Алгоритм решения неравенства с модулем. Неравенства с модулем

Алгоритм решения неравенства с модулем. Неравенства с модулем

Существует несколько способов решения неравенств, содержащих модуль. Рассмотрим некоторые из них.

1) Решение неравенства с помощью геометрического свойства модуля.

Напомню, что такое геометрическое свойство модуля: модуль числа x – это расстояние от начала координат до точки с координатой x.

В ходе решения неравенств этим способом может возникнуть 2 случая:

1. |x| ≤ b,

И неравенство с модулем очевидно сводится к системе двух неравенств. Тут знак может быть и строгим, в этом случае точки на картинке будут «выколотыми».

2. |x| ≥ b, тогда картинка решения выглядит так:

И неравенство с модулем очевидно сводится к совокупности двух неравенств. Тут знак может быть и строгим, в этом случае точки на картинке будут «выколотыми».

Пример 1.

Решить неравенство |4 – |x|| 3.

Решение.

Данное неравенство равносильно следующей совокупности:

U [-1;1] U

Пример 2.

Решить неравенство ||x+2| – 3| 2.

Решение.

Данное неравенство равносильно следующей системе.

{|x + 2| – 3 ≥ -2
{|x + 2| – 3 ≤ 2,
{|x + 2| ≥ 1
{|x + 2| ≤ 5.

Решим отдельно первое неравенство системы. Оно эквивалентно следующей совокупности:

U [-1; 3].

2) Решение неравенств, используя определение модуля.

Напомню для начала определение модуля.

|a| = a, если a 0 и |a| = -a, если a < 0.

Например, |34| = 34, |-21| = -(-21) = 21.

Пример 1.

Решить неравенство 3|x – 1| x + 3.

Решение.

Используя определение модуля получим две системы:

{x – 1 ≥ 0
{3(x – 1) ≤ x + 3

{x – 1 < 0
{-3(x – 1) ≤ x + 3.

Решая первую вторую системы в отдельности, получим:

{x ≥ 1
{x ≤ 3,

{x < 1
{x ≥ 0.

Решением исходного неравенства будут все решения первой системы и все решения второй системы.

Ответ: x € .

3) Решение неравенств методом возведения в квадрат.

Пример 1.

Решить неравенство |x 2 – 1| < | x 2 – x + 1|.

Решение.

Возведем обе части неравенства в квадрат. Замечу, что возводить обе части неравенства в квадрат можно только в том случае, когда они обе положительные. В данном случае у нас и слева и справа стоят модули, поэтому мы можем это сделать.

(|x 2 – 1|) 2 < (|x 2 – x + 1|) 2 .

Теперь воспользуемся следующим свойством модуля: (|x|) 2 = x 2 .

(x 2 – 1) 2 < (x 2 – x + 1) 2 ,

(x 2 – 1) 2 – (x 2 – x + 1) 2 < 0.

(x 2 – 1 – x 2 + x – 1)(x 2 – 1 + x 2 – x + 1) < 0,

(x – 2)(2x 2 – x) < 0,

x(x – 2)(2x – 1) < 0.

Решаем методом интервалов.

Ответ: x € (-∞; 0) U (1/2; 2)

4) Решение неравенств методом замены переменных.

Пример.

Решить неравенство (2x + 3) 2 – |2x + 3| 30.

Решение.

Заметим, что (2x + 3) 2 = (|2x + 3|) 2 . Тогда получим неравенство

(|2x + 3|) 2 – |2x + 3| ≤ 30.

Сделаем замену y = |2x + 3|.

Перепишем наше неравенство с учетом замены.

y 2 – y ≤ 30,

y 2 – y – 30 ≤ 0.

Разложим квадратный трехчлен, стоящий слева, на множители.

y1 = (1 + 11) / 2,

y2 = (1 – 11) / 2,

(y – 6)(y + 5) ≤ 0.

Решим методом интервалов и получим:

Вернемся к замене:

5 ≤ |2x + 3| ≤ 6.

Данное двойное неравенство равносильно системе неравенств:

{|2x + 3| ≤ 6
{|2x + 3| ≥ -5.

Решим каждое из неравенств в отдельности.

Первое равносильно системе

{2x + 3 ≤ 6
{2x + 3 ≥ -6.

Решим ее.

{x ≤ 1.5
{x ≥ -4.5.

Второе неравенство очевидно выполняется для всех x, так как модуль по определению число положительное. Так как решение системы – это все x, которые удовлетворяют одновременно и первому и второму неравенству системы, то решением исходной системы будет решение ее первого двойного неравенства (ведь второе верно для всех x).

Ответ: x € [-4,5; 1,5].

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Модулем числа называется само это число, если оно неотрицательное, или это же число с противоположным знаком, если оно отрицательное.

Например, модулем числа 6 является 6, модулем числа -6 тоже является 6.

То есть под модулем числа понимается абсолютная величина, абсолютное значение этого числа без учета его знака.

Обозначается так: |6|, |х |, |а | и т.д.

(Подробнее - в разделе «Модуль числа»).

Уравнения с модулем.

Пример 1 . Решить уравнение |10 х - 5| = 15.

Решение .

В соответствии с правилом, уравнение равносильно совокупности двух уравнений:

10х - 5 = 15
10х - 5 = -15

Решаем:

10х = 15 + 5 = 20
10х = -15 + 5 = -10

х = 20: 10
х = -10: 10

х = 2
х = -1

Ответ : х 1 = 2, х 2 = -1.

Пример 2 . Решить уравнение |2 х + 1| = х + 2.

Решение .

Поскольку модуль - число неотрицательное, то х + 2 ≥ 0. Соответственно:

х ≥ -2.

Составляем два уравнения:

2х + 1 = х + 2
2х + 1 = -(х + 2)

Решаем:

2х + 1 = х + 2
2х + 1 = -х - 2

2х - х = 2 - 1
2х + х = -2 - 1

х = 1
х = -1

Оба числа больше -2. Значит, оба являются корнями уравнения.

Ответ : х 1 = -1, х 2 = 1.

Пример 3 . Решить уравнение

|х + 3| - 1
————— = 4
х - 1

Решение .

Уравнение имеет смысл, если знаменатель не равен нулю - значит, если х ≠ 1. Учтем это условие. Наше первое действие простое - не просто освобождаемся от дроби, а преобрахуем ее так, чтобы получить модуль в чистом виде:

|х + 3| - 1 = 4 · (х - 1),

|х + 3| - 1 = 4х - 4,

|х + 3| = 4х - 4 + 1,

|х + 3| = 4х - 3.

Теперь у нас в левой части уравнения только выражение под модулем. Идем дальше.
Модуль числа есть неотрицательное число - то есть он должен быть больше нуля или равен нулю. Соответственно, решаем неравенство:

4х - 3 ≥ 0

4х ≥ 3

х ≥ 3/4

Таким образом, у нас появилось второе условие: корень уравнения должен быть не меньше 3/4.

В соответствии с правилом, составляем совокупность двух уравнений и решаем их:

х + 3 = 4х - 3
х + 3 = -(4х - 3)

х + 3 = 4х - 3
х + 3 = -4х + 3

х - 4х = -3 - 3
х + 4х = 3 - 3

х = 2
х = 0

Мы получили два ответа. Проверим, являются ли они корнями исходного уравнения.

У нас было два условия: корень уравнения не может быть равен 1, и он должен быть не меньше 3/4. То есть х ≠ 1, х ≥ 3/4. Обоим этим условиям соответствует только один из двух полученных ответов - число 2. Значит, только оно и является корнем исходного уравнения.

Ответ : х = 2.

Неравенства с модулем.

Пример 1 . Решить неравенство | х - 3| < 4

Решение .

Правило модуля гласит:

|а | = а , если а ≥ 0.

|а | = -а , если а < 0.

Модуль может иметь и неотрицательное, и отрицательное число. Значит, мы должны рассмотреть оба случая: х - 3 ≥ 0 и х - 3 < 0.

1) При х - 3 ≥ 0 наше исходное неравенство остается как есть, только без знака модуля:
х - 3 < 4.

2) При х - 3 < 0 в исходном неравенстве надо поставить знак минус перед всем подмодульным выражением:

-(х - 3) < 4.

Раскрыв скобки, получаем:

-х + 3 < 4.

Таким образом, от этих двух условий мы пришли к объединению двух систем неравенств:

х - 3 ≥ 0
х - 3 < 4

х - 3 < 0
-х + 3 < 4

Решим их:

х ≥ 3
х < 7

х < 3
х > -1

Итак, у нас в ответе объединение двух множеств:

3 ≤ х < 7 U -1 < х < 3.

Определяем наименьшее и наибольшее значения. Это -1 и 7. При этом х больше -1, но меньше 7.
Кроме того, х ≥ 3. Значит, решением неравенства является все множество чисел от -1 до 7, исключая эти крайние числа.

Ответ : -1 < х < 7.

Или: х ∈ (-1; 7).

Дополнения .

1) Есть более простой и короткий способ решения нашего неравенства - графический. Для этого надо нарисовать горизонтальную ось (рис.1).

Выражение |х - 3| < 4 означает, что расстояние от точки х до точки 3 меньше четырех единиц. Отмечаем на оси число 3 и отсчитываем влево и вправо от от него 4 деления. Слева мы придем к точке -1, справа - к точке 7. Таким образом, точки х мы просто увидели, не вычисляя их.

При этом, согласно условию неравенства, сами -1 и 7 не включены во множество решений. Таким образом, получаем ответ:

1 < х < 7.

2) Но есть еще одно решение, которое проще даже графического способа. Для этого наше неравенство надо представить в следующем виде:

4 < х - 3 < 4.

Ведь так оно и есть по правилу модуля. Неотрицательное число 4 и аналогичное отрицательное число -4 являются границами решения неравенства.

4 + 3 < х < 4 + 3

1 < х < 7.

Пример 2 . Решить неравенство | х - 2| ≥ 5

Решение .

Этот пример существенно отличается от предыдущего. Левая часть больше 5 либо равна 5. С геометрической точки зрения, решением неравенства являются все числа, которые от точки 2 отстоят на расстоянии 5 единиц и больше (рис.2). По графику видно, что это все числа, которые меньше или равны -3 и больше или равны 7. А значит, мы уже получили ответ.

Ответ : -3 ≥ х ≥ 7.

Попутно решим это же неравенство способом перестановки свободного члена влево и вправо с противоположным знаком:

5 ≥ х - 2 ≥ 5

5 + 2 ≥ х ≥ 5 + 2

Ответ тот же: -3 ≥ х ≥ 7.

Или: х ∈ [-3; 7]

Пример решен.

Пример 3 . Решить неравенство 6 х 2 - | х | - 2 ≤ 0

Решение .

Число х может быть и положительным числом, и отрицательным, и нулем. Поэтому нам надо учесть все три обстоятельства. Как вы знаете, они учитываются в двух неравенствах: х ≥ 0 и х < 0. При х ≥ 0 мы просто переписываем наше исходное неравенство как есть, только без знака модуля:

6х 2 - х - 2 ≤ 0.

Теперь о втором случае: если х < 0. Модулем отрицательного числа является это же число с противоположным знаком. То есть пишем число под модулем с обратным знаком и опять же освобождаемся от знака модуля:

6х 2 - (-х ) - 2 ≤ 0.

Раскрываем скобки:

6х 2 + х - 2 ≤ 0.

Таким образом, мы получили две системы уравнений:

6х 2 - х - 2 ≤ 0
х ≥ 0

6х 2 + х - 2 ≤ 0
х < 0

Надо решить неравенства в системах - а это значит, надо найти корни двух квадратных уравнений. Для этого приравняем левые части неравенств к нулю.

Начнем с первого:

6х 2 - х - 2 = 0.

Как решается квадратное уравнение - см. раздел «Квадратное уравнение». Мы же сразу назовем ответ:

х 1 = -1/2, х 2 = 2/3.

Из первой системы неравенств мы получаем, что решением исходного неравенства является все множество чисел от -1/2 до 2/3. Пишем объединение решений при х ≥ 0:
[-1/2; 2/3].

Теперь решим второе квадратное уравнение:

6х 2 + х - 2 = 0.

Его корни:

х 1 = -2/3, х 2 = 1/2.

Вывод: при х < 0 корнями исходного неравенства являются также все числа от -2/3 до 1/2.

Объединим два ответа и получим итоговый ответ: решением является все множество чисел от -2/3 до 2/3, включая и эти крайние числа.

Ответ : -2/3 ≤ х ≤ 2/3.

Или: х ∈ [-2/3; 2/3].

Математика является символом мудрости науки ,

образцом научной строгости и простоты ,

эталоном совершенства и красоты в науке.

Российский философ, профессор А.В. Волошинов

Неравенства с модулем

Наиболее сложно решаемыми задачами школьной математики являются неравенства , содержащие переменные под знаком модуля. Для успешного решения таких неравенств необходимо хорошо знать свойства модуля и иметь навыки их использования.

Основные понятия и свойства

Модуль (абсолютная величина) действительного числа обозначается и определяется следующим образом:

К простым свойствам модуля относятся следующие соотношения:

И .

Отметим , что последние два свойства справедливы для любой четной степени.

Кроме того , если , где , то и

Более сложные свойства модуля , которые можно эффективно использовать при решении уравнений и неравенств с модулями , формулируются посредством следующих теорем:

Теорема 1. Для любых аналитических функций и справедливо неравенство .

Теорема 2. Равенство равносильно неравенству .

Теорема 3. Равенство равносильно неравенству .

Наиболее распространенными в школьной математике неравенствами , содержащие неизвестные переменные под знаком модуля , являются неравенства вида и , где некоторая положительная константа.

Теорема 4. Неравенство равносильно двойному неравенству , а решение неравенства сводится к решению совокупности неравенств и .

Данная теорема является частным случаем теорем 6 и 7.

Более сложными неравенствами , содержащие модуль, являются неравенства вида , и .

Методы решения таких неравенств можно сформулировать посредством следующих трех теорем.

Теорема 5. Неравенство равносильно совокупности двух систем неравенств

И (1)

Доказательство. Так как , то

Отсюда вытекает справедливость (1).

Теорема 6. Неравенство равносильно системе неравенств

Доказательство. Так как , то из неравенства следует , что . При таком условии неравенство и при этом вторая система неравенств (1) окажется несовместной.

Теорема доказана.

Теорема 7. Неравенство равносильно совокупности одного неравенства и двух систем неравенств

И (3)

Доказательство. Поскольку , то неравенство всегда выполняется , если .

Пусть , тогда неравенство будет равносильно неравенству , из которого вытекает совокупность двух неравенств и .

Теорема доказана.

Рассмотрим типовые примеры решения задач на тему «Неравенства , содержащие переменные под знаком модуля».

Решение неравенств с модулем

Наиболее простым методом решения неравенств с модулем является метод , основанный на раскрытии модулей. Этот метод является универсальным , однако в общем случае его применение может привести к весьма громоздким вычислениям. Поэтому учащиеся должны знать и другие (более эффективные) методы и приемы решения таких неравенств. В частности , необходимо иметь навыки применения теорем , приведенных в настоящей статье.

Пример 1. Решить неравенство

. (4)

Решение. Неравенство (4) будем решать «классическим» методом – методом раскрытия модулей. С этой целью разобьем числовую ось точками и на интервалы и рассмотрим три случая.

1. Если , то , , , и неравенство (4) принимает вид или .

Так как здесь рассматривается случай , то является решением неравенства (4).

2. Если , то из неравенства (4) получаем или . Так как пересечение интервалов и является пустым , то на рассматриваемом интервале решений неравенства (4) нет.

3. Если , то неравенство (4) принимает вид или . Очевидно , что также является решением неравенства (4).

Ответ: , .

Пример 2. Решить неравенство .

Решение. Положим , что . Так как , то заданное неравенство принимает вид или . Поскольку , то и отсюда следует или .

Однако , поэтому или .

Пример 3. Решить неравенство

. (5)

Решение. Так как , то неравенство (5) равносильно неравенствам или . Отсюда , согласно теореме 4 , имеем совокупность неравенств и .

Ответ: , .

Пример 4. Решить неравенство

. (6)

Решение. Обозначим . Тогда из неравенства (6) получаем неравенства , , или .

Отсюда , используя метод интервалов , получаем . Так как , то здесь имеем систему неравенств

Решением первого неравенства системы (7) является объединение двух интервалов и , а решением второго неравенства – двойное неравенство . Отсюда следует , что решение системы неравенств (7) представляет собой объединение двух интервалов и .

Ответ: ,

Пример 5. Решить неравенство

. (8)

Решение. Преобразуем неравенство (8) следующим образом:

Или .

Применяя метод интервалов , получаем решение неравенства (8).

Ответ: .

Примечание. Если в условии теоремы 5 положить и , то получим .

Пример 6. Решить неравенство

. (9)

Решение. Из неравенства (9) следует . Преобразуем неравенство (9) следующим образом:

Или

Так как , то или .

Ответ: .

Пример 7. Решить неравенство

. (10)

Решение. Так как и , то или .

В этой связи и неравенство (10) принимает вид

Или

. (11)

Отсюда следует, что или . Так как , то и из неравенства (11) вытекает или .

Ответ: .

Примечание. Если к левой части неравенства (10) применить теорему 1 , то получим . Отсюда и из неравенства (10) следует , что или . Так как , то неравенство (10) принимает вид или .

Пример 8. Решить неравенство

. (12)

Решение. Так как , то и из неравенства (12) следует или . Однако , поэтому или . Отсюда получаем или .

Ответ: .

Пример 9. Решить неравенство

. (13)

Решение. Согласно теореме 7 решением неравенства (13) являются или .

Пусть теперь . В таком случае и неравенство (13) принимает вид или .

Если объединить интервалы и , то получим решение неравенства (13) вида .

Пример 10. Решить неравенство

. (14)

Решение. Перепишем неравенство (14) в равносильном виде: . Если к левой части данного неравенства применить теорему 1, то получим неравенство .

Отсюда и из теоремы 1 следует , что неравенство (14) выполняется для любых значений .

Ответ: любое число.

Пример 11. Решить неравенство

. (15)

Решение. Применяя теорему 1 к левой части неравенства (15) , получаем . Отсюда и из неравенства (15) вытекает уравнение , которое имеет вид .

Согласно теореме 3 , уравнение равносильно неравенству . Отсюда получаем .

Пример 12. Решить неравенство

. (16)

Решение . Из неравенства (16), согласно теореме 4, получаем систему неравенств

При решении неравенства воспользуемся теоремой 6 и получим систему неравенств из которой следует .

Рассмотрим неравенство . Согласно теореме 7 , получаем совокупность неравенств и . Второе неравенство совокупности справедливо для любого действительного .

Следовательно , решением неравенства (16) являются .

Пример 13. Решить неравенство

. (17)

Решение. Согласно теореме 1 можно записать

(18)

Принимая во внимание неравенство (17), делаем вывод о том, что оба неравенства (18) обращаются в равенства, т.е. имеет место система уравнений

По теореме 3 данная система уравнений равносильна системе неравенств

или

Пример 14. Решить неравенство

. (19)

Решение. Так как , то . Умножим обе части неравенства (19) на выражение , которое для любых значений принимает только положительные значения. Тогда получим неравенство, которое равносильно неравенству (19), вида

Отсюда получаем или , где . Так как и , то решением неравенства (19) являются и .

Ответ: , .

Для более глубокого изучения методов решения неравенств с модулем можно посоветовать обратиться к учебным пособиям , приведенных в списке рекомендованной литературы.

1. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование , 2013. – 608 с.

2. Супрун В.П. Математика для старшеклассников: методы решения и доказательства неравенств. – М.: Ленанд / URSS , 2018. – 264 с.

3. Супрун В.П. Математика для старшеклассников: нестандартные методы решения задач. – М.: КД «Либроком» / URSS , 2017. – 296 с.

Остались вопросы?

Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.