Вакуумный насос для дойки коров. Доильный аппарат: принципы работы и техника машинного доения коров

Вакуумный насос для дойки коров. Доильный аппарат: принципы работы и техника машинного доения коров

Для создания разрежения при работе доильной машины используют воздушные установки, состоящие из вакуумного насоса, вакуумного балона-ресивера, вакуум-регулятора, вакууметра, системы трубопроводов с арматурой и двигателя, которые делятся на ротационные, поршневые и эжекторные. В свою очередь ротационные вакуумные насосы подразделяются на лопастные, водокольцевые, типа Рутс и другие. Наибольшее распространение на фермах получили ротационные лопастные вакуумные установки марки УВУ-60/45 и водокольцевые воздушные насосы ВВН-3, ВВН-6, ВВН-12.

Принцип действия эжекторных (струйных) насосов следующий. Когда жидкость (или газ) протекает по трубе, имеющей сужение, давление в сужении оказывается ниже, чем в остальных частях трубы (если при этом скорость потока в сужении не достигает скорости звука). Впервые это было установлено итальянским физиком Дж. Вентури (1746-1822), по имени которого была названа трубка, основанная на данном явлении. Если откачиваемый объем присоединить к трубе в месте ее сужения, то газ из него будет переходить в область пониженного давления и уноситься струей жидкости. Эжекторные (струйные) установки крепятся на выхлопной трубе трактора и разрежение создается за счет скоростного потока выхлопных газов.

Ротационная лопастная вакуумная установка типа УВУ включает в себя (рис. 2.2) электродвигатель 1, вакуумный баллон 3, регулятор вакуума 4, вакууметр 6, вакуумпровод 5, вакуумный насос 2. При частом отключении электроэнергии может комплектоваться резервным двигателем 7 внутреннего сгорания. Унифицированный насос УВУ-60/45 работает при вакууме 53 кПа с воздухопроизводительностью 60 и 40 м 3 /ч. Для получения требуемого расхода изменяют частоту вращения ротора постановкой шкивов разного диаметра на вал электродвигателя.

Рис. 2.2 Общий вид вакуумной установки УВУ 60/45

Насос вакуумный пластинчато-роторный предназначен для эксплуатации в районах с умеренным климатом на открытом воздухе в диапазоне от минус 10 до плюс 40 0С и высоте над уровнем моря не более 1000 м, выпускается в четырех исполнениях.

Внутри чугунного цилиндрического корпуса 22 (рис. 2.3) с ребристой поверхностью для лучшей теплоизоляции вращается ротор 17. Ротор имеет четыре паза, в которых свободно перемещаются текстолитовые лопатки 16. Ротор вращается в шарикоподшипниках 14, установленных в посадочных отверстиях крышек 12 и 19, расположенных эксцентрично относительно оси корпуса. Подшипники со стороны внутренней полости насоса закрыты шайбами 15. Для ориентации крышек относительно корпуса при сборке насоса установлены штифты 5. Направление вращения ротора указано стрелкой на корпусе насоса. В зависимости от исполнения насос имеет один или два выходных конца ротора.

В средней части цилиндрического корпуса имеются выхлопные окна, которые соединяются с выхлопной трубой рамы. На конец выхлопной трубы насаживают глушитель, корпус которого заполнен стекловатой для задержки отработавшей смазки.

Технологический процесс работы вакуумной установки происходит следующим образом. При вращении ротора 17 (рис. 2.3) лопатки 16, под действием центробежных сил прижимаются к корпусу 22, и образуют замкнутые пространства, ограниченные ротором 17, корпусом 22 и торцевыми стенками 12 и 21, объем которых за один оборот сначала увеличивается, создавая разрежение между лопатками на стороне всасывания, а затем уменьшается. При этом воздух сжимается и вытесняется в атмосферу через выпускное отверстие.

Для смазки подшипников и трущихся поверхностей насос снабжен масленкой фитильного типа, которая обеспечивает равномерную и непрерывную подачу масла в насос.

Масленка состоит из двух основных составных частей: стакана 5 (рис. 2.4) вместимостью 0,6 л и чашки 2. Масло заливается в стакан, который закрывается крышкой 7 и фиксируется на чашке дугой 6. Из стакана масло вытекает в чашку до тех пор, пока его уровень не достигнет верхней части клинообразного выреза трубки крышки. Уровень масла в чашке масленки исполнения УВД.10.020 не регулируется. Уровень масла в чашке масленки УВА 12.000 зависит от длины выступающего конца трубки и должен находиться в пределах 13.18 мм. При снижении уровня масла воздух поступает в стакан через вырез в трубке и масло вытекает до тех пор, пока не достигнет установленного уровня.

Процесс смазки происходит следующим образом. Из чашки масло по фитилям 3 поступает в маслопроводящие каналы и под действием разности давлений в масленке и насосе по шлангам 9, отверстиям в крышках 12, 21 (рис. 2.3) насоса поступает в шарикоподшипники 14, через каналы шайб 15 в пазы ротора 17, смазывая поверхности лопаток 16, корпуса и крышек насоса. Далее масло потоком воздуха выбрасывается через выпускное отверстие насоса.

Масленка обеспечивает подачу масла в насос с расходом 0,25.0,4 г/м 3 воздуха, что соответствует истечению масла из стакана при работе установки на величину одного деления в среднем за 1,5 часа работы вакуумной установки производительностью 0,75 м 3 /мин, и в среднем за 1,1 часа для вакуумной установки производительностью 1 м 3 /мин.

Контроль за поступлением масла в подшипники производится визуально через пластмассовые шланги, а общий расход - по делениям на стакане.

Рис. 2.3 Вакуумный насос:
1,20 - болты; 2, 15 - шайбы; 3 - стопорное кольцо; 4 - шкив; 5 - штифт; 6 - шпонка; 7 - винт; 8, 22 - крышки; 9 - пробка; 10,11 - прокладки; 12 - правая крышка; 13 - манжета; 14 - шарикоподшипник; 16 - лопатка; 17 - ротор; 18 - корпус; 19 - левая крышка; 21 - втулка; 22 - корпус

Обеспечение требуемого расхода масла в процессе эксплуатации производится периодической прочисткой маслопроводящих каналов в чашке 2 (рис. 2.4) и пробках 4, промывкой фитилей в дизельном топливе или изменением количества нитей в фитиле, а для масленки УВА 12.000 также изменением длины выступающей части трубки.

Для исключения возможного обратного вращения ротора и поломок лопаток при выключении электродвигателя соединение впускного отверстия насоса с вакуумпроводом осуществляется через предохранительный клапан.


Рис. 2.4 Масленка УВД.10.020:
1 - кронштейн; 2 - чашка; 3 - фитиль; 4 - пробка; 5 - стакан; 6 - дуга; 7 - крышка; 8 - прокладка; 9 - шланг

Рис. 2.5 Вакуум-регулятор

Вакуум-баллон 3 (рис. 2.2) сглаживает пульсацию вакуума, неизбежно возникающую при работе насоса, собирает влагу и молоко, попавшие в вакуум-провод, а также используется как сливная емкость при промывке трубопроводов. При работе насоса крышка вакуумного баллона должна быть плотно закрыта.

Вакуум-регулятор 4 (рис. 2.2) поддерживает стабильный вакуум в вакуум-проводе. Он состоит из клапана 1 (рис. 2.5), пружины 3, набора грузов 4, демпферирующих пластин 5 и индикатора 2.

Вакуум-регулятор работает следующим образом. Сила, действующая на клапан 1 снизу из-за разницы между атмосферным и вакуумметрическим давлением в вакуум-проводе поднимает клапан вверх, преодолевая вес груза 4. В результате этого через индикатор 2 в вакуум-провод начинает поступать атмосферный воздух. Величина разрежения, при котором поднимается клапан 1, устанавливается весом груза 4. Величина расхода воздуха через вакуум-регулятор контролируется по показаниям индикатора 2. При нормальном расходе стрелка индикатора 2 должна находиться в среднем положении. Для смягчения вибрации груза 4, они подвешиваются на пружине 3, а снизу демпферирующие пластины 5 находятся в слое масла.

Водокольцевые машины типа ВВН предназначены для создания вакуума в закрытых аппаратах и системах. Изготавливаются в двух исполнениях: ВВН1 - с номинальным давлением всасывания 0,04 МПа; ВВН2 - с номинальным давлением всасывания 0,02 МПа.

Машины типа ВВН - жидкостно-кольцевые с непосредственным приводом от электродвигателя через упругую муфту.

Водокольцевая установка ВВН-12 состоит из водокольцевой машины 4 (рис. 2.6), имеющей привод от электродвигателя 1 через муфту 2. Все это размещено на фундаментной плите 3.

Водокольцевая машина состоит из корпуса-цилиндра 2 (рис. 2.7), закрытого с торцов крышками-лобовинами. В цилиндре эксцентрично расположено лопастное колесо 1, закрепленное на валу. Выход вала из лобовин уплотняется сальниками с мягкой набивкой. Подаваемая в машину вода питает водяное кольцо 7 и создает гидравлический затвор в сальниках. Вал вращается в подшипниках, расположенных в прикрепленных к лобовинам корпусах.

Перед пуском в работу через всасывающий патрубок 5 машину заполняют примерно до оси вала водой. При пуске жидкость центробежной силой отбрасывается от втулки ротора к корпусу. При этом образуется жидкостное кольцо и серповидной пространство, которое является рабочей полостью. Рабочая полость разделена на отдельные ячейки, ограниченные лопатками, втулкой колеса, лобовинами и внутренней поверхностью жидкостного кольца. При вращении колеса объем ячеек увеличивается (на рис. 2.7 вращение по часовой стрелке) и через всасывающее окно 6 происходит всасывание газа. Затем объем ячеек уменьшается, происходит сжатие и выталкивание газа через нагнетательное окно 3. Через нагнетательный патрубок 4 вместе с газом выбрасывается вода. Для отделения воды от газов и ее сбора непосредственно на нагнетательном патрубке в вакуумных насосах устанавливают водоотделитель с открытой переливной трубой. Для отделения воды от газа в вакуумных насосах ВВН-12 применяется прямоточный сепаратор 5 (рис. 2.6). Прямоточный сепаратор представляет собой неразборный сосуд объемом около 24 литров со встроенной внутри многолопастной решеткой, посредством которой и происходит разделение газо-жидкостной смеси, выбрасываемой из насоса. Он обеспечивает практически полное отделение воды от газа при всех возможных режимах работы.

При использовании машины в качестве компрессора к сливному патрубку сепаратора присоединяется водоотводчик, обеспечивающий слив воды без утечки газа.

Преимуществом водокольцевых вакуумных машин перед лопастными вакуумными насосами является то, что при вращении ротор не касается стенок статора. Однако при вращении ротора происходит повышение температуры воды в статоре насоса, что снижает его подачу. Для повышения устойчивости работы насоса ВВН предусмотрена установка специального охладителя воды.

Рис. 2.6 Общий вид вакуумного насоса ВВН-12

Рис. 2.7 Схема водокольцевой машины

Основные параметры применимости водокольцевых машин представлены в таблице 2.1.

2.1. Показатели водокольцевых вакуумных машин
Показатель Типоразмер
ВВН-3 ВВН-6 ВВН-12 ВВН-25
Производительность при номинальном давлении всасывания, м 3 /мин 3 (2,7)
6(5,4)
12 (10,8)
25 (22,5)
Номинальное вакуумерическое давление от барометрического давления, %
60 (80)
Максимальный вакуум от барометрического давления, %
90
96
Удельный расход воды на номинальном режиме, дм 3 /с
0,13 (0,2)
0,3 (0,47)
0,5 (0,75)
1,0 (1,5)
Мощность, кВт 13
22
30
75
Масса, кг
125
215
455
980
Примечание : в скобках даны значения для вакуумных насосов исполнения 2

Рис. 2.8 Общий вид водокольцевой вакуумной установки УВВ-Ф-60Д:
1 - вакуумпровод; 2 - предохранитель; 3 - насос; 4 - емкость для воды; 5 - электродвигатель; 6 - выхлопная труба; 7 - нагнетательный патрубок

Установка вакуумная водокольцевая УВВ-Ф-60Д предназначена для создания вакуума, используется для комплектации доильных установок всех типов. Установка не предназначена для откачки агрессивных газов и паров.

Состоит из водокольцевого вакуумного насоса 3 (рис. 2.8) с приводом от электродвигалея 5 (мощностью 6 кВт), установленного над емкостью для воды 4. Вакуумный насос соединен с вауумпроводом 1 через предохранитель 2. Остаточный воздух вместе с водой по трубопроводу 6 выбрасывается из помещения.

Основные технические характеристики водокольцевой вакуумной установки УВВ-Ф-60Д представлены в табл. 2.2.

2.2 Основные технические характеристики установки УВВ-Ф-60Д
Наименование параметра и единицы измерения Значение параметра
Производительность при h=50кПа, м 3 /ч
60±6
Мощность, потребляемая при номинальном режиме, кВт 4±0,4
Предельное остаточное давление, кПа
15±5
Габаритные размеры, м
0,65х0,36х0,75
Масса без воды, кг
110
Объем жидкости, заливаемой в водоотделитель, дм 3
50
Условный проход патрубком, мм
40

Для некоторых процессов требуется очень большая быстрота откачки, хотя бы и не при очень низких давлениях. Этим требованиям удовлетворяют двухроторные объемные насосы типа воздуходувки Рутса. Схема такого насоса представлена на рис. 2.9.

Рис. 2.9 Схема двухроторного насоса типа Рутса

Два длинных ротора с поперечным сечением, напоминающим восьмерку, вращаются в противоположных направлениях, не соприкасаясь ни с друг другом, ни со стенками корпуса, так что насос может работать без смазки. Необходимости в масляном уплотнении тоже нет, поскольку очень малы зазоры между подогнанными деталями конструкции.

Ротор вращается с частотой до 50 с -1 , и высокая быстрота откачки поддерживается до давлений порядка одной миллионной атмосферного. Каждый ротор может иметь два или три кулачка.

Хотя такие насосы способны работать с прямым выхлопом в атмосферу, на их выходе обычно устанавливают вспомогательный вращательный масляный насос, который не только понижает их предельное давление, но и повышает КПД, снижая потребляемую мощность, что позволяет обходиться менее сложной системой охлаждения. Вспомогательный насос, пропускающий ту же массу газа, но при более высоких давлениях, может быть сравнительно небольшим.

Доильный аппарат - это автоматическая установка для быстрого и эффективного выдаивания коров без повреждения соска и железы, а также с минимальным риском проникновения патогенных микроорганизмов. Это не единое целое, а сборка компонентов, предназначенных для обработки не одного десятка буренок в час. Есть много факторов, которые могут повлиять на качество молока и здоровье вымени у молочного скота, и оборудование для дойки является одним из них.

Старинное фото — доение коровы вручную

Ранние попытки доения коров представляли собой использование различных методов. Около 380 года до нашей эры, египтяне, наряду с традиционной ручной дойкой, присоединяли соломинку пшеницы к соску коров. Доильную установку впервые применили в 1851 году, хотя попытка была не совсем успешной.

Для стимуляции дальнейших изобретений Королевское сельскохозяйственное сообщество Англии объявило вознаграждение за представление безопасной доильной машины. В конце XIX века в Шотландии разработали машину с вакуумным насосом, приводимую в движение с помощью парового двигателя. Этот агрегат, наряду с внедрением двойного доильного стакана, привел к автоматизированному доению животных. С начала XX века принцип машинной дойки укоренился в молочной промышленности.

Принцип работы доильного аппарата

Традиционная техника доения включает в себя доильные стаканы для контакта с сосками коровы и снятия продукта, трубки для молока, трубки пульсатора, емкости для конечного сбора. Стаканы состоят из внутренней резиновой прокладки и наружной оболочки, как правило, изготовленной из металла. В процессе работы продукт всасывается из коровьего вымени, в результате созданного вакуума внутри стакана, заставляя молоко идти через канал соска.

При машинном выдаивании, как и при кормлении теленка, идет активация нервных рецепторов, расположенных на соске. При такой стимуляции происходит выброс гормона окситоцина, поступающего в дальнейшем в ткани вымени. Оказавшись на месте, гормон заставляет мышечные волокна сокращаться, и млечные протоки наполняются молоком. Максимальное молочное поступление идет при спокойной и последовательной дойке коровы, а также при правильной подготовке вымени. Для достаточной стимуляции нервного рецептора требуется от 12 до 15 секунд тактильного контакта. Это обеспечит адекватное высвобождение окситоцина и хорошую реакцию на выброс молока.

Технология машинного доения

Доильный агрегат служит незаменимым помощником на молочной ферме. Современные машины гарантируют производство дойки коров по всем правилам, помогают сохранять свежесть молока, предотвращая столкновение продукта с воздухом или руками. Управиться с установкой не составляет особого труда, но требует определенных навыков. Для получения желаемых результатов важно соблюдать все инструкции и должным образом подготовить корову к важному процессу.


Скорость молочного потока во многом зависит от отверстия млечного канала и от механических свойств устройства. После прикрепления стаканов к соскам, скорость потока достигает предела в течение одной минуты и снижается в конце доения. Оставшееся молоко, следует выдоить вручную, чтобы избежать нежелательных последствий в виде мастита. На скорость течения молока оказывает влияние уровень вакуума и частота пульсации. Скорость увеличивается при использовании более широкого коэффициента пульсации. Чаще всего доильные аппараты работают с оптимальной частотой 55-65 циклов в минуту. Такой принцип не наносит отрицательного воздействия на вымя животного.

Техника ручного доения

Хотя способы ручного доения совершенствовались на протяжении столетий, они и сегодня все еще работают. Методы доения влияют на качество и количество молока. Самый распространенный - кулачный способ доения. Коров доят в одно и то же время два раза в день. Чаще доят отелившуюся буренку (5-6 раз в сутки).

Телочка должна чувствовать доброе к ней расположение, поэтому с животным обращаются аккуратно и с нежностью. При соблюдении режима доения и ласковом отношении к телочке, корова будет готовиться к церемонии заранее, а вымя наполняться молоком, что значительно улучшит процесс подачи молочного продукта.

Руки и вымя телки тщательно моются, чтобы избежать инфекций или мастита. Протирают нижнюю и боковую часть вымени мокрым полотенцем, смоченным в теплой воде, затем вытирают насухо и делают легкий массаж. Сначала обеими руками происходит массаж всего вымени, затем отдельно каждую половинку. Это мероприятия не следует затягивать, чтобы не упустить момент молочного прилива. Любая влага на вымени может привести к трещинам на коже. Несколько первых молочных струй сдаивают в отдельную посуду и прикрывают салфеткой. Доение начинают, когда соски коровы набухли и стали упругими. Руки и вымя чистые, стерильное эмалированное ведро подготовлено - можно начинать дойку.


Молоко сдаивается полностью, что способствует хорошему удою и оберегает корову от инфекций. Именно остаток молока, застаиваясь, ведет к возникновению мастита.

Типы доильных аппаратов

С появлением доильных аппаратов значительно улучшилась работа фермеров и простых владельцев коров. Устройство позволяет экономить время и силы, так необходимые для ведения хозяйства. Существует несколько видов доильных аппаратов, тип которых зависит от масштабности применения.

Переносные доильные аппараты

Переносные доильные аппараты идеально подходят для небольшого количества скота (до 20 голов). Портативная машина обеспечивает эффективный и удобный способ дойки животных. Безмасляный вакуумный насос с электроприводом создает вакуум, необходимый для автоматизированного доения. Каждый аппарат поставляется с вакуумным регулятором и манометром, для обеспечения и поддерживания надлежащего уровня давления во время процесса дойки. Пульсация в кластере создается с помощью пневматического пульсатора, установленного в аппарате. Он удовлетворяет всем требованиям надежности, прочности и точности. Скорость пульсации устанавливается с помощью регулировочного ключа. Коэффициент выбирает сам пользователь.

Молоко собирается в прочном ведре из нержавеющей стали для дальнейшей транспортировки. Доступны варианты как с одним, так и двумя ведрами. В полный комплект доильного аппарата входят необходимые крепления для легкого монтажа и насосно-компрессорные трубки. Все детали надежно закреплены на легкой, но в то же время устойчивой, тележке, которая без труда транспортируется и требует минимального технического обслуживания.

Переносной доильный аппарат, закрепленный на телеге, с двумя емкостями для молока

Доильная система

Доильная система устанавливается на фермах, где животные находятся в своих кабинках, и рассчитано на 20-100 голов. Дойка осуществляется с помощью переносного аппарата, обеспечивающего пульсацию и вакуум. Блок подключается к доильной станции. Обычно, одна станция устанавливается на каждые две головы. Продукт поступает в приемный сосуд с контролем уровня жидкости и дальше перекачивается в бак для охлаждения. Система легко масштабируется.

Автоматические доильные системы устанавливают на больших фермах и предназначены для более 100 голов.

Как правильно подобрать качественный доильный аппарат

Доильные машины характеризуются по их техническим данным, мобильности и типу. Легкие и небольшого размера устройства могут обслуживать одну или двух коров - это отлично подходит для малого домашнего хозяйства. Для крупных ферм используются более масштабные аппараты. Наиболее популярным считается облегченный аппарат, благодаря своей мобильности передвижения.

Аппараты отличаются по классу вакуумных насосов.

При выборе аппарата стоит обратить внимание на способ образования вакуума. В одном случае вакуум в устройстве образуется, благодаря работе пульсатора и центробежного насоса. В другом - работу пульсатора выполняет поршневой насос, влияющий на давление. При выборе аппарата внимательно изучите все достоинства и недостатки каждого из устройств. К примеру, машины с пульсатором более сложные и дорогостоящие, но гарантирующие высокие надои. Устройства с поршневым насосом просты в управлении с бюджетной стоимостью, но по качество доения ниже, чем у машин с пульсатором.

Обратите внимание на мобильность техники. Устройство может быть передвижным или использоваться стационарно. Передвижная машина подходит для больших ферм. Тележка оснащена колесами и опорами, помимо всех необходимых составляющих. Машина без труда перемещается по зоне обслуживания, обрабатывая большое число голов. Стационарный аппарат предназначен для дойки максимум трех коров, находящихся на близком расстоянии.

Приобретая доильное устройство, стоит обратить внимание на качество сосковой резины. От этой части агрегата зависит здоровье вымени буренки. Более качественным считается использование каучука в составе резины. Вкладыши из низкопробного сырья со временем трескаются, накапливая бактерии, и нанося, таким образом, вред здоровью коровы. Придется производить замен сосковой резины минимум раз в год. Обратите внимание, чтобы цена соответствовала качеству, приобретаемого агрегата, сборке деталей, функциональности и простоте пользования.

Достоинства и недостатки доильных машин

Изучая достоинства доильных машин , следует выделить некоторые преимущества техники.

  1. Владелец крупной фермы может хорошо сэкономить на зарплате рабочим, уменьшив штат персонала. Достаточно оставить определенное число людей, которые будут заниматься контролем дойки и следить за чистотой в помещении.
  2. Доильная техника сводит к минимуму утомительный и кропотливый труд доярок и хозяек малых частных ферм.
  3. С появлением устройства качество дойки увеличивается в разы. Выдаивание с помощью аппарата идеально для любой буренки, а скорость намного больше, по сравнению с ручным доением.
  4. На овладение навыками работы с техникой уйдет совсем немного времени. Правила эксплуатации не представляют ничего сложного. Достаточно лишь следовать инструкции.
  5. Доильный аппарат для коровы

    К недостаткам доильных устройств можно отнести следующие моменты:


    Виды и основные модели аппаратов доения

    Сегодня выбор техники для доения достаточно широк и многообразен. В первую очередь стоит обозначить, на какое число голов приобретается устройство и предпочитаемый тип насоса, установленный в агрегате. Вот лишь несколько самых распространенных моделей аппаратов:


    Цены на доильные аппараты для коров

    Доильный аппарат для коровы

    Обслуживание техники

    Доильную технику используют в течение нескольких часов ежедневно, и ей необходим регулярный сервисный осмотр. Оборудование чистят, проверяют состояние компонентов и крепежей, ликвидируют возникшие неисправности, проводят смазку в соответствии с инструкцией. Обязательно проверяют состояние сосковой резины на предмет целостности, а также трубок и шлангов. Счетчики и коллекторы разбирают и промывают один раз в день. Также ежедневно проверяются вакуумные насосы и натяжение ремня. Своевременный технический осмотр обеспечит бесперебойную работу агрегатов.

    В настоящее время современная ферма не представляется без механизированного оборудования. Автоматизация сельского хозяйства идет в ногу со временем практически каждое домашнее хозяйство имеет в своем арсенале доильный аппарат.

    Видео — Доильный аппарат Моя Милка

Технологические основы машинного доения
Вымя коровы состоит из 4 долей: 2 передних и 2 задних. Правая и левая половины отделены друг от друга подкожной эластичной перегородкой из соединительной ткани, которая служит одновременно и связкой, поддерживающей вымя. На каждом соске есть свой выводной проток, и молоко не может передвигаться от одного соска к другому. Вымя прочно крепится в тазовой области на подвешиваемых связках и соединительной ткани. Кровообращение в вымени протекает очень интенсивно. В образовании 1 л молока участвует примерно 500 л крови, проходящей через вымя. В состав каждой доли вымени входят: молочная железа, соединительная ткань, молочные протоки и сосок.

Емкость молочной цистерны доли вымени составляет 0,4 л, полости соска - 0,05-0,15 л. Форма вымени и равномерность развития его долей влияют на скорость и полноту выдаивания, а также на заболеваемость коров маститами. Наибольшей молочной продуктивностью отличаются коровы с выменем ваннообразной и чашевидной форм, равномерно развитыми долями, с сосками средней величины, расположенными на одном уровне и равном расстоянии друг от друга, с плотным прикреплением к туловищу спереди и сзади, при расстоянии от земли не менее 40 см.

Образование молока происходит в альвеолах молочной железы в результате протекания сложнейших биохимических процессов за счет компонентов, поступающих в вымя с током крови. Непосредственно в молочной железе синтезируются молочный сахар (лактоза), молочный жир, молочные белки и некоторые витамины. Минеральные вещества и часть витаминов поступают в молоко прямо из коровы. Молоко коровы содержит в среднем 87,5 % воды, 3,8 % жира, 3,5 % белка, 4,7 % молочного сахара и 0,7 % минеральных веществ.

Молоко образуется в вымени между доениями. Только незначительная часть его образуется в процессе доения. Обычно доение проводят 2-3 раза в сутки.

Перед началом машинного доения необходимо вызвать у коровы рефлекс молокоотдачи. Для этого производят подготовку вымени, заключающуюся в его санитарной обработке (подмывании), массаже и сдаивании первых струек молока в отдельную посуду, по которым судят о готовности коровы к молокоотдаче, состоянию вымени.

При раздражении нервных окончаний сосков сигнал поступает в головной мозг коровы, откуда подается команда в гипофиз. Последний выделяет в кровь гормон окситоцин, который обусловливает сокращение миоэпителий вымени, в результате чего молоко переходит из альвеол в молочные протоки и далее в цистерну и соски.

Рефлекс молокоотдачи имеет двухфазный характер: сокращению миоэпителья и выжиманию молока из альвеол предшествуют кратковременное снижение тонуса мускулатуры цистерн и некоторое падение давления в вымени. Затем тонус гладкой мускулатуры цистерн и широких протоков повышается, и молоко после принудительного раскрытия сфинктера сосков выходит наружу. Скрытый (латентный) период наступления рефлекса молокоотдачи длится 30-60 сек у коров с различным типом нервной деятельности. Только убедившись в том, что корова готова к дойке, дояр приступает к подключению доильного аппарата. Контроль припуска молока осуществляется сдаиванием первых струек, при этом также оценивается состояние здоровья вымени животного. Первые струйки молока как наиболее загрязненные сдаивают в отдельную посуду и не подлежат использованию. Наличие в них крови, сгустков и хлопьев свидетельствует о заболевании тех или иных долей вымени.

Действие гормона окситоцина в крови ограничено и составляет 5-7 мин. Именно за этот период корова должна быть выдоена, поскольку затем молокоотдача прекращается. На реализацию рефлекса молокоотдачи влияют наряду с безусловными рефлексами возникающие в процессе обслуживания животных условные рефлексы, связанные с приходом дояра, шумом работающего доильного аппарата, раздачей корма, которые формируют устойчивый стереотип доения, нарушение которого, в свою очередь, негативно влияет на процесс доения коровы. Поэтому все операции, связанные с обслуживанием животных, должны строго выполняться в определенной последовательности в одно и то же время, предусмотренное распорядком дня.

Технология машинного доения включает выполнение следующих операций:

  • подготовка вымени (подмывание теплой водой и массаж) - 30–40 сек;
  • сдаивание первых струек в отдельную посуду - 5 сек;
  • вытирание вымени сухой салфеткой;
  • подключение доильного аппарата - 1–10 сек;
  • автоматическая работа доильного аппарата (без участия дояра) - 5–7 мин;
  • машинное додаивание при снижении потока молока менее 400 г/мин - 20–40 сек;
  • снятие доильного аппарата по окончании доения - 5–10 сек.
В зависимости от степени автоматизации доильного аппарата последние две операции также могут осуществляться автоматически.

Зоотехнические требования к доильным аппаратам и установкам
В процессе машинного доения животного происходит объединение отдельных звеньев в единую биотехническую систему «человек-машина-животное», поэтому доильная машина должна соответствовать разнообразным физиологическим, техническим, эргономическим и экономическим требованиям.

Физиологические требования:

  • доильный аппарат должен обеспечивать быстрое и чистое выдаивание всех долей вымени коровы за 5-7 мин при контрольном ручном додое, не превышающем 200 г у 90 % животных;
  • доильный аппарат не должен оказывать патологического действия на молочную железу и вызывать заболевание коров маститом;
  • контактирующие с молоком и соском коровы детали должны быть изготовлены из материалов, разрешенных к применению Минздравом РФ;
  • основные параметры работы доильного аппарата (вакуум, частота пульсации, соотношение тактов) должны регулироваться в зависимости от скорости молокоотдачи и индивидуальных особенностей животных;
  • исполнительные механизмы доильного аппарата (доильный стакан, коллектор, молочные шланги) должны быть рассчитаны на максимальный поток молока 5-7 л/мин.
Технические требования соответствуют требованию международного стандарта ISO 5707 «Установки доильные, конструкция и техническая характеристика», при этом должно обеспечиваться:
  • постоянство вакуумметрического давления в линии (отклонения в любой точке молочно-вакуумной линии не должны превышать ±2 кПа);
  • отклонение частоты пульсаций и соотношение тактов от номинальных значений не должно превышать 3 %;
  • доильные аппараты и установки должны обеспечивать по возможности автоматическое выполнение операций индивидуального и группового учета молока, машинного додаивания и снятия доильных стаканов, кратчайший путь отвода и транспортировки молока от животного до молокосборника;
  • молокопроводящие пути доильных аппаратов и установок должны хорошо очищаться при циркуляционной промывке и соответствовать надлежащим санитарно-гигиеническим требованиям;
  • составные части доильных аппаратов и установок должны выдерживать воздействие агрессивных сред (воздушная среда коровника, моющие растворы) и быть изготовленными из соответствующих материалов.
Эргономические и экономические требования:
  • рабочая поза оператора по возможности должна быть рациональной (исключающая частые наклоны);
  • шум на рабочем месте оператора не должен превышать 80 дБ, а составные части установок (станок для обработки вымени животных, манипулятор) не должны пугать животных;
  • ограждение станков доильных установок должно обеспечивать защиту оператора от воздействия животных;
  • переносные комплекты доильных аппаратов должны быть легкими и доступными для разборки и сборки;
  • стоимость оборудования должна соответствовать финансовым возможностям потребителя.
Доильные аппараты
Для извлечения молока из вымени животных используют три способа: естественный (сосание теленком), ручной и машинный.

С начала прошлого века доильная техника прошла эволюцию от доильных трубочек - катетеров и механических выжимающих устройств до современного доильного аппарата.

В 1902г. А. Джильсом был изобретен аппарат с двухкамерным стаканом и пульсирующим вакуумным режимом (рис. 1). Стакан аппарата имеет сосковую резину 7, расположенную внутри корпуса с натяжением, которое дает ей необходимую упругость.

Рис. 1. Схема работы доильного двухкамерного станка в двухтактном (а) и трехтактном (б) аппаратах:
1 - межстенная камера; 2 - подсосковая камера; 3 - патрубок; 4 - смотровой конус; 5 - соединительное кольцо; 6- рабочий вакуум; 7- сосковая резина; 8- тело стакана; 9- резиновая манжета; 10 - атмосферное давление

Когда в подсосковой 2 и межстенной 1 камерах стакана рабочий вакуум, сосковая резина не препятствует истечению молока из вымени, и под действием разности давлений молоко вытекает, преодолевая сопротивление сфинктера соска. За тактом сосания следует впуск воздуха в межстенное пространство стакана, при этом тело соска сжимается сосковой резиной. Такт сжатия прерывает выведение молока и массирует сосок, предотвращаются застой крови в теле соска и связанные с этим заболевания.

За всю более чем столетнюю историю развития доильной техники были созданы различные конструкции доильных аппаратов, которые можно классифицировать следующим образом:

  • по числу рабочих тактов (двух-, трехтактные и непрерывного отсоса);
  • по принципу действия (выжимающие и отсасывающие вакуумного типа);
  • по синхронности привода доильных стаканов (круговой поочередной смены тактов в доильных стаканах, одновременной смены тактов во всех доильных стаканах, попарной смены тактов передних - задних, левого - правого вымени);
  • по степени мобильности (передвижные, переносные, стационарные);
  • по сбору молока (для доения в ведро, для доения в молокопровод);
  • по степени автоматизации (с постоянным режимом работы, с управляемым режимом работы по скорости молокоотдачи, с автоматической стимуляцией рефлекса молокоотдачи и без нее, с автоматическим манипулятором или с ручным снятием стаканов, полностью автоматические системы без участия в технологическом процессе человека - доильные роботы).
Из всего многообразия предложенных конструкций наибольшее распространение в России и за рубежом получили вакуумные двухтактные аппараты с попарным или синхронным приводом доильных стаканов и различной степенью автоматизации.


Рис. 2. Схема доильной установки:
1 - электродвигатель; 2 - ограждение; 3 - вакуум-насос; 4 - вакуум-магистраль; 5 - масло­сборник выхлопной трубы; 6 - диэлектрическая вставка; 7 - вакуум-баллон; 8 - вакуум-регу­лятор; 9 - воздушный кран; 10 - вакуумметр; 11 - доильный стакан; 12 - коллектор; 13 - молочный шланг; 14 - вакуумный шланг; 15 - магистральный шланг; 16 - пульсатор; 17 - доильное ведро

Доильный аппарат входит составной частью в конструкцию до­ильной установки (рис. 2), которая имеет вакуум-насос 3 с электродвигателем 1 и приводом, трансмиссию - вакуум-магистраль 4, рабочий орган - доильный аппарат с исполнительным ме­ханизмом (доильными стаканами II). Доильный аппарат подклю­чают к вакуум-магистрали воздушным краном. Величина вакуума контролируется вакуумметром 10 и поддерживается на заданном уровне вакуум-регулятором 8. Вакуум-баллон 7 сглаживает коле­бания вакуума при работе вакуум-насоса 3.

Доильный аппарат АДУ-1. В конструкцию аппарата входят до­ильные стаканы, коллектор, пульсатор, молочные и вакуумные патрубки и шланги. Пульсатор (рис. 3, а) преобразует постоян­ный вакуум в переменный, формирующий режим работы коллек­тора и доильных стаканов. Коллектор (рис. 3, б) распределяет переменный вакуум по доильным стаканам, формирует режим их работы, собирает молоко из стаканов и способствует его эвакуа­ции в доильную емкость (ведро, молокопровод, доильную цистер­ну и др.).


Рис. 3. Сборочные единицы доильного аппарата ДДУ-1:
а - пульсатор: 1, 12 - гайки; 2 - прокладка; 3 - крышка; 4 - клапан; 5 - обойма; 6 - мем­брана; 7 - корпус; 8- камера; 9, 10 - кольца; П - кожух воздушного фильтра; 6- коллек­тор: 1 - молокосборник коллектора; 2 - распределитель; 3 - крышка; 4 - прокладка; 5 - корпус; 6- отключающий клапан; 7- шайба резиновая; 8- стопорная шайба; 9- фиксатор; 10 - камера переменного вакуума; 11 - винт

Аппарат АДУ-1 работает следующим образом (рис. 4).


Рис. 4. Схема работы двухтактного доильного аппарата:
а - такт сосания; б - такт сжатия; 1 - вакуумный магистральный шланг; 2 - клапан; 3 - камера атмосферного давления; 4, 18 - камеры переменного вакуума; 5 - камера постоянного вакуума; 6 - канал; 7, 9, 13, 16 - резиновые шланги; 8 - распределитель коллектора; 10 - подсосковая камера доильного стакана; 11 - корпус стакана; 12 - межстенная камера стака­на; 14 - молочная камера; 15 - клапан-фиксатор; 17 - резиновая прокладка; 19 - ведро; 20 - дроссель; 21 - мембрана

Вакуум от магис­трали по шлангу 1 (рис. 4, а) переходит на камеру 5 пульсатора. Резиновая мембрана 21 под давлением воздуха поднимает клапан 2, вакуум распространяется в камеру 4 и далее по шлангу 7 через распределитель 8 коллектора в межстенные пространства 12 до­ильных стаканов. В подсосковых камерах 10 стаканов устанавли­вается постоянный вакуум от доильной емкости 19 и с образова­нием его в межстенных пространствах стаканов происходит такт сосания: молоко идет через молочную камеру коллектора в моло­косборник. В ходе такта вакуум по каналу 6пульсатора через дрос­сель 20 распространяется на управляющую камеру 18. Атмосфер­ное давление из камеры 3, воздействуя на клапан 2, переводит мембранно-клапанный механизм пульсатора в нижнее положение (рис. 4, б), и клапан 2 перекрывает путь вакууму в камере 4. Воздух через камеру 4 поступает в шланг 7 и далее в межстенную камеру 12, формируя такт сжатия. При этом воздух, проходя через дроссель 20, постепенно заполняет камеру 18, поднимая мембрану 21 (камера 5 находится под постоянным вакуумом). Повторяется такт сосания. Частота пульсаций определяется площадями мемб­раны и клапана, а также пневматическим сопротивлением дрос­сельного канала 6.

Низковакуумный аппарат ДЦУ-1-03 с пульсатором. Аппарат был разработан Всесоюзным институтом электрификации сельского хозяйства (ВИЭСХ) в целях стабилизации вакуумметрического давления в под сосковом пространстве. При включении аппарата разрежение из камеры 1 (рис. 5, а) пульсатора переходит в ка­меру 3, под действием разности давлений между камерами 1 и 14 мембрана поднимает клапан 13, который закрывает проход между камерами 3 и 2 и открывает путь для отсоса воздуха из камеры 3. Вакуум переходит в камеру 10 коллектора и в межстенные камеры 4 стаканов.



Рис. 5. Схема работы низковакуумного доильного аппарата:
а - такт сосания; б - такт сжатия; 1, 8 - камеры постоянного вакуума; 2, 6 - камеры атмос­ферного давления; 3, 7 - камеры переменного вакуума; 4 - межстенная камера; 5 - подсос-ковая камера; 9, 15 - резиновые мембраны; 10 - камера переменного вакуума коллектора; 11 - канал камер переменного вакуума; 12 - дроссель; 13 - клапан; 14 - управляющая каме­ра пульсатора; 16- верхняя площадка клапана пульсатора; 17 - нижняя площадка клапана пульсатора

Из камеры 3 пульсатора вакуум через канал 11, соединяющий камеры 3 и 14, через дроссель 12 переходит в камеру 14. Атмос­ферное давление камеры 2 опускает клапан 13 и, перейдя на ка­меру 3 и в межстенные камеры стаканов, формирует такт сжатия (рис. 5, б). Клапан 13 пульсатора разобщает камеры 3 и 1. Из камеры 14 воздух отсасывается по длинному дросселю 12, сече­ние и длина которого влияют на скорость отсоса. В ходе такта сжатия значения давлений воздуха в распределительной камере коллектора 10 и камере 6 выравниваются, а разность давлений, направленная в сторону камеры 7, опускает мембранно-клапанный механизм и открывает свободный доступ атмосферному воз духу в камеру 7, способствуя эвакуации молока из молочной ка­меры коллектора.

Доильный аппарат АДУ-1-09. Аппарат имеет в своем составе двухтактный коллектор и вибропульсатор АДУ.02.200, который позволяет стимулировать процесс молокоотдачи вибрационным воздействием (частотой 600 мин-1) со стороны сосковой резины на тело соска в такте сжатия. Пульсатор преобразует постоянный вакуум в вакуумной системе доильной установки в пульсирующий (такты сосания и сжатия), одновременно создавая в ходе такта сжатия вибрации давления в межстенном пространстве стаканов с перепадом порядка 4...8 кПа.

Доильный аппарат «Нурлат». Конструкция аппарата выполнена по типу доильного аппарата «Дуавак-300» шведской фирмы «Альфа-Лаваль-агри». Аппарат обеспечивает два уровня вакуума: уро­вень низкого вакуума (33 кПа) и уровень номинального вакуума (50 кПа). Аппарат автоматически контролирует в процессе дойки уровень молокоотдачи коровы (количество выделяемого коровой молока в единицу времени) и регулирует значение вакуума в зави­симости от конкретного уровня молокоотдачи. При уровне моло­коотдачи менее 200 г/мин аппарат обеспечивает низкий вакуум, при молокоотдаче более 200 г/мин - номинальный вакуум.

Функционально аппарат можно разделить на четыре блока: датчик молокоотдачи, двухпозиционный двухполостной вакуум­ный редуктор, задатчик пульсов и коллектор.

Принцип действия аппарата следующий: датчик молокоотдачи сравнивает действительный уровень молокоотдачи с заданным уровнем, и в зависимости от соотношения действительного и за­данного уровней магнитный клапан, расположенный в вакуумном редукторе, переводит вакуумный редуктор с одного значения ва­куума на другое. Вакуум, созданный вакуумным редуктором, оп­ределяет создаваемую задатчиком пульсов частоту смены тактов сжатия и сосания. Схематично процесс доения, изменения уров­ней вакуума и молокоотдачи показан на рис. 6.


Рис. 6. Схема процесса дойки

Конструктивно блок управления 6, приемник 7 и пульсатор 9 аппарата объединены в единый узел (рис. 7). В аппарате исполнения ПАД 00.000-01 указанный узел крепится к доильному ведру посредством кронштейна, распо­ложенного в нижней части блока управления 6. В период между дойками подвесная часть подве­шивается к скобе, расположенной на ручке блока управления 6. Пульсатор 9 соединяется с коллек­тором 4 двумя шлангами перемен­ного давления 15. Коллектор 4 со­единен с приемником /молочным шлангом 5. Блок управления 6 подключается к доильной уста­новке вакуумным шлангом 13. Приемник 7 соединяется с доиль­ной установкой молочным шлан­гом 14.


Рис. 7. Общий вид аппарата, подключен­ного к вакуум-молокопроводу:

1 - доильный стакан; 2 - сосковая резина; 3 - трубка; 4 - коллектор; 5 - молочный шланг; 6 - блок управления; 7 - приемник; 8 - скоба; 9 - пульсатор; 10 - ручка; 11 - вакуум-провод; 12 - молокопровод; 13 - вакуумный шланг; 14 - молочный шланг; 15 - шланг переменного давления

Детали приемника 7 и крышка коллектора 4 изготовлены из про­зрачных материалов, что позволяет оператору наблюдать за процессом дойки.

При работе аппарата постоянное вакуумметрическое давление создается на выходе блока управления 6, в надмембранной полос­ти приемника 7, в приемнике 7, в молочно-вакуумной полости коллектора 4 и в подсосковых пространствах доильных стаканов 1. В фазе стимуляции или в фазе додаивания переменный уровень вакуума (смена с определенной частотой вакуума 33 кПа и атмос­ферного давления) создается пульсатором 9 в пульсационных ка­мерах доильных стаканов 1.

В фазе основного доения переменный уровень вакуума (50 кПа) создается пульсатором 9 в межстенных камерах доильных стаканов 1.

Собранное в молочно-вакуумной полости коллектора 4 молоко удаляется из приемника 7 в молокопровод 12 доильной установки в момент такта сосания.

При молокоотдаче менее 200 г/мин (в фазе стимуляции и в фазе додаивания) молоко удаляется из приемника 7, не поднимая поплавка в нем. При молокоотдаче более 200 г/мин (в фазе основ­ного доения) молоко поднимает поплавок в приемнике 7, что приводит к переключению режима уровня вакуума в блоке управ­ления 6.

Работа блока управления показана на схеме (рис. 8). Блок уп­равления имеет два режима работы: режим низкого вакуума (рис. 8, а) и режим номинального вакуума (рис. 8, б). При обоих режимах в полости 12 блока управления создается вакуум 50 кПа.


Рис. 8. Схема работы блока управления в режимах низкого (а) и высокого (б) вакуума:

1 - магнит; 2, 7, 10,12 - отверстия; 3 - мембрана; 4 - сильфон; 5,6,9 - полости; 8 - управ­ляющий клапан; 11 - клапан

Режим низкого вакуума (см. рис. 8, а) соответствует фазе сти­муляции или фазе додаивания в процессе дойки. Магнит 1 нахо­дится в крайнем верхнем положении и закрывает отверстие 2, со­единяющее атмосферу с внутренними полостями блока управле­ния. Магнит 1 удерживается в верхнем положении за счет силы притяжения магнита 7 и магнита, расположенного в поплавке приемника. Отверстие 12 открыто, что приводит к выравниванию вакуума в полостях 9 и 5. Созданное в полости 5 разряжение сжи­мает сильфон 4 и отжимает в верхнее положение мембрану 3, свя­занную с управляющим клапаном 8. Управляющий клапан 8 при этом закрывает отверстие 7. За счет дросселирования клапаном 11 отверстия 10, соединяющего полости Ри 6, в полости б устанавли­вается постоянный вакуум 33 кПа. Такой же уровень вакуума уста­навливается в пульсаторе, коллекторе и над мембранной полости приемника аппарата.

Режим номинального вакуума (см. рис. 8, б) соответствует фазе основного доения. За счет увеличения молокоотдачи и всплытия поплавка в приемнике силы притяжения, возникающей между магнитом поплавка и магнитом /, не хватает, чтобы уравновесить силу тяжести магнита 7 и удержать его в верхнем положе­нии. Магнит / падает под своим весом, открывает отверстие 2, че­рез которое воздух устремляется в полость 5. За счет разницы атмосферного давления, созданного в полости 5, и давления в поло­сти 9 магнит удерживается в крайнем нижнем положении, запирая отверстие 12. Из-за отсутствия разряжения в полости 5 мембрана 3 принимает исходное положение. Связанный с мембраной 3 управ­ляющий клапан 8 принимает крайнее нижнее положение и пол­ностью открывает отверстие 7 При этом давление в полости 6вы­равнивается с давлением в полости 9 и принимает вакуумметрическое давление, сильфон 4 за счет собственной упругости прини­мает первоначальную (несжатую) форму.

Приемник предназначен для контроля уровня молокоотдачи, переключения блока управления с режима на режим, регулирова­ния уровня вакуума в подсосковом пространстве доильных стака­нов и автоматического запирания вакуумной линии в случае спа­дания доильных стаканов с сосков вымени коровы. Работа приемника показана на схеме (рис. 9). Приемник работает в двух режимах: режиме номинального вакуума (рис. 9, б) и режиме низкого вакуума (рис. 9, а), при обоих режимах в по­лости 9 приемника создается вакуум 50 кПа.


Рис. 9. Схема работы при­емника в режимах низкого (а) и высокого (б) вакуума:

1 - седло отверстия; 2 - стакан; 3 - шток; 4 - поплавок; 5 - отверстие; 6 - надмембранная полость; 7 - дросселирую­щее отверстие; 8 - мембрана; 9 – подмембранная полость; 10 - магнит; 11 - магнит блока управления

Режим низкого вакуума соответствует фазе стимуляции или фазе додаивания. При низкой молокоотдаче в указанные фазы процесса доения шток 3 или поплавок 4 находятся на дне стакана 2. Все молоко успевает пройти через дренажное отверстие, распо­ложенное в нижней части штока 3. В этом режиме магнит 10 по­плавка 4 удерживает магнит 11 блока управления в верхнем поло­жении, блок управления находится в режиме низкого вакуума, в надмембранной полости 6 установлен вакуум 33 кПа.

За счет разницы давлений в надмембранной полости 6 и под-мембранной полости 9, в которой поддерживается постоянный вакуум 50 кПа, мембрана 8 отжимается в нижнее положение и дросселирует отвер­стие 7 Дросселирова­ние проходного сечения отверстия 7 создает перепад давлений в этом сечении, что приводит к уменьшению вакуума в полости 5 до 33 кПа.

Такой же вакуум устанавливается в подсосковом пространстве доильных стаканов.

Режим номинального вакуума соответствует фазе основного дое­ния. При высокой молокоотдаче молоко не успевает проходить через дренажное отверстие в нижней части штока 3. Набирающее­ся в стакане 2 молоко поднимает пустотелый поплавок 4, кото­рый, в свою очередь поднимает шток 3. Открытое отверстие 1 дает возможность свободному выходу молока в молокопровод. При этом магнит 10 поплавка 4 перестает удерживать магнит 11 блока управления в верхнем положении. Блок управления переходит в режим высокого вакуума, поэтому и в надмембранной полости 6 устанавливается вакуум 50 кПа. Перепад давления в полостях 6и 9 отсутствует, мембрана 8 принимает исходное положение и полно­стью открывает проходное сечение отверстия 7. В полости 5, а значит и в подсосковом пространстве доильных стаканов, устанав­ливается вакуум 50 кПа. При случайном спадении доильных ста­канов с вымени коровы в полостях 5 мгновенно устанавливается атмосферное давление. За счет перепада давлений в полостях 6 и 9 мембрана 8 перекрывает отверстие 7.

Пульсатор попарного действия. Пульсатор предназначен для преобразования постоянного вакуума в пульсирующий (колеба­тельный процесс смены вакуума и атмосферного давления), кото­рые формируют повторяющийся с определенной частотой про­цесс сжатия сосковой резины в доильных стаканах.

Пульсатор (рис. 10) состоит из корпуса 22, основания 3, штока 7, коромысла 2, ползуна 4, пружины 1, мембраны 21, иглы 18, правой крышки 15, левой крышки 5, заглушки 19, колпачка 20, штуцеров 11 и 13.


Рис. 10. Пульсатор попарного действия:

1 - пружина; 2 - коромысло; 3 - основа­ние; 4 - ползун; 5 - левая крышка; 6 - во­дило; 7- шток; 8, 21 - мембраны; 9 - шай­ба; 10, 12, 23 - оси; 11 - левый штуцер; 13 - правый штуцер; 14, 16 - шайбы; 15 - правая крышка; 17 - гайка; 18- игла; 19 - заглушка; 20 - колпачок; 22 - корпус; А - левая надмембранная полость; Б - левая подмембранная полость; В - правая под-мембранная полость; Г - правая надмемб­ранная полость

В корпусе 22 смонтированы все детали пульсатора. С помо­щью байонетного разъема на корпусе 22 пульсатор устанав­ливается на блок управления.

Основание 3 закреплено тремя винтами в корпусе 22. На оси 12 основания 3 установлено водило 6, на оси 23 - коромысло 2. На водило 6 закреплена ось 10, которая удерживает пружину 1. Води­ло 6, коромысло 2 и пружина 1 образуют щелчковый механизм.

Шток 7 скользит во втулках, запрессованных в корпусе 22. На концах штока 7 через шайбы 14 и 16 с помощью гайки 17 закреплены мембраны 21. Две шайбы 9, установленные на штоке 7, пере­мещают ползун 4, который перекрывает определенную группу ка­налов в основании 3 при своем перемещении. В штоке 7 выполне­но сквозное отверстие, сечения которого дросселируются иглой 18.

Коромысло 2 установлено на оси 23 основания 3 и предназна­чено для перекрытия группы отверстий в основании 3. При работе коромысло 2 принимает два крайних устойчивых положения: пра­вое и левое.

Пружина 1 предназначена для изменения положения коромыс­ла 2.

Правая крышка 15 и левая крышка 5 крепятся винтами-саморе­зами к корпусу 22. В правой крышке 15 расположено отверстие, предназначенное для вращения иглы 18 при настройке частоты. В рабочем положении указанное отверстие герметизируется заглуш­кой 19 и закрывается колпачком 20.

Щелчковый механизм снаружи закрыт мембраной 8. Под мем­браной 8 установлена сетка, которая удерживает две прокладки из полиуретана. Эти прокладки предназначены для очистки воздуха, засасываемого пульсатором.

В корпус 22 ввернуты правый штуцер 13 и левый штуцер 11, через которые пульсатор с помощью шлангов переменного давле­ния соединяется соответствующими штуцерами распределителя коллектора.

Правая надмембранная полость Г сообщается между собой че­рез канал, расположенный внутри штока 7. Вместе с тем обе ука­занные полости герметизированы от атмосферы и остальных по­лостей пульсатора.

Пульсатор работает следующим образом. В первоначальном положении шток 7, водило 6 и ползун 4 находятся в крайнем пра­вом положении, а коромысло 2 - в крайнем левом положении. При таком положении ползун 4 соединяет центральный паз осно­вания 3 с правым пазом. Коромысло 2 соединяет центральное от­верстие основания 3, связанное с центральным пазом, с правым отверстием, соединенным с правой подмембранной полостью В. Воздух отсасывается через центральное отверстие в основании 3, что приводит к созданию вакуума в правом штуцере 13 и в полости В. В этом положении левое отверстие и левый паз в основании 3 нахо­дятся в открытом положении. Левый штуцер 11 и левая подмембранная полость Б находятся под атмосферным давлением.

Созданный в правой подмембранной полости В вакуум отжимает в левое положение мембрану 21, которая перемещает в левое положение шток 7, водило 6 и ползун 4. При этом в правой над-мембранной полости Г создается вакуум, значение которого ниже, чем в правой подмембранной полости В (за счет поступления воз­духа через канал штока 7 из левой надмембранной полости А), При перемещении штока 7 из правого в левое положение коро­мысло 2 остается в правом положении до тех пор, пока водило б не займет крайнее левое положение. В момент достижения што­ком 7 крайнего левого положения водило 6 выходит из зацепления коромысла 2, которое находится под воздействием пружины, т. е. происходит переключение каналов и отверстий в пульсаторе. В таком положении в левом штуцере 11 и в левой подмембранной по­лости Б создается вакуум, а правый штуцер 13 и полость В оказы­ваются под атмосферным давлением, т. е. движение всех частей повторяется, но в обратном направлении.

Скорость переключения пульсатора (частота пульсаций) зави­сит от скорости перетекания воздуха из одной надмембранной по­лости в другую. Регулирование скорости претекания воздуха, а значит частоты пульсаций, осуществляется за счет изменения про­ходного сечения дроссельного отверстия в штоке 7 при вращении иглы 18.

В табл. 1 приведены краткие технические характеристики некоторых доильных аппаратов.

Устройство зоотехнического учета молока УЗМ-1А (рис. 11) входит в состав доильной аппаратуры. Принцип работы УЗМ-1А заключается в том, что молоко из доильного аппарата поступает через патрубок 2 в приемник 4, из которого через окно 5 проходит в камеру 7 и заполняет ее. По наполнении камеры поплавок 8 всплывает, перекрывая трубку отвода воздуха 3 и окно 5. Через отверстие 6 впуска воздуха атмосферное давление вытесняет молоко по трубке 11 с калиброванным выходным соплом, вследствие чего поток проходит через это сечение с несколько повышенным напо­ром и по калиброванному каналу 13 примерно 2 % общего количе­ства молока перетекает в мензурку 9.


Рис. 11. Схема работы устройства зоотехнического учета молока УЗМ-1А при заполнении (а) и опорожнении (б) мерной камеры:

1 - патрубок выхода молока; 2 - патрубок входа молока; 3 - трубка отсоса воздуха; 4 - при­емник молока; 5 - окно в камеру 7 и седло поплавка; 6 - отверстие впуска воздуха; 7 - мер­ная камера; 8 - поплавок; 9 - мензурка; 10 - трубка поступления молока в мензурку; 11 - трубка выхода молока; 12 - клапан; 13 - калиброванный канал

Таблица 1. Техническая характеристика доильных аппаратов

Марка аппарата Параметр ДА-2М «Майга» АДУ-1 АДС (АДУ-1.04) АДН (АДУ-1.03) «Волга» «Нурлат» Duovac 300 «De Laval» (Швеция) Stimo-pulsC «Westfalia» (Германия) Uniflow 3 S.A.C. (Дания) 1 Profimilk (Россия-Италия)
Число тактов 2(3)
Величина вакуума в системе, кПа 48-50 48(53) 52-53 50-51 48-50 48-50 44-46 48-50
Количество фаз при доении
Величина вакуума в фазах, кПа: стимуляции основного доения додаивания 48-50 48 (53) 52-53 33 50 33 33 50 20 50 44-46 48-50
Величина молокоотдачи при смене фаз, г/мин - - - - - - 450-500 -
Характер доения одновре­менное одновре­менное одновре­менное одновре­менное одновре­менное попар­ное попар­ное попар­ное попар­ное попар­ное
Число пульсаций в 1 мин 90-120 65-75 (60-70) 60-70* 60-70 45/60/45 45/60/45 300/60
Соотношение тактов: сосание сжатие отдых 70 30 66 (66) 34(16) - (18) 72 28 60 10 30 60 40 - - - 50; 60; 70 50; 40; 30
Масса подвесной части, кг 2,8 3,0 (2,0) 2,9-3,1 2,9-3,2 1,8-2,2 1,6 1,5 - 1,36 2,6
Длина сосковой резины, мм 140;155
Примерная стоимость (без доильного ведра) на 2005 г, у.е.
*Количество пульсаций высокочастотного блока 600 пул/мин.

Остальное молоко через патрубок 1 идет в молокопровод. По освобождении от молока камера 7 вакуумируется по каналу трубки 11, поплавок опускается, так как давление на него снизу резко падает, и камера 7 заполняется новой порцией молока.

При работе устройства сопротивление воздуха в мензурке не должно мешать притоку молока по калиброванному каналу 13. Выпуск избыточного воздуха происходит через клапан 12 на сливной трубке 10. На шкале мензурки каждое деление соответствует 100 г выдоенного молока. При снятии мензурки воздух освобождает каналы от остатков молока. Для очистки трубки 11 снимают верхний колпак прибора и крышку на трубке 10 против канала.

Устройство УЗМ-1А позволяет вести учет молока с относительной погрешностью ±5 % при измерении удоя в пределах 4... 15 кг и работает при вакууме, обычном для доильных установок (48...51 кПа). Масса прибора составляет 1,1 кг.

Доильные аппараты зарубежного производства. Отличительными особенностями доильных аппаратов зарубежных конструкций являются электронный или пневматический попарный пульсатор, коллектор увеличенного объема (250...600 мл) с отверстием для впуска воздуха в верхней части диаметром 1 мм, молочные резиновые либо ПВХ шланги диаметром 16мм, постоянный или управляемый режим работы с изменением значения вакуума либо частоты пульсаций, с автоматическим снятием или индикацией (световой, звуковой) окончания процесса доения.

Сравнительная характеристика доильных аппаратов зарубежных фирм приведена в табл. 1.

Основные типы пульсаторов, применяемые в зарубежных доильных аппаратах, - гидропневматические с автономным приводом и электронные с автономным или центральным управлением попарного действия. Как правило, системы электронной пульсации чаще используются в доильных залах на автоматизированных установках. Однако электронные пульсаторы могут применяться и на установках для стойлового содержания скота. В обеих модифи-кациях пульсаторов соотношение тактов составляет, как правило, 50/50 и 60/40 с возможностью регулирования в электронных исполнениях. Так, система электронной пульсации LOW POWER фирмы SAC (Дания) позволяет регулировать соотношение тактов в пределах 50/50...60/40 и частоту пульсаций 50...180 мин-1. К тому же данная система имеет фазовое смещение, обеспечивающее периодичность работы всех доильных аппаратов и равномерное потребление воздуха в процессе работы установки.

Система «Стимопульс» фирмы «Westphalia Separator» (Германия) обеспечивает электронную пульсацию в пределах 80...300 мин"1. В начале доения включается режим стимуляции с частотой пульсаций до 300 мин"1, в котором действует заданный программой интервал времени, затем система переходит на обычный режим доения. Пульсаторы различных модификаций доильных аппаратов и фирм имеют, как правило, однотипную конструкцию и параметры, соответствующие стандарту ISO 5707 «Установки доильные. Конструкция и техническая характеристика».

Классификация доильных установок
Разнотипность и различия в решении организационных форм машинного доения отражены в современной классификации доильных установок (рис. 12).


Рис. 12. Классификация доильных установок

Схемы основных типов отечественных доильных установок по­казаны на рис. 13, а в табл. 2 приведены их краткие техни­ческие характеристики.

2. Технические характеристики основных типов отечественных доильных установок

Показатель АД-100Б АДМ-8А УДА-8А «Тандем» УДА-16 «Елочка» УДС-3Б
Число станков - - 2x4 2x8
Число операторов машинного доения 2...4
Пропускная способность, коров/ч 56...112 60...70 66...78 50...55
Обслуживаемое поголовье, коров 100...200
Тип доильного аппарата АДУ-1 АДУ-1 Манипулятор МД-Ф-1 Манипулятор МД-Ф-1 «Волга» или АДУ-1
Установленная мощность, кВт 4,75…8,75 18,1 20,1 6,5/5,5
Масса установки, кг

При стойловом содержании коров приме­няют доение в ведра и в молокопровод, а при наличии автомати­ческих устройств для отвязывания и привязывания животных ис­пользуют доильные площадки. Беспривязное содержание требует своих форм организации процесса - это доильные площадки групповые, конвейерные и т. д. На пастбищах работают передвиж­ные установки.


Рис. 13. Схемы доильных установок:
а - доение в стойлах переносными аппаратами в ведра; б - то же, в молокопровод; в - «Тандем» с боковым заходом животных; г - групповой «Тандем»; д - групповая «Елочка»; г - конвейерно-кольцевой «Тандем»; ж - конвейер «Елочка»; з - «Роторадиаль»; и - «Полигон»; к - «Трайгон»; 1 - вакуум-насос; 2 - молокосборник с молочным насосом

Доильные установки со сбором молока в ведро и молокопровод
Доильные установки с переносными ведрами типа ДАС-2В, АД-100Б применяют на скотных дворах с поголовьем 100...200 коров и в родильных отделениях. Состоят они из вакуумной установки УВУ-60/45 и доильных аппаратов с переносными ведрами и бывают двухтактными (ДАС-2В) и трехтактными (ДЦ-100Б). Молоко переливается из ведер во фляги и транспортируется в молочное отделение, где очищается, охлаждается и сливается в резервуар для хранения. На установках работают три-четыре оператора, обслуживая 20...30 коров. Производительность дояра небольшая - 18...20 коров в час. В настоящее время идет постепенная замена этих установок на установки с молокопроводом.

Доильный агрегат с молокопроводом АДМ-8А в варианте на 100 коров имеет 6, а в варианте на 200 коров - 12 доильных аппаратов и соответственно одну и две силовые установки УВУ-60/45. В комплект входят стеклянные молокопроводы, групповые счетчики надоя молока, устройства зоотехнического учета, универсальные молочные насосы НМУ-6, вакуум-трубопроводы, устройства для промывки молокопроводов, фильтры, пластинчатый охладитель молока, электроводонагреватели, вакуум-регуляторы, оборудование для монтажа, управления работой агрегатов установки. В комплект не включены холодильная машина, емкости-танки для хранения молока и молокоочистители, приобретаемые хозяйством отдельно.

В режиме доения технологический процесс включает в себя выполнение операций пуска установки в работу и подготовки животных к доению, включение аппарата, надевание доильных стаканов на соски вымени, доение (контрольное доение с подключением счетчика молока УЗМ-1А), транспортировку молока по молокопроводу в групповой счетчик удоя, в молокосборник и перекачивание его молочным насосом через молочный фильтр, пластинчатый охладитель в емкость для сбора молока (молочный танк, резервуар-охладитель).

Ветви молокопровода в коровнике над кормовыми проездами оборудуют подъемными участками с пневматической системой подъема и опускания. В промежутках между доениями участки молокопровода поднимают над кормовыми проходами для проезда мобильных кормораздатчиков.

Перед началом доения ветви молокопровода разобщают краном-разделителем (каждая ветвь обслуживает 50 коров).

Включают вакуум-насос и проверяют вакуум в линии. Доильные аппараты подключают к системе вакуум-молокопровода, выполняют остальные операции подготовки к доению и ставят доильные стаканы в определенной последовательности на соски вымени. Молоко из аппаратов по молокопроводу идет в групповые счетчики молока, откуда поступает в молокосборник.

На рис. 14 показано оборудование молочной, предназначенное для сбора, учета, очистки, обработки холодом и перекачки молока. Стеклянный молокосборник 7 с поплавковым клапаном через предохранительную камеру соединен с вакуум-проводом. В нижней части сборника установлен датчик 10. При заполнении жидкостью поплавок 11, всплывая, закрывает на трубке 12 отверстие, сообщающее полость сборника с датчиком, отключая его от вакуума. Атмосферное давление, действуя через мембрану датчика на переключатель, включает насос 8, перекачивающий жидкость через фильтр 9 и охладитель 6. При опускании поплавка насос отключается.

Счетчики молока АДМ-52.000 (по одному на группу 50 животных) имеют дозаторы 14, оборудованные мерной камерой 15 и поплавково-клапанными устройствами 15. Счетчик 1 показывает удой от группы коров в килограммах.


Рис.14. Оборудование молочной:
1 - счетчик дозатора; 2 - клапанный предохранитель; 3 - вакуумный кран; 4 - крышка молокоприемника; 5 - пульт управления; 6 - пластинчатый ох-ладитель; 7 - молокосборник; 8 - молочный насос с электродвигателем; 9 - молочный фильтр; 10 - датчик; 11 - поплавок датчика; 12 - трубка; 13 - коллектор; 14 - дозатор; 15 - мерная камера дозатора; 16- молочный шланг; 17- поплавково-клапанное устройство; 18, 19 - резиновые патрубки; 20- воздушный шланг; 21 - переключатель молокопровода

Автомат промывки (рис. 15) служит для автоматического управления циклом промывки молокопровода и молочного оборудования по заданной программе. Он обеспечивает преддоильное полоскание и промывку после доения.


Рис. 15. Автомат промывки:
1 - бак; 2 - пневматический кран; 3 - пробка; 4 - фиксирующий ремень; 5 - кран; 6 - переходник; 7 - выключатель; 8 - блок управления; 9 - вентиль; 10 - из водопровода; 11 - к водонагревателю; 12 - трубопровод; 13 - из водонагревателя

Автомат имеет бак 7, в ко­тором размещены пневмокран 2 для переключения направления потока моющей жидкости на циркуляцию или в канализацию и поплавковый регулятор для поддержания определенного уровня жидкости. Блок управления 8 состоит из программного валика с восьмью дисками и выведенным наружу указателем, приводимого во вращение от электродвигателя, трех электропневматических вентилей, управляемых программными дисками, конечного вык­лючателя и включателя. Дозирующее устройство представляет со­бой стеклянный мерный баллон со шлангом для всасывания кон­центрированного моющего раствора (дезмола и др.) из канистры, шлангом подвода вакуума от крана 5 и шлангом для слива дозы раствора в бак 7. Блок вентилей 9 предназначен для подачи в бак по программе холодной и горячей воды. Программу включают на­жимом кнопки на блоке управления.

Во время преддоильного полоскания холодная вода заливается в бак 7 до заданного уровня, а затем засасывается через промывоч­ные головки коллекторной трубы и доильные аппараты в молокопровод и далее через групповые счетчики в молокосборник. Из него вода молочным насосом через пневмокран бака 1 выводится в канализацию.

После прополаскивания молокопроводящие пути просушива­ют атмосферным воздухом.

Во время последоильной промывки молокопроводящие пути прополаскивают теплой водой, подавая в бак 7 одновременно хо­лодную и горячую воду и сливая ее при возврате в канализацию. Затем проводят циркуляционную промывку. В камеру пневмокрана 2 подают вакуум, при этом кран переключается, слив жидкости в канализацию прекращается, и она вновь подается в бак 1 через чашу моющего концентрата. В эту чашу предварительно слита доза концентрированного моющего раствора из стеклянной кол­бы, в результате чего вода и концентрат смешиваются и затем ра­створ сливается в бак. После заданного программой времени цир­куляционной промывки раствор сливается в канализацию. После этого в бак 1 снова подается чистая теплая вода, которая, цирку­лируя, прополаскивает молокопроводящие пути и сливается в ка­нализацию. Подача воды в бак прекращается, и по молокопроводящим путям просасывается атмосферный воздух, просушивая их. В заключение цикла промывки кратковременно включается мо­лочный насос для удаления остатков воды из молокосборника и выключаются вакуумные установки.

В случае неполадок в блоке управления предусмотрено ручное управление процессом промывки молокопроводящих путей агре­гата. Продолжительность цикла автоматической промывки перед доением и после него составляет 66 мин. При этом преддоильное прополаскивание с просушкой продолжается 16,5 мин; последо-ильное прополаскивание - 8, циркуляционная промывка - 16, прополаскивание - 10, просушка - 15,5 мин.

Работа доильного агрегата АДМ-8А включает в себя следующие основные операции: промывку доильных аппаратов и молокопро-вода перед доением; подготовку коровы к доению; доение; замер молока, надоенного от каждой коровы (при контрольных дойках); транспортировку молока в молочное отделение; замер выдоенного молока от группы 50 коров; фильтрацию молока; охлаждение мо­лока; подачу молока в емкость для хранения; промывку и дезин­фекцию доильных аппаратов и молокопровода после доения.

Модернизированный типоразмерный ряд отечественных доильных установок для доения коров в стойлах

В основу доильных установок этого ряда положен блочно-мо­дульный принцип построения, основанный на применении уни­фицированных многофункциональных блоков, таких, как доиль­ный аппарат с обратной связью и управляемым щадящим режи­мом работы, устройство группового учета и транспортировки мо­лока, новые схемы молокопроводов доильных установок и т. д. Установки позволяют механизировать процесс доения и первич­ной обработки молока в хозяйствах с различными размерами и формами собственности, что наиболее полно способствует совре­менной концепции построения расширенного типоразмерного ряда доильного оборудования для многоукладной экономики.

Доильные установки с переносными ведрами на 10... 100 коров относятся в основном к фермерскому типу и могут быть использо­ваны на небольших фермах коллективных хозяйств.

На рис. 16 изображена общая схема установки, включающая доильные аппараты 4, вакуум-провод 1, моноблочное устройство промывки 3, вакуумную установку 2. Доильные аппараты содер­жат доильное ведро новой конструкции из высококачественной нержавеющей стали. Особенностью установки является новая компоновочная схема с моноблочным устройством промывки (рис. 17), состоящим из вакуум-баллона-опорожнителя 7, двух­секционной ванны 6 с перегородкой, имеющей в нижней части перекрываемое отверстие для выполнения режимов ополаскива­ния и циркуляционной мойки доильных аппаратов 4, установлен­ных попарно крышками на промывочное кольцо, сообщенное шлангом 3, имеющим зажим с входным патрубком опорожнителя. Вакуум-баллон-опорожнитель 7 смонтирован на раме устройства промывки и представляет собой модификацию многофункцио­нального устройства, управляемого пульсатором с пульсоусилителем. Модифицированное устройство промывки предполагает раз­дельную промывку доильных аппаратов с крышками и ведер, опо­ласкиваемых вручную, что упрощает конструкцию устройства, его монтаж и повышает уровень автоматизации установки в целом за счет сокращения трудозатрат на промывку по сравнению с уста­новкой типа ДАС-2В.

Рис. 16. Общий вид доильной установки УДВ-30:
1 - вакуум-провод; 2 - вакуумная установка; 3 - устройство промывки; 4 - доильная аппа­ратура


Рис. 17. Общий вид многофункцио­нального блока - устройства промывки:
1 - к вакуумному насосу; 2 - из вакуумного насоса; 3 - моечный шланг; 4 - доильные аппараты; 5 - канализация; 6 - двухсекци­онная ванна; 7 - вакуум-баллон-опорожнитель

Технология доения не отличается от используемой на доиль­ных установках с переносными ведрами. В режиме промывки ус­тановка работает следующим образом: после переноски доильных аппаратов и установки их на устройстве промывки ванну заполня­ют промывочной жидкостью и открывают зажимы на шлангах. При этом жидкость засасывается через доильные стаканы и по шлангам поступает в промывочное кольцо, струи жидкости омы­вают противоположные стенки крышек. По мере заполнения объема, заключенного между крышками и кольцом, вакуум в пос­леднем падает, и жидкость отсасывается в вакуум-баллон-опорожнитель 7, который автоматически выводит промывочную жид­кость из-под вакуума в ванну. После опорожнения кольца жид­кость снова засасывается, и цикл промывки повторяется. Выход кольца имеет дроссель, поэтому расход жидкости из кольца в вакуум-баллон-опорожнитель меньше, чем поток подачи из доиль­ных аппаратов в кольцо, за счет чего получается прерывистый им­пульсный характер промывки доильных аппаратов. В исполнени­ях доильных установок на 50 коров увеличивается количество про­мывочных колец и размер ванны. В исполнении на 100 коров применяется два моноблочных устройства промывки, используе­мых в типоразмере 50.

Доильные установки с молокопроводом для фермерских хо­зяйств на 25 и 50 коров, используемые в настоящее время на се­мейных молочных фермах, как уже отмечалось ранее, имеют в своем составе сложные и дорогостоящие узлы:

  • молокоопорожнитель с блоком управления и молочным насосом;
  • устройства подъема ветвей молокопровода.
Эти установки не в полной мере соответствуют молочным фер­мерским хозяйствам, сложны в эксплуатации, поэтому нужны но­вые типы доильных установок с молокопроводом, в которых пере­численные сложные узлы были бы заменены на более простые и надежные. Такими установками могут быть:
  • установка доильная с молокопроводом на 25 коров УДМ-25 с расположением молокопровода в одну линию и пневмомехани­ческим устройством вывода молока из-под вакуума;
  • установка доильная с молокопроводом на 50 коров УДМ-50 с устройством подъема молока через кормовой проезд, выполнен­ным на базе модернизированного дозатора молока, и пневмомеха­ническим устройством вывода молока из-под вакуума;
  • установка доильная с молокопроводом на 50 коров УДМ-50 без устройства подъема молока через кормовой проезд и пневмомеха­ническим устройством вывода молока из-под вакуума.
В качестве устройства вывода молока из-под вакуума и одно­временно устройства для циркуляционной промывки молоко-провода разработан пневмомеханический опорожнитель с при­водом от пульсатора, выполненный на базе дозатора молока АДМ-52.000. Основными составными частями усовершенствован­ных доильных установок являются:
  • усовершенствованный доильный аппарат;
  • модернизированный молокопровод с трубой из нержавеющей стали;
  • устройство для подъема молока через кормовой проезд и одно­временно его учета;
  • устройство вывода молока из-под вакуума и циркуляционной промывки молокопровода;
  • переключатель «доение-промывка»;
  • молочные фляги или резервуар для сбора и охлаждения молока;
  • унифицированная вакуумная установка соответствующей про­изводительности, обеспечивающая работу от трех до 12 доильных аппаратов.
Компоновка установок может быть осуществлена в двухрядном варианте (УДМ-50) и однорядном варианте (УДМ-25) с располо­жением на вакуум-проводе одновременно и молочной, и промы­вочной линий. Оборудование молочной линии у этих установок полностью унифицировано.

Доильная установка УДМ-25 имеет один ряд молокопровода и обслуживает 25 коров. Процесс доения и промывки существенно не отличается от схемы доильной установки УДМ-50.

Особенностью доильных установок УДМ-25, -50 является то, что они выполнены на блочно-модульной основе, основные узлы которой являются составной частью доильных установок для большего поголовья - на 100 и 200 голов, а также то, что первич­ный и конечный молокоприемники представляют собой модифи­кации модернизированного дозатора молока.

На основании рассмотренных принципиальных технологичес­ких схем доильных установок с молокопроводом разработана усо­вершенствованная типовая технологическая схема доильной уста­новки с молокопроводом на 100 и 200 коров. Данная схема уни­версальна и может быть выполнена по любому варианту.

Сущность работы установки поясняется рис. 18 и 19, на которых представлены схемы доильной установки с молокопрово­дом в режиме доения и в режиме промывки.


Рис. 18. Усовершенствованная схема доильной установки с молокопроводом на 100...200 коров в режиме доения:
1 - доильный аппарат; 2 - молокопровод; 3 - верхний транспортный молокопровод; 4 - ва­куумный трубопровод; 5 - распределители; 6 - дозатор молока; 7 - молокоприемник; 8 - магистральный вакуум-провод; 9 - вакуумная установка

Доильная установка содержит доильные аппараты 1 (см. рис. 18), подключаемые к стойловым вакуум-проводу и молокопроводу 2, первичные молокоприемники-дозаторы молока 6, транспортный молокопровод 3, вакуумный трубопровод 4, управляемые распределители потока жидкости 5, вторичный молоко-приемник-релизер 7, подключенный к вакуум-проводу 8, кото­рый, в свою очередь, подключен к вакуумной установке 9. Транс­портный молокопровод 3 соединен с молокоприемником-релизером 7, с одной петлей стойлового молокопровода и дозатором 6. Вакуумный трубопровод 4 соединен с дозаторами 6 и молокоприемником 7 соответственно через управляемые распределители по­тока жидкости 5.

Работает доильная установка следующим образом. В режиме до­ения (см. рис. 18) молоковоздушная смесь от доильных аппара­тов 1 поступает в стойловый молокопровод 2и далее движется к до­заторам 6, из которых перекачивается отдельными учитываемыми порциями в транспортный молокопровод 3. Из транспортного мо­локопровода молоко поступает через управляемый распределитель потока 5 во вторичный молокоприемник-релизер 7, выводящий молоко насосом через фильтр в резервуар. Возвращаясь к дозато­рам, следует отметить, что наряду с молоком в них поступает и воз­дух, который отделяется в приемной камере и отсасывается в ваку­умный трубопровод 4, что способствует стабилизации вакуумного режима в стойловом молокопроводе и доильных аппаратах. По транспортному молокопроводу молоко движется в безнапорном ре­жиме, причем вакуумный режим в трубопроводе не влияет на ана­логичный в стойловом молокопроводе, поскольку при перекачке молока приемная камера дозатора отделяется от дозирующей. Транспортный молокопровод и вакуумные трубопроводы распола­гаются на высоте, достаточной для проезда кормораздатчика.

Дояр работает 3...4 доильными аппаратами, как и в серийной доильной установке АДМ-8А, с той лишь разницей, что обслужи­ваемые им животные располагаются в одну линию. Молоко, про­ходящее через дозаторы, учитывается и показывает надой от груп­пы 50 коров, обслуживаемых одним дояром. Дозаторы подключа­ются к стойловым молокопроводам одним из своих входов через тройники. Максимальная протяженность пути совместного дви­жения молока и воздуха по стойловому молокопроводу составляет примерно 30 м или 25 ското-мест, тогда как в серийной схеме это вся длина молокопровода до молокоприемника (около 100м). Чтобы исключить воздействие животных на дозаторы, последние, как правило, помещаются в ограждение, привариваемое к стойло­вой раме. Молочные шланги от дозаторов подключаются к транс­портному молокопроводу напрямую или через воздухоотделительную камеру, в зависимости от типа применяемого дозирующего устройства с впуском воздуха или без него.

Рассмотрим теперь режим промывки (см. рис. 19).


Рис. 20. Усовершенствованная схема доильной установки с молокопроводом на 100...200 коров в режиме промывки:
1 - молокопровод; 2 - верхний транспортный молокопровод; 3 - вакуумный трубопровод; 4 - распределители; 5 - дозатор молока; 6 - станция промывки; 7- доильный аппарат; 8 - молокоприемник; 9 - магистральный вакуум-провод; 10 - вакуумная установка

Управля­емые распределители 4 устанавливают в положение «промывка». Промывочная жидкость из автомата промывки через доильные аппараты 7 поступает в трубопроводы и далее через соответствую­щие распределители 4 в промывочный трубопровод 3 ближней и дальней линии (они же вакуумный трубопровод при доении). Проходя по стойловым молокопроводам через стационарные П-образные постоянно поднятые торцевые участки, жидкость на­правляется по противоположным линиям стойлового молокопровода, попутно вливаясь в противоположные дозаторы и проходя напроток в другую линию закольцованных молокопроводов (при­мерно 30 % в дозатор, 70 % напроток), и возвращается к первым дозаторам в каждой из линий. Из дозаторов промывочная жид­кость направляется в транспортный молокопровод 2, промывая его, и возвращается через управляемый распределитель потока жидкости в молокоприемник 8, из которого насосом перекачива­ется снова в бак автомата промывки. При использовании воздухоотделительной камеры при каждом цикле опорожнения дозатора поступающий в нее воздух перепускается в промывочный трубо­провод 5, усиливая циркулирующий эффект промывочной жидко­сти. Удаление остатков молока и промывочной жидкости из моло­копроводов происходит при помощи поролоновых пыжей, кото­рые поочередно направляются через управляемые распределители 4 в линию, при этом распределители 4 у дозаторов должны быть перекрыты. Пыжи, повторяя пути промывочной жидкости в сис­теме трубопроводов, возвращаются и задерживаются в управляе­мых распределителях 4.

Доильные установки «Елочка», «Тандем», «Карусель»
Доильные установки УДА-16А «Елочка» и УДА-8А «Тандем» унифицированы в линиях доения, промывки и управления.

Доильная установка УДА-8А «Тандем» показана на рис. 20. Манипулятор МД-Ф-1 устанавливается у каждого доильного стан­ка автоматизированных установок и выполняет доение, управление доением и снятие доильных стаканов с вымени после додаивания.


Рис. 20. Схема доильной установки УДА-8А «Тандем»:
I - площадка преддоильной обработки; II - траншея для оператора; III - коридор для прохо­да коров; IV- коридор для выхода животных; V- приямок для размещения молочного обору­дования; VI- помещение для вакуум-насосов; VII- помещение молочной; VIII-помещение для электроводонагревателя; 1 - доильный станок; 2 - вакуум-провод и молокопровод; 3 - место для манипулятора; 4 - входная дверца станка; 5- дверца для выпуска коровы; 6- кор­мушка; 7 - силовая станция; 8 - приямок выхлопной трубы; 9 - резервуар для молока; 10 - шкаф для запасных частей; 11 - электроводонагреватель; 12 - комплект оборудования для циркуляционной промывки; 13 - пластинчатый охладитель; 14 - молокосборник

Схема манипулятора показана на рис. 21. Оператор, находя­щийся в траншее установки, при помощи системы пневмоуправ-ления движением животных открывает доступ из преддоильного помещения очередной корове, которая проходит в свободный ста­нок площадки. Проведя операции подготовки коровы к доению (обмывание, массаж, сдаивание первых струек в отдельную посу­ду, осушка вымени, осмотр), оператор включает манипулятор пе­реводом рукоятки крана-распределителя 16 в крайнее положение а. Вакуум по вакуум-проводу 17 через шланг 9 переместит поршень цилиндра 8 вправо, и доильные стаканы 1 поднимутся к вымени в вертикальном положении. Оператор, нажимая одной рукой на стаканы для пережатия молочных патрубков 39, поднимает голов­ку 21 датчика манипулятора и опирает ее на падающую скобу 22. Подводя стаканы под вымя, он быстро надевает их на соски и пе­реводит кран-распределитель 16 рукоятью в режим доения б.


Рис. 21. Манипулятор МД-Ф-1:
1 - доильные стаканы; 2 - патрубок; 3 - распределитель переменного вакуума; 4 - шланг переменного вакуума от пульсатора; 5 - кронштейн-держатель доильных стаканов; 6 - воздуховакуумпроводный шланг; 7 - шток поршня; 8 - цилиндр приподнимания и додоя доиль­ных стаканов; 9 - шланг цилиндра додоя; 10 - кронштейн; 11 - стрела; 12 - шток поршня цилиндра снятия; 13, 17 - силовые вакуум-проводы; 14 - кронштейн-скоба; 15 - шарнир кронштейна цилиндра снятия; 16 - кран-распределитель; 18, 19 - шланги; 20 - силовой ци­линдр снятия доильных стаканов; 21 - головка автомата; 22 - скоба; 23 - корпус автомата; 24 - клапан; 25 - отводной рукав; 26 - поплавок; 27 - пневмодатчик; 28 - зажим; 29 - молокопровод; 30 - тройник; 31 - молокоотвод; 32 - калиброванн

Доильные аппараты, Конструкция, купить доильный аппарат, устройство, характеристики, отзывы, Доярка.РУ, Дояр.РФ, чесалка для коров, щетка для коров, запчасти, антибрык, маслобойки, сепараторы молока, доильная машина для коровы, коз, овец, доильная установка, доильные аппараты производства Турция, Россия, Италия, Германия, Китай, Польша, NTAMilking, Milkingmachine, milkingmachinery, BarbarosMotors, ИДА, DeLaval, Yildiz, Melasti, Tamam, Буренка, АД-01, Bartech, Лукас, Лидер, LUKAS, АД-02 Фермер, Доюшка, Зорька, Моя милка, АДУ-1, доставка, купить доильный аппарат в Воронеже, Липецке, Тамбове, Брянске, Орле, Белгороде, Курске, Москве, Пензе, Саратове, Туле.

Вакуумная система доильных установок представляет собой совокупность взаимосвязанных трубопроводов и устройств для создания измерения и регулирования вакуума. Элементами вакуумной системы являются: трубопроводы; резервуар вакуумный баллон; вакуумный насос; приборы для измерения вакуумметр и регулирования вакуума вакуум регулятор. Одним из условий повышения эффективности работы доильных машин является обеспечение в процессе доения стабильности вакуума. Требования к конструкции вакуумной системы: Для уменьшения потерь тем самым...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ЛЕКЦИЯ № 19

тема: вакуумные системы доильных установок

ПЛАН:

Вакуумные системы доильных установок и элементы их расчета.

Назначение и классификация вакуумных насосов.

Основы расчета ротационного вакуумного насоса.

Уход за доильным оборудованием.

ЛИТЕРАТУРА.

Белянчиков Н.Н. Механизация технологических процессов. - М.: Агропромиздат, 1989, Раздел 2, гл. 7. §5.


1. Вакуумные системы доильных установок и элементы их расчета.

Вакуумная система доильных установок представляет собой совокупность взаимосвязанных трубопроводов и устройств для создания, измерения и регулирования вакуума.

Элементами вакуумной системы являются: трубопроводы; резервуар (вакуумный баллон); вакуумный насос; приборы для измерения (вакуумметр) и регулирования вакуума (вакуум регулятор).

Одним из условий повышения эффективности работы доильных машин является обеспечение в процессе доения стабильности вакуума .

Требования к конструкции вакуумной системы:

Для уменьшения потерь (тем самым уменьшений колебаний вакуума) сеть должна:

иметь наименьшую длину;

иметь минимальные потери давления воздуха в системе за счет наиболее рациональной схемы и оптимального диаметра трубопровода на всех участках сети;

отличаться простотой, надежностью конструкций соединения труб;

иметь наименьшее число поворотов и минимально допустимое количество арматуры (кранов, задвижек и т.д.).

Исследованиями установлено, что чем выше вакуум и объем пространства, и меньше длина вакуумной системы, тем совершеннее конструктивная схема вакуумной системы (с точки зрения стабильности в ней вакуума).

Сопротивления в воздухопроводе делят на распределенные (трение воздуха о стенки) и местные.

Потери давления на преодоление сопротивления от трения воздуха о стенки труб:

Коэффициент сопротивления зависит от характера движения воздуха в трубе:

а) при ламинарном движении

б) при турбулентном движении

Местные потери давления:

Расход воздуха пневмосистемой доильной установки определяется по приближенной формуле:

где 1,35 – коэффициент несовершенства пульсатора и коллектора, допускающих утечки воздуха; – частота пульсаций, пул/с; – начальный объем воздуха при атмосферном давлении, заключенный в камерах и трубах одного доильного аппарата, м 3 ; – коэффициент, учитывающий протечки воздуха из вакуумной системы доильной установки вследствие недостаточной герметичности; n да – количество доильных аппаратов.

Коэффициент определяется по формуле:

где;

– утечки в соединениях труб; – подсосы воздуха между сосковой резиной и соском; – подсосы воздуха через доильные стаканы при их одевании; – подсосы при случайном спадании шлангов и стаканов; – потеря подачи вакуума в жаркое время суток из-за разжижения смазки в насосе; – потеря подачи вакуума из-за повышения температуры насоса при длительной непрерывной работе.

Таким образом – суммарные потери примерно равны по величине расходу воздуха аппаратом. В связи с этим коэффициент увеличения запаса подачи вакуумного насоса принимаем равным 2 – 3, то есть

Степень неравномерности расхода воздуха определяется по формуле:

где – число лопаток.

Насосы типа РВН – (4 лопатки) имеют неравномерность 31 %. Для снижения влияния которой в систему необходимо включить вакуум-баллон емкостью 20 – 25 л.

Диаметр вакуумпровода определяется по формуле:

где – полная длина вакуумпрвода, м; – объем воздуха, протекающего через трубопровод, м 3 /мин.

Потребное количество вакуумных насосов для поддержания устойчивого режима в системе:

где – производительность вакуумного насоса при заданной величине вакуума.

Заслуживает внимания такая система распределения вакуума в доильных установках, при которой каждый вакуумный насос имеет свое назначение и включается в вакуумную линию самостоятельно. Один насос служит для транспортирования молока, другой – для работы доильного аппарата, третий – для автоматизации доильной установки. Такое распределение вакуумных насосов позволяет иметь в системе постоянный уровень вакуума и гарантирует бесперебойную работу оборудования, работающего от вакуума.

2. Назначение и классификация вакуумных насосов.

Вакуумный насос предназначен для создания вакуума (разряжения) в системе за счет откачивания из нее воздуха.

Классифицируются вакуумные насосы следующим образом:

1. По конструкции

Поршневые;

Инжекторные;

Ротационные.

В свою очередь ротационные насосы подразделяются на 4 типа:

Пластинчатые;

Водокольцевые;

С катящимся поршнем;

Двух-роторные.

2. По величине создаваемого разряжения

Насосы низкого вакуума;

Насосы среднего вакуума;

Насосы высокого вакуума.

3. По назначению

- «сухие»(для отсасывания газов);

- «мокрые» (для отсасывания газа вместе с жидкостью).

4. По характеру использования

Стационарные;

Передвижные.

До 1952 года доильные установки в нашей стране комплектовались вакуумными насосами поршневого типа. Они отличались большими размерами и металлоемкостью; имели быстроизнашивающиеся механизмы - кривошипно-шатунный механизм и механизм воздухораспределителя.

В настоящее время на доильных установках получили наибольшее распространение ротационные лопастные насосы марок РВН – 40/350; УВУ – 60/45; ВЦ – 40/130 и другие.

Принципиальная схема ротационного вакуумного насоса.

Такими вакуумными насосами можно получить вакуум порядка 97 – 99 %, механический к.п.д. 0,8 – 0,9.

Производительность РВН – 40/350 при вакууме 50 кПа составляет 11,1 дм 3 /с (40 м 3 /ч).

Унифицированная вакуумная установка УВУ – 60/45 может работать в 2-х режимах: при вакууме 53 кПа обеспечивать производительность 60 или 45 м 3 /ч (достигается изменением частоты вращения ротора путем замены шкива клиноременной передачи на валу электрического двигателя).

Водокольцевой насос (ВВН) с жидкостным поршнем.

1 – выхлопная труба;

2 – вакуумный провод;

3 – ротор;

4 – статор;

5 – водяное кольцо;

6 – охладитель воды.

Здесь смазки не требуется. Уплотнение между ротором и статором достигается слоем воды.

Недостаток : низкий к.п.д. (0,48 – 0,52); работать могут только при положительной температуре.

Основными характеристиками вакуумных насосов являются производительность, металлоемкость и энергоемкость.

3. Основы расчета ротационного вакуумного насоса.

Полезный объем камеры всасывания определяется по формуле:

где – диаметр статора;

– эксцентриситет;

– длина ротора.

При числе лопаток и угловой скорости, производительность лопастного насоса равна:

М 3 /с.

или, м 3 /с.

Наибольшее распространение получили 4-х полостные (=4) вакуумные насосы, при = 90 0 (то есть лопасти перпендикулярны друг другу).

Тогда:

М 3 /с.

Анализ : теоретическая производительность вакуумного насоса прямо пропорциональна его геометрическим размерам и частоте вращения ротора.

Производительность, приведенная к условиям вакуума в системе, будет меньше. Это уменьшение учитывается манометрическим коэффициентом:

где – барометр (атмосферное давление, кПа); – вакуум в системе, кПа.

Чем выше, тем < , а следовательно и меньше производительность.

Кроме того, действительная производительность вакуум–насоса зависит от степени наполнения всасывающей камеры, которая учитывается коэффициентом наполнения. Значение зависит от конструкции насоса и определяется экспериментальным путем.

Тогда, действительная производительность вакуумного насоса (4-х лопастного, при = 90 0 ) равна:

М 3 /с.

так как в доильных установках применяется вакуум от 350 мм.рт.ст. до 500 мм.рт.ст., то; .

Мощность, потребная для привода вакуумного насоса:

КВт или,

где – крутящий момент, обусловленный сопротивлением всасывания, Нм; – угловая скорость ротора, рад/с; – к.п.д. вакуумного насоса и электрического двигателя с передачей (= 0,75 – 0,85); – производительность, м 3 /с; – величина вакуума, Па.

Крутящий момент определяется по формуле:

где – расчетная величина вакуума, Н/м 2 .

Зависимости производительности насоса и потребляемой мощности от угловой скорости ротора

Механическая характеристика вакуум-насоса напоминает характеристику вентилятора, а нагрузочная диаграмма – параллельная прямая оси абсцисс после пуска

Нагрузочная диаграмма.

Потребная на привод насоса мощность зависит от величины вакуума

4. Уход за доильным оборудованием.

С целью поддержания в порядке системы доения необходимо выполнять определенные правила ухода и использовать моющие средства.

Моющие средства.

Требования к ним:

Обладать высокими моющими свойствами;

Быть безвредными для здоровья человека;

Не изменять свойств молока;

Не разрушать материал оборудования;

Быть дешевыми и удобными в эксплуатации.

Моющие средства.

Используются высокощелочные моющие средства (основная часть – едкий натрий NaOH ); умеренно – щелочные моющие средства; нейтральные моющие средства и кислые средства (раствор азотной, соляной и уксусной кислот) для удаления молочного камня.

Дезинфицирующие средства.

  1. Хлорная известь;
  2. Гипохлорит натрия;
  3. Гипохлорит кальция;
  4. Хлорамин Б.

Процесс ухода включает следующие операции:

  1. Ополаскивание оборудования чистой водой;
  2. Промывка моющими растворами;
  3. Ополаскивание;
  4. Дезинфекция;
  5. Ополаскивание.


EMBED CorelDRAW.Graphic.11

EMBED CorelDRAW.Graphic.11

Цель работы состоит в том чтобы рассмотреть своебразие проявления национальных установок и их учет в деятельности ОВД. Задачи работы: - изучить механизмы функционирования и проявления этнопсихологических феноменов; - рассмотреть понятие национальной установки психологический механизм национальных установок влияние национальных установок на деятельность людей; - изучить своеобразие проявления национальных установок в деятельности сотрудников ОВД. 3 Своеобразие проявления национальных установок в деятельности сотрудников ОВД Эффективность... Также за основу для сравнения успешного развития ветроэнергетики мною был взят полуостров Крым т. Проанализировать розу ветров Краснодарского края оценить скорость ветра в разные сезоны порывистость выделить наиболее оптимальные зоны для размещения ВЭС расположенные как на суше так и в акваториях водных бассейнов; 2. Изучить энергетическое законодательство и комфортность законов для строительства зеленых ЭС а также их экономическую рентабельность; Глобальные проблемы энергетики мира и пути их решения В современном мире активно... Анализ научной литературы по проблеме готовности девушек к браку показывает что чаще всего она рассматривается в общем круге вопросов о самоопределении современной молодёжи. То что ребенок в детские годы приобретает в семье он сохраняет в течение всей последующей жизни. Важность семьи как института воспитания обусловлена тем что в ней ребенок находится в течение значительной части своей жизни и по длительности своего воздействия на личность ни один из институтов воспитания не может сравниться с семьей. И так как воспитание детей в...

На фермах привязного содержания с поголовьем до 30 коров для доения животных в стойлах на привязи применяют стационарные линейные доильные установки со сбором молока в ведра , разработанные компанией SAC. В комплект доильной установки (рис. 10.1) входят следующие сборочные единицы: вакуум-провод 1, вакуумный кран 2, вакуумный регулятор 3, вакуумметр 4, выхлопная труба 5, глушитель 6, масляный бачок 7, вакуумный насос 8, электродвигатель 9, вакуум-баллон 10, доильное ведро 11, пульсатор 12, коллектор 13.


Вакуумный насос 8 создает рабочее тело (разреженный воздух) с заданными характеристиками для обеспечения работы всех систем доильной установки. Насос откачивает воздух из замкнутого объема вакуум-провода 1, доильных аппаратов, доильного ведра 11, молочных 14 и вакуумных 15 шлангов. В доильных установках используют два типа вакуумных насосов: ротационные лопастные и ротационные водокольцевые. Типы применяемых насосов и их характеристики представлены далее. Применяемые насосы обеспечивают подачу от 10,2 до 126,0 м3/ч при вакуумметрическом давлении 50 кПа. При этом ротационные лопастные вакуумные насосы оборудованы глушителями для уменьшения шума и, зачастую, устройствами для выделения масла из отработанных газов.
Вакуумный баллон 10 предназначен для сглаживания пульсаций рабочего тела, создаваемых вакуумным насосом, обеспечивает определенный запас рабочего тела, расходуемого в системе при одевании доильных стаканов на соски вымени животного, а также в случае их спадания с сосков. Кроме того, вакуум-баллон защищает вакуумный насос от попадания в него воды, молока и механических частиц из вакуум-провода, служит в качестве накопительной сливной емкости при помывке вакуум-провода, облегчает запуск насоса. Вакуум-баллон обеспечивает также автоматическое удаление конденсата и механических частиц после остановки насоса.
Вакуум-провод 1 служит для передачи рабочего тела к доильным аппаратам и другим пневматическим устройствам доильной установки. Он выполнен из гальванизированных стальных труб и располагается на стойках или специальных кронштейнах вдоль ряда стойл животных. На вакуум-провод устанавливают вакуумные краны 2, служащие для подачи рабочего тела к доильным аппаратам при доении коров.
Вакуумный регулятор 3 поддерживает установленное вакуумметрическое давление (разрежение) в вакуумной системе доильной установки. Глубину вакуума в системе контролируют вакуумметром 4.
Исполнительным рабочим органом доильной установки является доильный аппарат (рис. 10.2), в который входят следующие сборочные единицы: пульсатор, коллектор, доильные стаканы, молочные и вакуумные шланги.

Пульсатор преобразует постоянный вакуум, создаваемый вакуумным насосом, в пульсирующий, необходимый для работы доильных стаканов и коллектора. На стационарных доильных установках линемного типа с доением коров в ведра применяют пульсаторы Unipuls 2 и Unipuls Electronic (а также Unico 1 и Unico 2), обеспечивающие стимуляцию процесса молокоотдачи.
Коллектор служит для сбора молока из доильных стаканов и распределения переменного вакуума в межстенные и подсосоковые камеры доильных стаканов. На рассматриваемых доильных установках применяют коллекторы Uniflow 2 и Uniflow-3М. Последний оборудован датчиками температуры и электропроводимости молока для работы с индикатором мастита.
Основными исполнительными органами доильного аппарата, непосредственно взаимодействующими с животным, являются доильные стаканы. В рассматриваемой установке применяют двухкамерные доильные стаканы, имеющие двойные стенки: наружную - из нержавеющей стали или пластмассы и внутреннюю, выполненную из резины. Стенки образуют замкнутую, межстенную, камеру, которую гибким шлангом соединяют с пульсатором. Пространство внутри сосковой резины образует подсосковую камеру, соединяемую шлангом с доильным ведром.
Для доения на установках со сбором молока в ведра используют в основном двухтактные (сосание и сжатие) доильные аппараты. В нем во время такта сосания воздух отсасывают из межстенной камеры, а в подсосковой камере поддерживают постоянный вакуум. При этом сосковая резина разжимается, сосок вымени животного удлиняется, сфинктер (запирающая мышца соска) открывается и молоко отсасывается из цистерны вымени. При такте сжатия в межстенную камеру подают атмосферный воздух. В подсосковой камере при этом поддерживают постоянный вакуум. Вследствие перепада давлений сосковая резина доильного стакана сжимается и отсасывание молока из вымени прекращается. Выдоенное молоко поступает в доильное ведро.
Мобильные доильные установки для доения коров в ведра применяют на фермах привязного содержания с поголовьем до 30 коров, а также в качестве резервных, на случай аварий на других фермах. Компанией SAC разработаны два типа мобильных установок: Minicart и Unicart. Доильная установка Minicart (рис. 10.3) включает в себя следующие сборочные единицы: двухколесную ручную тележку на пневматических шинах, силовую установку, включающую однофазный или трехфазный электродвигатель; ротационный вакуумный насос, один доильный аппарат с ведром, вакуумные и молочные шланги, вакуумный регулятор, вакуумный баллон, глушитель.

В комплект доильной установки Unicart (рис. 10.4) входят следующие сборочные единицы: трехколесная ручная тележка на пневмошинах, силовая установка в одном из трех вариантов: одно- или трехфазный электродвигатель; бензиновый двигатель внутреннего сгорания; бензиновый и электрический двигатели; ротационный лопастной вакуумный насос; два доильных аппарата с доильными ведрами, вакуумный регулятор, вакуумметр, вакуумные и молочные шланги, ресивер.

Представленные мобильные доильные установки выполняют те же функции, что и стационарные линейные доильные агрегаты.
На фермах привязного содержания с поголовьем 30 и более коров для доения животных в стойлах на привязи применяют также стационарные линейные доильные установки со сбором молока в молокопровод. Компанией SAC разработаны два типа таких установок: традиционная с транспортированием молока по молокопроводу, а доильных аппаратов - оператором машинного доения и с линией Uniline, обеспечивающей транспортирование доильных аппаратов механическими средствами.
Традиционная доильная установка (рис. 10.5) включает в себя следующие сборочные единицы: вакуумный насос, вакуум-провод, вакуум-баллон, вакуумный регулятор, вакуумметр, доильные аппараты, а также молокопровод, молочно-вакуумный кран Unicombicock, индивидуальный счетчик молока, молокоприемник, молочный насос, молочный фильтр, напорный молокопровод, молочный танк, водонагреватель, автомат промывки.

Доильная установка второго типа обеспечивает сбор и транспортирование молока молокопроводом, а доильных аппаратов - пинией Uniline (рис, 10.6). Она включает в себя те же сборочные единицы, что и установка первого типа Кроме того, дополнительно оснащена ручной тележкой Unicombicart для доставки доильных аппаратов в коровник и стационарной линией Uniline, обеспечивающей транспортирование доильных аппаратов в стойла животных.

Транспортируют доильные аппараты из молочного отделения в коровник и обратно ручной тележкой Unicombicart (рис. 10.7).

Назначение сборочных единиц, входящих в бесстаночные доильные установки с молокопроводом (кроме рассмотренных ранее), представлено ниже.
Молокопровод, изготовленный из полипропиленовых труб, соединяют между собой муфтами, а с вакуум-проводом - анодированными металлическими кронштейнами. Служит для сбора и транспортирования молока в молокоприемник.
Молочно-вакуумный кран Unicombicock (рис. 10.8) служит для подключения доильных аппаратов к молоко- и вакуум-проводу, выполнен из нержавеющей стали, обслуживает поочередно две рядом стоящие коровы.

Молокоприемник (молокосборник) изготовлен из стекла, служит для отделение воздуха от молока или молочной жидкости. Указанные продукты выводят из-под вакуума молочным насосом и подают соответственно молоко - в молочный танк, а моющую жидкость - в ванну для моюще-дезинфицирующих растворов.
Индивидуальный счетчик молока (рис. 10.9) обеспечивает учет молока, полученного от каждой коровы. Счетчик устанавливают между доильным аппаратом и молокопроводом.

Водонагреватель нагревает воду до 90,0...95,0 °С. Специальным патрубком его соединяют с доильной установкой напрямую, что позволяет поддерживать высокую температуру воды при промывке системы доения.
Автомат промывки Uniwach обеспечивает мойку и дезинфекцию посредством циркуляции рабочих растворов в замкнутой системе доильных аппаратов, молокопровода, молокоприемника, молочного фильтра, молочного насоса, напорного молокопровода. Работой автомата промывки управляет микропроцессор.
В режиме доения рассмотренные линии работают следующим образом. Доильный агрегат, работающий по принципу извлечения молока методом отсасывания доильными аппаратами выводит молоко из цистерн сосков вымени животного под действием вакуумметрического давления (разрежения), создаваемого в системе трубопроводов вакуумным насосом. При этом выдоенное молоко поступает в молокопровод, которым транспортируется в молокоприемник, где отделяется от воздуха, а затем молочным насосом через фильтр по напорному молокопроводу подается в молочный танк для охлаждения и последующего хранения.
В режиме промывки линии работают следующим образом. Доильные аппараты устанавливают в резервуар, куда подают рабочий раствор - теплую воду, моющий или дезинфицирующий раствор. Рабочий раствор отсасывают из резервуара через доильные аппараты и прокачивают его через систему молочных трубопроводов в молокоприемник. Из последнего молочный насос подает рабочий раствор в автомат промывки. Особенностью автомата промывки Uniwach является то, что все параметры процесса промывки - температура рабочего раствора (рабочей жидкости), продолжительность циркуляционной промывки, состав рабочей жидкости, непрерывно автоматически контролируются и изменяются по специальным программам.