (в этом предположении доказываем утверждение для случая п = к + 1 ); 4.вывод (у тверждение верно для всех случаев, то есть для всех п) .

    Второй вариант метода математической индукции.

Некоторые утверждения справедливы не для всех натураль­ных п, а лишь для натуральных п, начиная с некоторого числа р. Такие утверждения иногда удается доказать методом, несколько отличным от того, который описан выше, но вполне аналогич­ным ему. Состоит он в следующем.

Утверждение верно при всех натуральных значениях п ≥ р, если: 1)оно верно при п =р (а не при п = 1, как было сказано выше);

2)из справедливости этого утверждения при п = k , где k ≥ р (а не k ≥ 1, как сказано выше), вытекает, что оно вер­но и при п = k + 1.

Пример 1 . Докажите, что для любого справедливо равенство

Обозначим произведение в левой части равенства через , т.е.

мы должны доказать, что .

Для n=1 формула не верна (1- 1) = 1(неверно).

1) Проверим, что эта формула верна для n = 2. , - верно.

2) Пусть формула верна для n = k, т.е.

3) Докажем, что это тождество верно и для n = k + 1, т.е.

По принципу математической индукции равенство справедливо для любого натурального .

Пример 2. Докажите, что 22n + 1 при любом натуральном n3.

1) При n = 3 неравенство верно. 223 + 1.

2) Предположим, что 22k + 1 (k3).

3) Докажем, что 2 2(k + 1) + 1.

В самом деле, 2 = 222(2k + 1) =(2k + 3)(2k - 1) 2k + 3, так как 2k – 10 при любом натуральном значении k. Следовательно, 22n + 1 при всех n3.

    Замечание к методу математической индукции.

Доказательство методом математической индукции состоит из двух этапов.

l этап. Проверяем, верно ли утверждениепри п = 1 (или прип = р , если речь идет о методе, описанном выше).

2-й э т а п. Допускаем, что утверждение верно прип = k , и,исходя из этого, доказываем, что оно верно и при п = k +1.

Каждый из этих этапов по-своему важен, рассмат­ривая пример P (х)= х 2 + х+41 , мы убедились, что утверждение может быть верным в целом ряде частных случаев, ноневерным вообще. Этот пример убеждает нас в том, насколько важен 2-йэтап доказательства методом математическойиндукции. Опус­тив его, можно прийти кневерному выводу.

Не следует, однако, думать, что 1-й этап менее важен, чем 2-й. Сейчас я приведу пример, показывающий,к какому нелепому выводу можно прийти, если опустить 1-й этап дока­зательства.

«Теорем а». При любом натуральном п число 2п +1 четное.

Доказат ел ьств о. Пусть эта теорема верна при п = k , то есть число 2 k + 1 четное. Докажем, что тогда число 2(k +1)+ 1 также четно.

Действительно, 2(k +1)+1 = (2 k +1 )+2.

По предположению число 2 k +1 четно, а поэтому его сумма с четным числом 2 также четна. Теорема «доказана».

Если бы мы не забыли проверить, верна ли наша «теорема» при п = 1, мы не пришли бы к такому «результату».

Примеры применения метода математической индукции к доказательству неравенств.

Пример 1. Доказать, что при любом натуральном n1

.

Обозначим левую часть неравенства через .

Следовательно, при n=2 неравенство справедливо.

Пусть при некотором k. Докажем, что тогда и . Имеем , .

Сравнивая и , имеем , т.е. .

При любом натуральном k правая часть последнего равенства положительна. Поэтому . Но , значит, и .

Пример 2. Найти ошибку в рассуждении.

Утверждение. При любом натуральном n справедливо неравенство .

Доказательство.

Пусть неравенство справедливо при n=k, где k – некоторое натуральное число, т.е.

Докажем, что тогда неравенство справедливо и при n=k+1, т.е.

Действительно, не меньше 2 при любом натуральном k. Прибавим к левой части неравенства (1) , а к правой 2. Получим справедливое неравенство , или . Утверждение доказано.

Пример 4:

Доказать неравенство

Где x 1 , x 2 ,…., x 3 – произвольные положительные числа.

Это важное неравенство между средним арифметическим и средним гео­метрическим n чисел является простым следствием соотношения, доказанного в предыдущем примере. В самом деле, пусть х 1 , х 2 , ..., х n - произвольные положительные числа. Рассмотрим n чисел

Очевидно, что все эти числа положительны и произведение их равно единице. Следовательно, по доказанному в предыдущем примере их сумма больше или равна n, т.е.

≥ n

причем знак равенства имеет место тогда и только тогда, когда x 1 = х 2 = ... = х n .

Неравенство между средним арифметическим и средним геометрическим n чисел часто оказывается полезным при доказательстве других неравенств, при отыскании наименьших и наибольших значений функций.

Применение метода математической индукции к суммированию рядов.

Пример 5. Доказать формулу

, n – натуральное число.

При n=1 обе части равенства обращаются в единицу и, следовательно, первое условие принципа математической индукции выполнено.

Предположим, что формула верна при n=k, т.е.

.

Прибавим к обеим частям этого равенства и преобразуем правую часть. Тогда получим

Таким образом, из того, что формула верна при n=k, следует, что она верна и при n=k+1. Это утверждение справедливо при любом натуральном значении k. Итак, второе условие принципа математической индукции тоже выполнено. Формула доказана.

Пример 6. Доказать, что .

Метод математической индукции в решении задач на делимость.

С помощью метода математической индукции можно доказывать различные утверждения, касающиеся делимости натуральных чисел.

Следующее утверждение можно сравнительно просто доказать. Покажем, как оно получается с помощью метода математической индукции.

Пример 7 . Если n – натуральное число, то число четное.

При n=1 наше утверждение истинно: - четное число. Предположим, что - четное число. Так как , a 2k – четное число, то и четное. Итак, четность доказана при n=1, из четности выведена четность .Значит, четно при всех натуральных значениях n.

Пример 8. Доказать истинность предложения

A(n)={число 5 кратно 19}, n – натуральное число.

Высказывание А(1)={число кратно 19} истинно.

Предположим, что для некоторого значения n=k

А(k)={число кратно 19} истинно. Тогда, так как

Очевидно, что и A(k+1) истинно. Действительно, первое слагаемое делится на 19 в силу предположения, что A(k) истинно; второе слагаемое тоже делится на 19, потому что содержит множитель 19. Оба условия принципа математической индукции выполнены, следовательно, предложение A(n) истинно при всех значениях n.

Доказательство тождеств

Пример 9 . Доказать, что при любом натуральном n справедливо равенство

Что и требовалось доказать.

Пример 10 . Докажите тождество

1) Проверим, что это тождество верно при n = 1.

2) Пусть тождество верно и для n = k, т.е.

3)Докажем, что это тождество верно и для n = k + 1, т.е.

М – сумма 2) и 3).

Метод математической индукции в решении задач на геометрическую прогрессию

Пример 11. Докажем, что общий член геометрической прогрессии равен

а п = а 1 q п-1 , методом математической индукции.

п=1:

a 1 = a 1 ∙q 0

a 1 = a 1 ∙1

левая часть = правой части.

п= k :

a k = a 1 ∙q k -1

п = k +1:

a k +1 = a 1 ∙q k

Доказательство:

a k +1 = a k ∙q = a 1 ∙q k -1 ∙ q = a 1 ∙q k ,

что и требовалось доказать.

Оба условия принципа математической индукции выполняются и поэтому формула a n = a 1 q n -1 верна для любого натурального числа п.

Задачи реальной действительности

Пример 12:

Докажем, что сумма внутренних углов выпуклого n-угольника равна π(n-2).

1. Минимальное число углов - три. Поэтому начнем
доказательство с n = 3. Получаем, что для треугольника
формула дает π (3~2) = π Утверждение для n = 3

справедливо.

2. Допустим, что формула
верна при n=k. Докажем, что
она верна для любого выпуклого
(к +1) -угольника. Разобьем

(к +1) -угольник диагональю

так, что получим k-угольник и треугольник (см. рисунок).

Так как формула верна для треугольника и k-угольника, получаем π (к - 2) + π = π (к -1).

То же мы получим, если в исходную формулу под­ставить п = к + 1: π (к +1 - 2) = π (к -1).

Предлагаемые задания на ЕГЭ.

Пример 1.

Докажите, что при любом натуральном числе п 9 п+1 - 8п – 9 кратно 16.

1) Проверим, что данное утверждение верно при п=1:

9 2 - 8 – 9 = 81- 8 – 9 = 64, 64 16.

При п=1 утверждение верно.

2) Предположим, что данное утверждение верно, при п = k :

(9 k +1 - 8 k - 9) 16.

3) И, докажем, что данное утверждение верно при п = k +1 :

(9 k +2 – 8 (k +1) - 9) 16.

Доказательство:

9 k +2 - 8(k +1) – 9 =9 k +1 ∙ 9 1 - 8 k – 8 – 9 = 9 k + 1 ∙ 9 - 8 k – 17 =

= 9(9 k +1 - 8 k - 9) + 64 k + 64 = 9(9 k +1 - 8 k - 9) +64(k +1)=

= 9(9 k +1 – 8 k - 9)+ 64(k +1).

Следовательно: (9(9 k +1 - 8 k - 9) + 64(k -1)) 16.

Итак, оба условия принципа математической индукции выполняются, и поэтому 9 k +1 - 8п-9 кратно 16 при любом натуральном п.

Пример 2.

п выполняется условие:

1 3 +2 3 +3 3 +… n 3 =.

S n = .

    Проверим, что данная формула верна при п=1:

Левая часть = 1 3 =1

Правая часть =

Формула верна при п=1.

n = k :

1 3 +2 3 +3 3 +… k 3 =.

S k =.

п= k +1:

1 3 +2 3 +3 3 +…+(k +1) 3 =.

S k +1 = .

Доказательство:

S k +1 = S k +(k +1) 3

Итак, данная формула верна в двух случаях и доказали, что верна при n = k +1 следовательно она верна при любом натуральном числе п.

Пример 3.

Доказать, что при любом натуральном числе п выполняется условие:

1∙2∙3+2∙3∙4+…+ п(п+1)(п+2)=.

.

1) Проверим, что данная формула верна при п=1:

Левая часть = 1∙2∙3=6.

Правая часть = .

6 = 6; условие верно при п=1.

2) Предположим, что данная формула верна при n = k :

1∙2∙3+2∙3∙4+…+ k (k +1)(k +2)=.

S k =.

3) И, докажем, что данная формула верна при n = k +1:

1∙2∙3+2∙3∙4+…+(k +1)(k +2)(k +3)=.

S k +1 =.

Доказательство:

Итак, данное условие верно в двух случаях и доказали, что верно при n = k +1, следовательно она верно при любом натуральном числе п.

Пример 4.

Доказать, что любом натуральном п справедливо равенство

1) При п=1 мы получаем верное равенство

2) Сделав предположение индукции, рассмотрим сумму, стоящую в левой части равенства, при n = k +1;

3) Для завершения доказательства заметим, что

Следовательно, равенство справедливо.

Пример 5.

В плоскости проведено п прямых, из которых никакие две не параллельны и никакие три не проходят через точку. Определить, на сколько частей разбивают плоскость эти прямые.

Нарисовав необходимые чертежи, мы можем записать следующее соответствие между числом п прямых, удовлетворяющих условию задачи, и числом а п частей, на которые разбивают плоскость эти прямые:

Судя по первым членам, последовательность, а п такова, что разности а 2 1 , а 3 2 , а 4 3 ,… составляют арифметическую прогрессию. Если воспользоваться уже разобранным примером, то можно высказать гипотезу, что п прямых, удовлетворяющих условию задачи, разбивают плоскость на

частей. Эта формула легко проверяется для нескольких первых значений п , однако, конечно, из этого не следует еще, что она дает ответ на предложенную задачу. Это утверждение требует дополнительного доказательства методом математической индукции.

Отвлекаясь от проведенного только что «подбора», докажем, что п прямых (из которых никакие две не параллельны и никакие три не проходят через одну точку) разбивают плоскость на а п частей, где а п вычисляется по формуле.

Очевидно, что при п=1 формула справедлива. Сделав предположение индукции, рассмотрим k +1 прямых, удовлетворяющих условию задачи. Выделив из них произвольным образом k прямых, мы можем сказать, что они делят плоскость на

частей. Присоединим теперь (k +1) -ю прямую. Так как она не параллельна ни одной из предыдущих прямых, то она пересечет все k прямых. Так как она не пройдет ни через одну из точек пересечения предыдущих прямых, то она пройдет по k +1 куску, на которые плоскость уже была разбита, и каждый из этих кусков разделит на две части, т.е. добавится еще k +1 кусков. Следовательно, общее число кусков, на которые плоскость разбивается k +1 прямыми, есть

Доказательство этим завершается.

Заключение

Итак, индукция (от лат. inductio - наведение, по­буждение) - одна из форм умозаключения, приём ис­следования, применяя который от знания отдельных фактов приходят к общим положениям. Индукция бывает полная и неполная. Метод неполной индукции состоит в переходе к универсальной формулировке после проверки истинности частных формулировок для отдельных, но не всех значений n. Применяя полную индукцию, мы лишь тогда считаем себя вправе объявить об истинности универсальной формулировки, когда убедились в её истинности для каждого без исключения значения n. Метод математической индукции – метод доказательства, основанный на принципе математической индукции. Он позволяет в поисках общего закона испытывать гипотезы, отбрасывать ложные и утверждать истинные.

Метод математической индукции является одной из теоретических основ при решении задач на суммирование, доказательстве тождеств, доказательстве и решении неравенств, решении вопроса делимости, при изучении свойств числовых последовательностей, при решении геометрических задач и т. д.

Знакомясь с методом математической индукции, я изучала специальную литературу, консультировалась с педагогом, анализировала данные и решения задач, пользовалась ресурсами Интернета, выполняла необходимые вычисления.

Вывод:

В ходе работы я узнала, чтобы решать задачи методом математической индукции нужно знать и понимать основной принцип математической индукции.

Достоинством метода математической индукции является его универсальность, так как с помощью этого метода можно решить многие задачи. Недостатком неполной индукции является то, что порой она приводит к ошибочным выводам.

Обобщив и систематизировав знания по математической индукции, я убедилась в необходимости знаний по теме «метод математической индукции». Кроме того эти знания повышают интерес к математике, как к науке.

Так же в ходе работы приобрела навыки решения задач по использованию метода математической индукции. Считаю, что эти навыки помогут мне в будущем.

Список литературы.

1.Боковнев О. А., Фирсов В. В., Шварцбурд С. И. Избранные вопросы математики. 9 класс. Факультативный курс.-М.: Просвещение, 1979г.

2.Виленкин Н. Я., Шибасов Л. П., Шибасова З. Ф. За страницами учебника математики. Москва: Просвещение, 1996г.

3.Галицкий М. Л., Мошкович М. М., Шварцбурд С. И. Углубленное изучение курса алгебры и математического анализа: методические рекомендации, дидактические материалы.

4.Ивлев Б.М., Абрамов А.М., Дудницин Ю.П., Шварцбурд С.И. М.: Просвещение, 1990г.

5.Петраков И. С. Математические кружки в 8-10 классах: Кн. для учителя М.: Просвещение, 1987г.

6.Шарыгин И. Ф. Факультативный курс по математике. Решение задач учебное пособие для 10 класса средней школы – М.: Просвещение,1989г.

Введение. 3

1.Математическая логика (бессмысленная логика) и логика «здравого смысла» 4

2. Математические суждения и умозаключения. 6

3.Математическая логика и «Здравый смысл» в XXI веке. 11

4.Неестественная логика в основаниях математики. 12

Заключение. 17

Список литературы… 18


Расширение области логических интересов связано с общими тенденциями развития научного знания. Так, возникновение математической логики в середине XIX века явилось итогом многовековых чаяний математиков и логиков о построении универсального символического языка, свободного от «недостатков» естественного языка (прежде всего его многозначности, т.е. полисемии).

Дальнейшее развитие логики связано с совокупным использованием классической и математической логики в прикладных областях. Неклассические логики (деонтическая, релевантная, логика права, логика принятия решений и др.) часто имеют дело с неопределенностью и нечеткостью исследуемых объектов, с нелинейным характером их развития. Так, при анализе достаточно сложных задач в системах искусственного интеллекта возникает проблема синергизма различных типов рассуждения при решении одной и той же задачи. Перспективы развития логики в русле сближения с информатикой связаны с созданием определенной иерархии возможных моделей рассуждения, включающих рассуждения на естественном языке, правдоподобные рассуждения и формализованные дедуктивные выводы. Это решается средствами классической, математической и неклассической логик. Таким образом, речь идет не о разных «логиках», а о разной степени формализации мышления и «размерности» логических значений (двузначная, многозначная и др. логика).

Выделение основных направлений современной логики:

1. общей, или классической логики;

2. символической, или математической логики;

3. неклассической логики.


Математическая логика понятие достаточно неконкретное, из-за того, что математических логик также бесконечно много. Здесь будем обсуждать некоторые из них, отдавая больше дань традиции, чем здравому смыслу. Поскольку, весьма возможно, в этом и заключен здравый смысл… Логично?

Математическая логика учит логично рассуждать не больше, чем любой другой раздел математики. Это связано с тем, что «логичность» рассуждений в логике определяется самой логикой и корректно может использоваться только в самой логике. В жизни же мы, размышляя логически, как правило используем разные логики и разные методы логических рассуждений, безбожно перемешивая дедукцию с индукцией… Более того, в жизни мы строим свои рассуждения исходя из противоречивых посылок, например, «Не откладывай на завтра, что можно сделать сегодня» и «Поспешишь людей насмешишь». Нередко бывает, что непонравившийся нам логический вывод приводит к пересмотру исходных посылок (аксиом).

Пожалуй, настало время сказать про логику, возможно, самое главное: классическая логика не занимается смыслом. Ни здравым, ни каким другим! Для изучения здравого смысла, между прочим, существует психиатрия. Но в психиатрии логика скорее вредна.

Разумеется, размежевывая логику со смыслом, имеем в виду прежде всего классическую логику и житейское понимание здравого смысла. Нет запретных направлений в математике, поэтому исследование логикой смысла, и наоборот, в различных видах присутствует в ряде современных ответвлений логической науки.

(Хорошо сложилось последнее предложение, хотя определить термин «логическая наука» не возьмусь даже приблизительно). Смыслом, если угодно - семантикой, занимается, например, теория моделей. Да и вообще, термин семантика часто заменяют термином интерпретация. И если мы согласимся с философами, что интерпретация (отображение!) об"екта есть осмысление его в некотором данном аспекте, то пограничные сферы математики, которые могут привлекаться для наступления на смысл в логике, становятся неохватными!

В практическом плане семантикой вынуждено интересоваться теоретическое программирование. А в нем, кроме просто семантики, есть и операционная, и денотационная, и процедуральная и т.д. и т.п. семантики...

Еще лишь упомянем апофеоз - ТЕОРИЮ КАТЕГОРИЙ, которая довела семантику до формального малопонятного синтаксиса, где смысл уже настолько простой - разложенный по полочкам, что до него простому смертному совсем невозможно докопаться… Это для избранных.

Так чем же занимается логика? Хотя бы в самой классической ее части? Логика занимается только тем, чем она занимается. (А это она определяет предельно строго). Главное в логике – это строго определиться! Задать аксиоматику. А дальше логические выводы должны быть(!) в значительной степени автоматическими...

Другое дело рассуждения по поводу этих выводов! Но эти рассуждения уже вне рамок логики! Поэтому в них требуется строгий математический смысл!

Может показаться, что это простая словесная эквилибристика. НЕТ! В качестве примера некоторой логической (аксиоматической) системы возьмем известную игру 15. Зададим (перемешаем) начальное расположение квадратных фишек. Далее игрой (логическим выводом!), а конкретно - перемещением фишек на свободное место, может заниматься некое механическое устройство, а вы можете терпеливо смотреть и радоваться, когда в результате возможных передвижек в коробочке сложится последовательность от 1 до 15. Но никто не запрещает контролировать механическое устройство и подсказывать ему, ИСХОДЯ ИЗ здравого СМЫСЛА правильные перемещения фишек, чтобы ускорить процесс. А может быть даже доказать, используя для логических рассуждений, например, такой раздел математики, как КОМБИНАТОРИКА, что при данном начальном расположении фишек получить требуемую финальную комбинацию невозможно вообще!

Не больше здравого смысла присутствует и в той части логики, которую называют ЛОГИЧЕСКОЙ АЛГЕБРОЙ. Здесь вводятся ЛОГИЧЕСКИЕ ОПЕРАЦИИ и определяются их свойства. Как показала практика, в некоторых случаях законы этой алгебры могут соответствовать логике жизни, а в некоторых нет. Из за такого непостоянства законы логики нельзя считать законами с точки зрения практики жизни. Их знание и механическое использование может не только помогать, но и вредить. Особенно психологам и юристам. Ситуация осложняется тем, что наряду с законами алгебры логики, которые то соответствуют, то не соответствуют жизненным рассуждениям, есть логические законы, которые часть логиков категорически не признают. Это относится прежде всего к так называемым законам ИСКЛЮЧЕННОГО ТРЕТЬЕГО и ПРОТИВОРЕЧИЯ.

2. Математические суждения и умозаключения

В мышлении понятия не выступают разрозненно, они определенным способом связываются между собой. Формой связи понятий друг с другом является суждение. В каждом суждении устанавливается некоторая связь или некоторое взаимоотношение между понятиями, и этим самым утверждается наличие связи или взаимоотношений между объектами, охватываемыми соответствующими понятиями. Если суждения правильно отображают эти объективно существующие зависимости между вещами, то мы такие суждения называем истинными, в противном случае суждения будут ложными. Так, например, суждение «всякий ромб является параллелограммом» - истинное суждение; суждение «всякий параллелограмм является ромбом» - ложное суждение.

Таким образом, суждение - это такая форма мышления, в которой отображается наличие или отсутствие самого объекта (наличие или отсутствие каких-либо его признаков и связей).

Мыслить - значит высказывать суждения. С помощью суждений мысль, понятие получают свое дальнейшее развитие.

Так как во всяком понятии отображается определенный класс объектов, явлений или взаимоотношений между ними, то всякое суждение можно рассматривать как включение или невключение (частичное или полное) одного понятия в класс другого понятия. Например, суждение «всякий квадрат есть ромб» указывает, что понятие «квадрат» включается в понятие «ромб»; суждение «пересекающиеся прямые не являются параллельными» указывает, что пересекающиеся прямые не принадлежат множеству прямых, называемых параллельными.

Суждение имеет свою языковую оболочку - предложение, однако не всякое предложение является суждением.

Характерным признаком суждения является обязательное наличие истинности или ложности в выражающем его предложении.

Например, предложение «треугольник АВС равнобедренный» выражает некоторое суждение; предложение «Будет ли АВС равнобедренным?» не выражает суждения.

Каждая наука по существу представляет собой определенную систему суждений об объектах, являющихся предметом ее изучения. Каждое из суждений оформляется в виде некоторого предложения, выраженного в терминах и символах, присущих этой науке. Математика также представляет собой определенную систему суждений, выраженных в математических предложениях посредством математических или логических терминов или соответствующих им символов. Математические термины (или символы) обозначают те понятия, которые составляют содержание математической теории, логические термины (или символы) обозначают логические операции, с помощью которых из одних математических предложений строятся другие математические предложения, из одних суждений образуются другие суждения, вся совокупность которых и составляет математику как науку.

Вообще говоря, суждения образуются в мышлении двумя основными способами: непосредственно и опосредованно. В первом случае с помощью суждения выражается результат восприятия, например «эта фигура -т- круг». Во втором случае суждение возникает в результате особой мыслительной деятельности, называемой умозаключением. Например, «множество данных точек плоскости таково, что их расстояние от одной точки одинаково; значит, эта фигура - окружность».

В процессе этой мыслительной деятельности обычно осуществляется переход от одного или нескольких связанных между собой суждений к новому суждению, в котором содержится новое знание об объекте изучения. Этот переход и является умозаключением, которое представляет собой высшую форму мышления.

Итак, умозаключением называется процесс получения нового суждения вывода из одного или нескольких данных суждений. Например, диагональ параллелограмма делит его на два конгруэнтных треугольника (первое суждение).

Сумма внутренних углов треугольника равна 2d (второе суждение).

Сумма внутренних углов параллелограмма равна 4d (новое суждение-вывод).

Познавательное значение математических умозаключений чрезвычайно велико. Он" расширяют границы наших знаний об объектах и явлениях реального мира в силу того, что большая часть математических предложений является выводом из сравнительно небольшого числа основныхo суждений, которые получены, как правило, путем непосредственного опыта и в которых отражены наши наиболее простые и общие знания об его объектах.

Умозаключение отличается (как форма мышления) от понятия и суждения тем, что оно представляет собой логическую операцию над отдельными мыслями.

Не всякое сочетание суждений между собой представляет собой умозаключение: между суждениями должна существовать определенная логическая связь, отражающая объективную связь, существующую в реальной действительности.

Например, из суждений «сумма внутренних углов треугольника равна 2d» и «2*2=4» нельзя сделать вывод.

Понятно, какое значение в системе наших математических знаний имеет умение правильно строить различные математические предложения или делать выводы в процессе рассуждения. Разговорный язык плохо приспособлен для выражения тех или иных суждений, а тем более для выявления логической структуры рассуждений. Поэтому естественно, что возникла необходимость усовершенствования языка, используемого в процессе рассуждения. Математический (а точнее, символический) язык оказался для этого самым подходящим. Возникшая" в XIX в. специальная область науки - математическая логика не только полностью решила проблему создания теории математического доказательства, но и оказала большое влияние на развитие математики в целом.

Формальную логику (возникшую еще в глубокой древности в трудах Аристотеля) не отождествляют с математической логикой (возникшей в XIX в. в работах английского математика Дж. Буля). Предметом формальной логики является изучение законов взаимосвязи суждений и понятий в умозаключениях и правилах доказательства. Математическая логика отличается от формальной логики тем, что она, исходя из основных законов формальной логики, исследует закономерности логических процессов на основе применения математических методов: «Логические связи, которые существуют между суждениями, понятиями и т. д., находят свое выражение в формулах, толкование которых свободно от неясностей, какие легко могли бы возникнуть при словесном выражении. Таким образом, для математической логики характерна формализация логических операций, полнее абстрагирование от конкретного содержания предложений (выражающих какое-либо суждение).

Проиллюстрируем сказанное одним примером. Рассмотрим следующее умозаключение: „Если все растения красные и все собаки - растения, то все собаки красные“.

Каждое из используемых здесь суждений и то суждение, которое мы получили в результате сдержанного умозаключения, кажется явной бессмыслицей. Однако с точки зрения математической логики мы имеем здесь дело с верным предложением, так как в математической логике истинность или ложность умозаключения зависит только от истинности или ложности составляющих его посылок, а не от их конкретного содержания. Поэтому если одним из основных понятий формальной логики является суждение, то аналогичным ему понятием математической логики является понятие высказывания-утверждения, для которого имеет смысл лишь говорить, истинно оно или ложно. Не следует думать, что для каждого высказывания характерно отсутствие „здравого смысла“ в его содержании. Просто содержательная часть предложения, составляющего то или иное высказывание, в математической логике отходит на второй план, несущественна для логического построения или анализа того или иного вывода. (Хотя, конечно существенна для. понимания содержания того, о чем идет речь при рассмотрении o данного вопроса.)

Понятно, что в самой математике рассматриваются содержательные высказывания. Устанавливая различные связи и отношения между понятиями, математические суждения утверждают или отрицают какие-либо отношения между объектами и явлениями реальной действительности.

3.Математическая логика и «Здравый смысл» в XXI веке.

Логика - не только сугубо математическая, но также и философская наука. В XX веке эти две взаимосвязанные ипостаси логики оказались разведенными в разные стороны. С одной стороны логика понимается как наука о законах правильного мышления, а с другой - она преподносится как совокупность слабо связанных друг с другом искусственных языков, которые называются формальными логическими системами.

Для многих очевидно, что мышление - это некий сложный процесс, с помощью которого решаются житейские, научные или философские проблемы и рождаются гениальные идеи или роковые заблуждения. Язык же понимается многими просто как средство, с помощью которого результаты мышления можно передать современникам или оставить потомкам. Но, связав в своем сознании мышление с понятием „процесс“, а язык с понятием „средство“, мы по сути перестаем замечать тот непреложный факт, что в данном случае „средство“ не подчинено полностью „процессу“, а в зависимости от нашего целенаправленного или неосознанного выбора тех или словесных штампов оказывает сильнейшее влияние на ход и результат самого „процесса“. Причем известно немало случаев, когда такое „обратное влияние“ оказывается не только тормозом для правильного мышления, но порою даже его разрушителем.

С философской точки зрения задача, поставленная в рамках логического позитивизма, так и не была выполнена. В частности, в своих поздних исследованиях один из основоположников этого направления Людвиг Витгенштейн пришел к выводу, что естественный язык нельзя реформировать в соответствии с разработанной позитивистами программой. Даже язык математики в целом устоял перед мощным напором „логицизма“, хотя многие термины и структуры предлагаемого позитивистами языка вошли в некоторые разделы дискретной математики и существенно дополнили их. Популярность логического позитивизма как философского направления во второй половине XX столетия заметно упала - многие философы пришли к выводу, что отказ от многих „нелогичностей“ естественного языка, попытка втиснуть его в рамки основополагающих принципов логического позитивизма влечет за собой дегуманизацию процесса познания, а вместе с этим и дегуманизацию человеческой культуры в целом.

Многие методы рассуждений, которые используются в естественном языке, часто весьма трудно однозначно отобразить на языке математической логики. В некоторых случаях такое отображение приводит к существенному искажению сути естественного рассуждения. И есть основание полагать, что эти проблемы являются следствием исходной методологической установки аналитической философии и позитивизма о нелогичности естественного языка и о необходимости его коренного реформирования. Сама исходная методологическая установка позитивизма также не выдерживает критики. Обвинять разговорный язык в нелогичности просто абсурдно. На самом деле нелогичность характеризует не сам язык, а многих пользователей этого языка, которые просто не знают или не хотят использовать логику и компенсируют этот изъян психологическими или риторическими приемами воздействия на публику, либо в своих рассуждениях используют в качестве логики систему, которая называется логикой лишь по недоразумению. В то же время имеется немало людей, речь которых отличается ясностью и логичностью, и эти качества не определяются знанием или незнанием основ математической логики.


В рассуждениях тех, кого можно отнести к законодателям или последователям формального языка математической логики, нередко обнаруживается своеобразная „слепота“ по отношению к элементарным логическим ошибкам. На эту слепоту в основополагающих работах Г. Кантора, Д. Гильберта, Б. Рассела, Дж. Пеано и др. еще в начале нашего столетия обратил внимание один из великих математиков Анри Пуанкаре .

Одним из примеров такого нелогичного подхода к рассуждениям является формулировка знаменитого парадокса Рассела, в котором необоснованно смешиваются два сугубо разнородных понятия „элемент“ и „множество“. Во многих современных работах по логике и математике, в которых заметно влияние программы Гильберта, не находят объяснения многие явно нелепые с точки зрения естественной логики утверждения. Соотношение между „элементом“ и „множеством“ является простейшим примером такого рода. Во многих работах этого направления утверждается, что некоторое множество (назовем его A) может быть элементом другого множества (назовем его B).

Например, в широко известном руководстве по математической логике мы встретим такую фразу: „Множества сами могут быть элементами множеств, так, например, множество всех множеств целых чисел имеет своими элементами множества“. Заметим, что это утверждение не просто оговорка. Оно содержится в качестве „скрытой“ аксиомы в формальной теории множеств, которую многие специалисты считают основанием современной математики, а также в формальной системе, которую построил математик К. Гедель при доказательстве своей знаменитой теоремы о неполноте формальных систем . Эта теорема относится к довольно узкому классу формальных систем (в их число входят формальная теория множеств и формальная арифметика), логическая структура которых явно не соответствует логической структуре естественных рассуждений и обоснований.

Однако уже более полувека она является предметом бурного обсуждения среди логиков и философов в контексте общей теории познания. При таком широком обобщении этой теоремы получается, что принципиально непознаваемыми являются многие элементарные понятия. Но при более трезвом подходе оказывается, что теорема Геделя показала лишь несостоятельность программы формального обоснования математики, предложенной Д. Гильбертом и подхваченной многими математиками, логиками и философами. Более широкий методологический аспект теоремы Геделя вряд ли можно считать приемлемым до тех пор, пока не получен ответ на следующий вопрос: является ли программа обоснования математики, предложенная Гильбертом, единственно возможной? Чтобы понять двусмысленность утверждения „множество A есть элемент множества B“, достаточно задать простой вопрос: „Из каких элементов в этом случае сформировано множество B?“. С точки зрения естественной логики возможны лишь два исключающих друг друга варианта объяснения. Объяснение первое. Элементами множества B являются имена некоторых множеств и, в частности, имя или обозначение множества A. Например, множество всех четных чисел содержится как элемент в множестве всех имен (или обозначений) множеств, выделенных по каким-либо признакам из множества всех целых чисел. Можно привести более понятный пример: множество всех жирафов содержится как элемент в множестве всех известных видов животных. В более широком контексте множество B можно также сформировать из концептуальных определений множеств или ссылок на множества. Объяснение второе. Элементами множества B являются элементы некоторых других множеств и, в частности, все элементы множества A. Например, каждое четное число есть элемент множества всех целых чисел или каждый жираф есть элемент множества всех животных. Но тогда получается, что в обоих случаях выражение „множество A является элементом множества B“ не имеет смысла. В первом случае оказывается, что элементом множества B является не само по себе множество A, а его имя (или обозначение, или ссылка на него). В этом случае неявно устанавливается отношение эквивалентности между множеством и его обозначением, что неприемлемо ни с точки зрения обычного здравого смысла, ни с точки зрения несовместимой с чрезмерным формализмом математической интуиции. Во втором случае оказывается, что множество A включено в множество B, т.е. является его подмножеством, но не элементом. Здесь тоже явная подмена понятий, поскольку отношение включения множеств и отношение принадлежности (быть элементом множества) в математике имеют принципиально различный смысл. Знаменитый парадокс Рассела, подорвавший доверие логиков к понятию „множество“, основан на этой нелепости - в основе парадокса лежит двусмысленная предпосылка о том, что множество может быть элементом другого множества.

Возможен еще один вариант объяснения. Пусть множество A задано простым перечислением его элементов, например, A = {a, b}. Множество B в свою очередь задано перечислением некоторых множеств, например, B = {{a, b}, {a, c}}. В данном случае кажется очевидным, что элементом B является не имя множества A, а само множество A. Но даже в этом случае элементы множества A не являются элементами множества B, и множество A здесь рассматривается как неразделимая совокупность, которая вполне может быть заменена его именем. Но если бы мы считали элементами B все элементы содержащихся в нем множеств, то в этом случае множество B было бы равно множеству {a, b, c}, и множество A в этом случае было бы не элементом B, а его подмножеством. Таким образом, получается, что этот вариант объяснения в зависимости от нашего выбора, сводится к ранее перечисленным вариантам. А если никакого варианта выбора не предложено, то получается элементарная двусмысленность, которая часто приводит к „необъяснимым“ парадоксам.

Можно было бы не уделять особого внимания этим терминологическим нюансам, если бы не одно обстоятельство. Оказывается, что многие парадоксы и несообразности современной логики и дискретной математики являются прямым следствием или подражанием этой двусмысленности.

Например, в современных математических рассуждениях часто используется понятие „самоприменимость“, которое лежит в основе парадокса Рассела. В формулировке этого парадокса под самоприменимостью подразумевается существование множеств, которые являются элементами самих себя. Такое утверждение сразу же приводит к парадоксу. Если мы рассмотрим множество всех „несамоприменимых“ множеств, то окажется, что оно является одновременно „самоприменимым“ и „несамоприменимым.


Математическая логика немало способствовала бурному развитию информационных технологий в XX веке, но из ее поля зрения выпало понятие “суждение», которое появилось в логике еще во времена Аристотеля и на котором, как на фундаменте, держится логическая основа естественного языка. Такое упущение отнюдь не способствовало развитию логической культуры общества и у многих даже породило иллюзию, что компьютеры способны мыслить не хуже самого человека. Многих даже не смущает то обстоятельство, что на фоне всеобщей компьютеризации в преддверии третьего тысячелетия логические нелепости в пределах самой науки (я уж не говорю о политике, законотворческой деятельности и о псевдонауке) встречаются даже чаще, чем в конце XIX века. И для того, чтобы понять суть этих нелепостей, нет необходимости обращаться к сложным математическим структурам с многоместными отношениями и рекурсивными функциями, которые применяются в математической логике. Оказывается, для понимания и анализа этих нелепостей вполне достаточно применить намного более простую математическую структуру суждения, которая не только не противоречит математическим основам современной логики, но в чем-то дополняет и расширяет их.

Список литературы

1. Васильев Н. А. Воображаемая логика. Избранные труды. - М.: Наука. 1989; - стр. 94-123.

2. Кулик Б.А. Основные принципы философии здравого смысла (познавательный аспект) // Новости искусственного интеллекта, 1996, No 3, с. 7-92.

3. Кулик Б.А. Логические основы здравого смысла / Под редакцией Д.А. Поспелова. - СПб, Политехника, 1997. 131 с.

4. Кулик Б.А. Логика здравого смысла. - Здравый смысл, 1997, No 1(5), с. 44 - 48.

5. Стяжкин Н. И. Формирование математической логики. М.: Наука, 1967.

6. Соловьев А. Дискретная математика без формул. 2001//http://soloviev.nevod.ru/2001/dm/index.html

В данном разделе нашего сайта представлены темы исследовательских работ на логику в виде логических задач, софизмов и парадоков в математике, интересных игр на логику и логическое мышление. Непосредственно направлять и помогать в исследованиях школьнику должен руководитель работы.


Представленные ниже темы исследовательских и проектных работ на логику подойдут детям, любящим логически мыслить, решать нестандартные задачи и примеры, исследовать парадоксы и математические проблемы, играть в нестандартные логические игры.

В списке ниже можно выбрать тему проекта на логику для любого класса общеобразовательной школы, начиная с начальной школы и заканчивая старшей. В помощь для грамотного оформления проекта по математике на логику и логическое мышление можно воспользоваться разработанными требованиями к оформлению работы.

Приведенные ниже темы исследовательских проектов на логику не являются окончательными, и могут видоизменяться в связи с требованиями, поставленными перед выполнением проекта.

Темы исследовательских работ на логику:

Примерные темы исследовательских работ на логику для учащихся:


Занимательная логика в математике.
Логика алгебры
Логика и мы
Логика. Законы логики
Логическая шкатулка. Сборник занимательных логических задач.
Логические задания с числами.
Логические задачи
Логические задачи "Забавная арифметика"
Логические задачи в математике.
Логические задачи для определения количества геометрических фигур.
Логические задачи на развитие мышления
Логические задачи на уроках математики.
Логические игры
Логические парадоксы
Математическая логика.
Методы решения логических задач и способы их составления.
Моделирование логических задач
Обучающая презентация "Основы логики".
Основные виды логических задач и методы их решения.
По следам Шерлока Холмса, или Методы решения логических задач.
Применение теории графов при решении логических задач.
Проблемы четырех красок.
Решение логических задач
Решение логических задач методом графа.
Решение логических задач разными способами.
Решение логических задач с помощью графов
Решение логических задач с помощью схем и таблиц.
Решение логических задач.
Силлогизмы. Логические парадоксы.

Темы проектов на логику

Примерные темы проектов на логику для учащихся:
Софизмы
Софизмы вокруг нас
Софизмы и парадоксы
Способы составления и методы решения логических задач.
Учимся решать логические задачи
Алгебра логики и логические основы компьютера.
Виды задач на логическое мышление.
Два способа решения логических задач.
Логика и математика.
Логика как наука
Логические загадки.

Вниманию студентов! Курсовая работа выполняется самостоятельно в строгом соответствии с выбранной темой. Дублирование тем не допускается! О выбранной теме убедительная просьба сообщить преподавателю любым удобным способом либо индивидуально, либо списком с указанием ФИО, номера группы и названия курсовой работы .

Примерные темы курсовых работ по дисциплине
«Математическая логика»

1. Метод резолюций и его применение в алгебре высказываний и алгебре предикатов.

2. Аксиоматические системы.

3. Минимальные и кратчайшие КНФ и ДНФ.

4. Применение методов математической логики в теории формальных языков.

5. Формальные грамматики как логические исчисления.

6. Методы решения текстовых логических задач.

7. Системы логического программирования.

8. Логическая игра.

9. Неразрешимость логики первого порядка.

10. Нестандартные модели арифметики.

11. Метод диагонализации в математической логике.

12. Машины Тьюринга и тезис Чёрча.

13. Вычислимость на абаке и рекурсивные функции.

14. Представимость рекурсивных функций и отрицательные результаты математической логики.

15. Разрешимость арифметики сложения.

16. Логика второго порядка и определимость в арифметике.

17. Метод ультрапроизведений в теории моделей.

18. Теорема Гёделя о неполноте формальной арифметики.

19. Разрешимые и неразрешимые аксиоматические теории.

20. Интерполяционная лемма Крейга и ее приложения.

21. Простейшие преобразователи информации.

22. Переключательные схемы.

24. Контактные структуры.

25. Применение булевых функций к релейно-контактным схемам.

26. Применение булевых функций в теории распознавания образов.

27. Математическая логика и системы искусственного интеллекта.

Курсовая работа должна состоять из 2 частей: теоретического содержания темы и набора задач по теме (не менее 10) с решениями. Также допускается написание курсовой работы научно-исследовательского типа с заменой второй части (решения задач) на самостоятельную разработку (например, рабочий алгоритм, программу, образец и т. п.), созданную на основе теоретического материала, рассмотренного в первой части работы.

1) Барвайс Дж. (ред.) Справочная книга по математической логике. - М.: Наука, 1982.

2) Братчиков языков программирования. - М.: Наука, 1975.

3) Булос Дж., ычислимость и логика. - М.: Мир, 1994.

4) Гиндикин логики в задачах. - М., 1972.

5) , Палютин логика. - М.: Наука, 1979.

6) Ершов разрешимости и конструктивные модели. - М.: Наука, 1980.

7) , Тайцлин теории // УМН, 1965, 20, № 4, с. 37-108.

8) Игошин -практикум по математической логике. - М.: Просвещение, 1986.

9) Игошин логика и теория алгоритмов. - Саратов: Изд-во Сарат. ун-та, 1991.

10) Ин Ц., спользование Турбо-Пролога. - М.: Мир, 1993.

11) ведение в метаматематику. - М., 1957.

12) атематическая логика. - М.: Мир, 1973.

13) огика в решении проблем. - М.: Наука, 1990.

14) Колмогоров логика: учебное пособие для вузов мат. специальностей / , - М.: Изд-во УРСС, 2004. - 238 с.

15) стория с узелками/ Пер. с англ. - М., 1973.

16) огическая игра/ Пер. с англ. - М., 1991.

17) , Максимова по теории множеств, математической логике и теории алгоритмов. - 4-е изд. - М., 2001.

18) , Сукачева логика. Курс лекций. Задачник-практикум и решения: Учебное пособие. 3-е изд., испр. - СПб.

19) Издательство «Лань», 2008. - 288 с.

20) Лыскова в информатике/ , . - М.: Лаборатория Базовых Знаний, 2001. - 160 с.

21) Математическая логика / Под общей редакцией и др. - Минск: Высшая школа, 1991.

22) ведение в математическую логику. - М.: Наука, 1984.

23) Мощенский по математической логике. - Минск, 1973.

24) Никольская с математической логикой. - М.: Московский психолого-социальный институт: Флинта, 1998. - 128 с.

25) Никольская логика. - М., 1981.

26) Новиков математической логики. - М.: Наука, 1973.

27) Рабин теории. В кн.: Справочная книга по математической логике, ч.3. Теория рекурсии. - М.: Наука, 1982. - с. 77-111.

28) Тей А., Грибомон П. и др. Логический подход к искусственному интеллекту. Т. 1. - М.: Мир, 1990.

29) Тей А., Грибомон П. и др. Логический подход к искусственному интеллекту. Т. 2. - М.: Мир, 1998.

30) Чень Ч., Ли Р. Математическая логика и автоматическое доказательство теорем. - М.: Наука, 1983.

31) ведение в математическую логику. - М.: Мир, 1960.

32) Шабунин логика. Логика высказываний и логика предикатов: учебное пособие / , отв. ред. ; Чуваш гос. ун-т им. . - Чебоксары: Изд-во Чуваш. ун-та, 2003. - 56 с.