Что представляет собой радиация. Канцерогенные последствия радиоактивного облучения

Что представляет собой радиация. Канцерогенные последствия радиоактивного облучения

В самом широком смысле слова, радиация (лат. "сияние", "излучение") — это процесс распространения энергии в пространстве в форме различных волн и частиц. Сюда можно отнести: инфракрасное (тепловое), ультрафиолетовое, видимое световое излучение, а также различные типы ионизирующего излучения. Наибольший интерес с точки зрения здоровья и безопасности жизнедеятельности представляет ионизирующая радиация, т.е. виды излучений, способные вызывать ионизацию вещества, на которое они воздействуют. В частности, в живых клетках ионизирующая радиация вызывает образование свободных радикалов, накопление которых ведет к разрушению белков, гибели или перерождению клеток, а в итоге может вызвать смерть макроорганизма (животных, растений, человека). Именно поэтому в большинстве случаев под термином радиация принято подразумевать именно ионизирующее излучение. Стоит также понимать различия между такими терминами, как радиация и радиоактивность . Если первое можно применить к ионизирующему излучению, находящемуся в свободном пространстве, которое будет существовать, пока не поглотится каким-либо предметом (веществом), то радиоактивность — это способность веществ и предметов испускать ионизирующее излучение, т.е. быть источником радиации. В зависимости от характера предмета и его происхождения разделяют термины: естественная радиоактивность и искусственная радиоактивность. Естественная радиоактивность сопровождает спонтанный распад ядер вещества в природе и характерна для "тяжелых" элементов таблицы Менделеева (с порядковым номером более 82). Искусственная радиоактивность инициируется человеком целенаправленно с помощью различных ядерных реакций. Кроме того, стоит выделить так называемую "наведенную" радиоактивность , когда какое-то вещество, предмет или даже организм после сильного воздействия ионизирующей радиации сам становится источником опасного излучения за счет дестабилизации атомных ядер. Мощным источником излучения, опасным для жизни и здоровья человека, может быть любое радиоактивное вещество или предмет . В отличие от многих других видов опасности, радиация невидима без специальных приборов, что делает её ещё более пугающей. Причиной радиоактивности вещества являются нестабильные ядра, входящие в состав атомов, которые при распаде выделяют в окружающую среду невидимые излучения или частицы. В зависимости от различных свойств (состав, проникающая способность, энергия), сегодня выделяют множество видов ионизирующего излучения, из которых наиболее значимыми и распространенными являются: . Альфа-излучение . Источником радиации в нем являются частицы с положительным зарядом и сравнительно большим весом. Альфа-частицы (2 протона + 2 нейтрона) довольно громоздки и потому легко задерживаются даже незначительными преградами: одеждой, обоями, оконными занавесками и т.д. Даже если альфа-излучение попадает на обнаженного человека, в этом нет ничего страшного, дальше поверхностных слоев кожи оно не пройдет. Однако, несмотря на малую проникающую способность, альфа-излучение обладает мощной ионизацией, что особо опасно, если вещества-источники альфа-частиц попадают непосредственно в организм человека, например в легкие или пищеварительный тракт. . Бета-излучение . Представляет собой поток заряженных частиц (позитронов или электронов). Такое излучение обладает более значительной проникающей способностью, чем альфа-частицы, задержать его может деревянная дверь, оконное стек-ло, кузов автомобиля и т.д. Для человека опасно при воздействии на незащищенные кожные покровы, а также при попадании внутрь радиоактивных веществ. . Гамма-излучение и близкое к нему рентгеновское излучение. Ещё одна разновидность ионизирующей радиации, которая является родственной световому потоку, но с лучшей способностью к проникновению в окружающие предметы. По своему характеру это высокоэнергетическое коротковолновое электромагнитное излучение. Для того, чтобы задержать гамма-излучение в отдельных случаях может потребоваться стена из нескольких метров свинца, или нескольких десятков метров плотного железобетона. Для человека такое излучение является самым опасным. Основным источником этого вида излучения в природе является Солнце, однако, до человека смертоносные лучи не доходят благодаря защитному слою атмосферы.

Схема образования радиации различных типов Естественная радиация и радиоактивность В окружающей нас обстановке, вне зависимости от того, городская она или сельская, имеются естественные источники радиации. Как правило, ионизирующее излучение естественного происхождения редко представляет опасность для человека, его значения обычно находятся в пределах допустимой нормы. Естественной радиоактивностью обладает почва, вода, атмосфера, некоторые продукты и вещи, многие космические объекты. Первоисточником естественной радиации во многих случаях служит излучение Солнца и энергия распада некоторых элементов земной коры. Естественной радиоактивностью обладает даже сам человек. В организме каждого из нас имеются такие вещества как рубидий-87 и калий-40, создающие персональный радиационный фон. Источником радиационного излучения может быть здание, стройматериалы, предметы обихода, в которые входят вещества с нестабильными атомными ядрами. Стоит отметить, что естественный уровень радиации не везде одинаков. Так в некоторых городах, расположенных высоко в горах, уровень радиации превышает таковой на высоте мирового океана почти в пять раз. Также есть зоны земной поверхности, где радиация ощутимо выше за счет расположения в недрах земли радиоактивных веществ. Искусственная радиация и радиоактивность В отличие от естественной, искусственная радиоактивность — следствие человеческой деятельности. Источниками искусственной радиации являются: атомные электростанции, военная и мирная техника, использующая ядерные реакторы, места добычи полезных ископаемых с нестабильными атомными ядрами, зоны ядерных испытаний, места захоронения и утечки ядерного топлива, кладбища ядерных отходов, некоторая диагностическая и лечебная техника, а также радиоактивные изотопы в медицине.
Как обнаружить радиацию и радиоактивность? Единственным доступным для обычного человека способом определить уровень радиации и радиоактивности является использование специального прибора — дозиметра (радиометра). Принцип измерения заключается в регистрации и оценке количества частиц радиационного излучения с помощью счетчика Гейгера-Мюллера. Персональный дозиметр От воздействия радиации не застрахован никто. К сожалению, любой предмет вокруг нас может быть источником смертельного излучения: деньги, продукты питания, инструменты, стройматериалы, одежда, мебель, транспорт, земля, вода и т.д. В умеренных дозах наш организм способен без губительных последствий переносить воздействие радиации, однако сегодня редко кто уделяет достаточное внимание радиационной безопасности, ежедневно подвергая себя и свою семью смертельному риску. Чем опасна радиация для человека? Как известно, влияние радиации на организм человека или животного может быть двух видов: изнутри или снаружи. Здоровья не добавляет ни один из них. Кроме того, науке известно, что внутреннее влияние радиационных веществ опаснее внешнего. Чаще всего радиационные вещества попадают в наш организм вместе с зараженной водой и пищей. Для того, чтобы избежать внутреннего воздействия радиации достаточно знать, какие продукты питания являются её источником. А вот с внешним радиационным воздействием все немного иначе. Источники радиации Радиационный фон классифицируется на естественный и техногенный . Избежать естественной радиации на нашей планете практически невозможно, так как к ее источниками является Солнце и внутрипочвенный газ радон. Этот вид радиации практически не оказывает негативного воздействия на организм людей и животных, так как на поверхности Земли её уровень находится в рамках ПДК. Правда, в космосе или даже на высоте в 10 км на борту авиалайнера солнечная радиация может представлять реальную опасность. Таким образом, радиация и человек находятся в постоянном взаимодействии. С техногенными источниками радиации все неоднозначно. В некоторых сферах промышленности и добычи полезных ископаемых рабочие носят специальную защитную одежду от воздействия радиации. Уровень радиационного фона на таких объектах может быть гораздо больше допустимых норм.
Живя в современном мире, важно знать, что такое радиация и каким образом она влияет на людей, животных и растительность. Степень воздействия радиационного излучения на организм человека принято измерять в Зивертах (сокращенно Зв, 1 Зв = 1000 мЗв = 1000000 мкЗв). Делается это с помощью специальных приборов для измерения радиации — дозиметров. Под воздействием естественной радиации каждый из нас облучается в год на 2,4 мЗв, и мы этого не ощущаем, так как данный показатель является абсолютно безопасным для здоровья. Но при высоких дозах облучения последствия для организма человека или животного могут быть самые тяжелые. Из известных заболеваний, которые возникают вследствие облучения организма человека, отмечаются такие, как лейкоз, лучевая болезнь со всеми вытекающими отсюда последствиями, всевозможные виды опухолей, катаракта, инфекции, бесплодие. А при сильном облучении радиация может даже вызвать ожоги! Примерная картина последствий радиации при различных дозах выглядит следующим образом: . при дозе эффективного облучения организма в 1 Зв происходит ухудшение состава крови; . при дозе эффективного облучения организма в 2-5 Зв возникает облысение и белокровие (т.н. "лучевая болезнь"); . при дозе эффективного облучения организма в 3 Зв около 50 процентов людей умирают в течение одного месяца. То есть, радиация при определенном уровне воздействия представляет собой чрезвычайно серьзную опасность для всего живого. Также бытует масса разговоров по поводу того, что радиационное воздействие приводит к мутации на генном уровне. Одни ученые считают радиацию основной причиной мутаций, другие же утверждают, что трансформация генов вовсе не связана с воздействием ионизирующего излучения. В любом случае, вопрос о мутагенном эффекте радиации пока остается открытым. А вот примеров того, что радиация вызывает бесплодие — масса. Заразна ли радиация? Опасно ли контактировать с облученными людьми? Вопреки мнению многих, радиация не заразна. С больными, страдающими лучевой болезнью и другими заболеваниями, вызванными воздействием радиации, можно общаться без средств индивидуальной защиты. Но только в том случае, если они не вступали в непосредственный контакт с радиоактивными веществами и сами не являются источниками излучения! Для кого радиация наиболее опасна? Наиболее сильное влияние радиация оказывает на подрастающее поколение, то есть, на детей. Научно это объясняется тем, что ионизирующее излучение сильнее воздействует на клетки, находящиеся в стадии роста и деления. На взрослых людей оказывается гораздо меньшее влияние, так как деление клеток у них замедляется или приостанавливается. А вот беременным женщинам нужно опасаться радиации во что бы то ни стало! На стадии внутриутробного развития клетки подрастающего организма особенно чувствительны к облучению, поэтому даже несильное и кратковременное воздействие радиации может крайне негативно сказаться на развитии плода. Как распознать радиацию? Обнаружить радиацию без специальных приборов до появления проблем со здоровьем практически невозможно. В этом и заключается главная опасность радиации — она невидима! Современный рынок товаров (продовольственных и непродовольственных) контролируется специальными службами, которые проверяют соответствие продукции установленным нормам радиационного излучения. Тем не менее, вероятность приобрести вещь или даже продукт питания, радиационный фон которого не соответствует нормам, все же существует. Обычно такие товары привозят с зараженных территорий нелегальным способом. Хотите ли Вы кормить своего ребенка продуктами с содержанием радиационных веществ? Очевидно, нет. Тогда покупайте продукты только в проверенных местах. А еще лучше, купите прибор, измеряющий радиацию, и пользуйтесь им на здоровье!
Как бороться с радиацией? Самым простым и очевидным ответом на вопрос "Как вывести радиацию из организма?"является следующий: идите в спортзал! Физическая нагрузка приводит к повышенному потовыделению, а вместе с потом выводятся радиационные вещества. Также уменьшить влияние радиации на организм человека можно, если посетить сауну. Она оказывает практически такое же действие, как и физические нагрузки — приводит к повышенному выделению пота. Снизить влияние радиации на здоровье человека позволяет и употребление свежих овощей, фруктов. Необходимо знать, что на сегодняшний день идеального средства защиты от радиации пока не придумано. Самый простой и эффективный способ защитить себя от негативного воздействия смертоносных лучей — держаться подальше от их источника. Если знать все о радиации и уметь правильно пользоваться приборами для её измерения, то можно практически полностью избежать ее негативного воздействия. Что может быть источником радиации? Мы уже говорили, что полностью оградить себя от воздействия радиации на нашей планете практически невозможно. Каждый из нас непрерывно находится под воздействием радиоактивного излучения, естественного и техногенного. Источником радиации может быть все что угодно, начиная от безобидной на первый взгляд детской игрушки и заканчивая расположенным неподалеку предприятием. Однако эти предметы можно считать временными источниками радиации, от которых можно защититься. Кроме них существует ещё и общий радиационный фон, создаваемый сразу несколькими источниками, которые нас окружают. Фоновое ионизирующее излучение могут создавать газообразные, твердые и жидкие вещества различного назначения. К примеру, самым массовым газообразным источником естественной радиации является газ радон. Он постоянно в небольших количествах выделяется из недр Земли и накапливается в подвалах, низинах, на нижних этажах помещений и т.п. От радиоактивного газа полностью защитить не могут даже стены помещений. Более того, в некоторых случаях и сами стены зданий могут быть источником радиации. Радиационная обстановка в помещениях Радиация в помещениях, создаваемая стройматериалами, из которых возведены стены, может представлять серьезную угрозу для жизни и здоровья людей. Для оценки качества помещений и строений с точки зрения радиоактивности в нашей стране организованы специальные службы. Их задача периодически измерять уровень радиации в домах и общественных постройках и сравнивать полученные результаты с существующими нормативами. Если уровень радиации от стройматериалов в помещении находится в пределах этих норм, то комиссия одобряет его дальнейшую эксплуатацию. В противном случае зданию может быть предписан ремонт, а в некоторых случаях — снос с последующей утилизацией стройматериалов. Надо заметить, определенный радиационный фон создает практически любое строение. Причем, чем старше здание, тем выше уровень радиации в нем. С учетом этого при измерении уровня радиации в здании в расчет принимается и его возраст.
Предприятия — техногенные источники радиации Бытовая радиация Существует категория бытовых предметов, которые излучают радиацию, хотя и в пределах допустимых нормативов. Это, например, часы или компас, стрелки которых покрыты солями радия, за счет чего они светятся в темноте (знакомое всем фосфорное свечение). Также можно с уверенностью сказать, что радиация есть в помещении, в котором установлен телевизор или монитор на базе обычной ЭЛТ. Ради эксперимента специалисты поднесли дозиметр к компасу с фосфорными стрелками. Получили небольшое превышение общего фона, правда, в пределах нормы.
Радиация и медицина Радиоактивному облучению человек подвергается на всех этапах своей жизни, работая на промышленных предприятиях, находясь дома и даже проходя курс лечения. Классический пример использования радиации в медицине — ФЛГ. Согласно действующим правилам флюорографию каждый обязан проходить не реже одного раза в год. В ходе такой процедуры обследования мы подвергаемся воздействию радиации, но доза облучения в таких случаях находится в пределах норм безопасности.
Зараженные продукты Считается, что самым опасным источником радиации, с которым можно столкнуться в быту, являются продукты питания, являющиеся источником радиации. Мало кто знает, откуда привезена, например картошка или другие фрукты и овощи, от которых сейчас буквально ломятся полки продовольственных магазинов. А ведь именно эти товары могут представлять серьезную угрозу для здоровья человека, храня в своем составе радиоактивные изотопы. Радиационная пища сильнее других источников излучения воздействует на организм, так как попадает непосредственно внутрь него. Таким образом, определенную дозу радиации излучает большая часть предметов и веществ. Другое дело, какова величина этой дозы излучения: опасна она для здоровья или нет. Оценить опасность тех или иных веществ с радиационной точки зрения можно при помощи дозиметра. Как известно, в небольших дозах радиация не оказывает практически никакого воздействия на состояние здоровья. Всё, что нас окружает, создает естественный радиационный фон: растения, земля, вода, почва, солнечные лучи. Но это вовсе не значит, что ионизирующего излучения не следует бояться вовсе. Радиация безопасна только тогда, когда она в норме. Так какие же нормы считать безопасными? Нормы общей радиационной безопасности помещений Помещения с точки зрения радиационного фона считаются безопасными, если содержание в них частиц тория и радона не выходит за пределы 100 Бк на один кубический метр. Кроме того, радиационную безопасность можно оценить по разности эффективной дозы радиации в помещении и за его пределами. Она не должна выходить за рамки 0.3 мкЗв в час. Подобные измерения может провести каждый желающий — для этого достаточно купить персональный дозиметр. На уровень радиационного фона в помещениях сильно влияет качество материалов, используемых в строительстве и ремонте зданий. Именно поэтому перед проведением строительных работ специальные санитарные службы выполняют соответствующие замеры содержания радионуклидов в стройматериалах (например, определяют удельную эффективную активность радионуклидов). В зависимости от того, для какой категории объекта предполагается использовать тот или иной строительный материал, допустимые нормы удельной активности варьируются в достаточно широких пределах: . Для стройматериалов, используемых в возведении общественных и жилых объектов (I класс ) эффективная удельная активность не должна превышать значения в 370 Бк/кг. . У материалов для зданий II класса , то есть производственных, а также для строительства дорог в населенных пунктах порог допустимой удельной активности радионуклидов должен находиться на отметке 740 Бк/кг и ниже. . Дороги вне населенных пунктов, относящиеся к III классу должны возводиться с использованием материалов, удельная активность радионуклидов в которых не выходит за рамки 1,5 кБк/кг. . Для строительства объектов IV класса могут применяться материалы с удельной активностью радиационных компонентов не более 4 кБк/кг. Специалисты сайта выяснили, что на сегодняшний день стройматериалы с более высокими показателями содержания радионуклидов не допускаются к использованию. Какую воду можно пить? Предельно допустимые нормы содержания радионуклидов установлены и для питьевой воды. Вода допускается для питья и приготовления еды, если удельная активность альфа-радионуклидов в ней не превышает 0.1 Бк/кг, а бета-радионуклидов — 1 Бк/кг. Нормы поглощения радиации Известно, что каждый предмет способен поглощать ионизирующее излучение, находясь в зоне действия источника радиации. Не исключение и человек — наш организм поглощает радиацию ничуть не хуже, чем вода или земля. В соответствии с этим разработаны нормативы поглощенных ионочастиц для человека: . Для основного населения допустимая эффектная доза в год составляет 1 мЗв (в соответствии с этим ограничивается количество и качество диагностических меди-цинских процедур, которые оказывают радиационное воздействие на человека). . Для персонала группы А усредненный показатель может быть выше, но в год не должен выходить за пределы 20 мЗв. . Для рабочего персонала группы Б допустимая эффективная годовая доза ионизирующего излучения должна быть в среднем не более 5 мЗв. Существуют также нормы эквивалентной дозы облучения за год для отдельных органов человеческого организма: хрусталика глаза (до 150 мЗв), кожи (до 500 мЗв), кистей, стоп и т.п. Нормы общей радиационной обстановки Естественное излучение не нормируется, так как в зависимости от географического расположения и времени этот показатель может меняться в очень широком диапазоне. К примеру, последние измерения радиационного фона на улицах российской столицы показали, что уровень фона тут находится в диапазоне от 8 до 12 микрорентген в час. На горных вершинах, где защитные свойства атмосферы ниже, чем в населенных пунктах расположенных ближе к уровню мирового океана, показатели ионизирующего излучения могут быть выше московских значений даже в 5 раз! Также уровень радиационного фона может быть выше среднего в местах, где воздух перенасыщен пылью и песком с высоким содержанием тория, урана. Определить качество условий, в которых Вы живете или только собираетесь поселиться по параметру радиационной безопасности можно с помощью бытового дозиметра-радиометра. Это небольшое устройство может работать от аккумуляторов и позволяет оценить радиационную безопасность строительных материалов, удобрений, продуктов питания, что немаловажно в условиях и без того плохой экологии в мире. Несмотря на высокую опасность, которую несет в себе практически любой источник радиации, методы защиты от облучения все же существуют. Все способы защиты от радиационного воздействия можно разделить на три вида: время, расстояние и специальные экраны. Защита временем Смысл этого метода защиты от радиации заключается в том, чтобы максимально уменьшить время пребывания вблизи источника излучения. Чем меньше времени человек находится вблизи источника радиации, тем меньше вреда здоровью он причинит. Данный метод защиты использовался, к примеру, при ликвидации аварии на АЭС в Чернобыле. Ликвидаторам последствий взрыва на атомной электростанции отводилось всего несколько минут на то, чтобы сделать свою работу в пораженной зоне и вернуться на безопасную территорию. Превышение времени приводило к повышению уровня облучения и могло стать началом развития лучевой болезни и других последствий, которые может вызывать радиация. Защита расстоянием Если Вы обнаружили вблизи себя предмет, являющийся источником радиации — такой, который может представлять опасность для жизни и здоровья, необходимо удалиться от него на расстояние, где радиационный фон и излучение находятся в пределах допустимых норм. Также можно вывести источник радиации в безопасную зону или для захоронения. Противорадиационные экраны и спецодежда В некоторых ситуациях просто необходимо осуществлять какую-либо деятельность в зоне с повышенным радиационным фоном. Примером может быть устранение последствий аварии на атомных электростанциях или работы на промышленных предприятиях, где существуют источники радиоактивного излучения. Находиться в таких зонах без использования средств индивидуальной защиты опасно не только для здоровья, но и для жизни. Специально для таких случаев были разработаны средства индивидуальной защиты от радиации. Они представляют собой экраны из материалов, которые задерживают различные виды радиационного излучения и специальную одежду. Защитный костюм против радиации Из чего делают средства защиты от радиации? Как известно, радиация классифицируется на несколько видов в зависимости от характера и заряда частиц излучения. Чтобы противостоять тем или иным видам радиационного излучения средства защиты от него изготавливаются с использованием различных материалов: . Обезопасить человека от излучения альфа , помогают резиновые перчатки, "барьер" из бумаги или обычный респиратор.
. Если в зараженной зоне преобладает бета-излучение , то для того, чтобы оградить организм от его вредного воздействия потребуется экран из стекла, тонкого алюминиевого листа или такой материал, как плексиглас. Для защиты от бета-излучения органов дыхания обычным респиратором уже не отделаться. Тут потребуется противогаз.
. Сложнее всего оградить себя от гамма-излучения . Обмундирование, которое обладает экранирующим действием от такого рода радиации, выполняется из свинца, чугуна, стали, вольфрама и других металлов с высокой массой. Именно одежда из свинца использовалась при проведении работ на Чернобыльской АЭС после аварии.
. Всевозможные барьеры из полимеров, полиэтилена и даже воды эффективно предохраняют от вредного воздействия нейтронных частиц .
Пищевые добавки против радиации Очень часто совместно со спецодеждой и экранами для обеспечения защиты от радиации используются пищевые добавки. Они принимаются внутрь до или после попадания в зону с повышенным уровнем радиации и во многих случаях позволяют снизить токсическое воздействие радионуклидов на организм. Кроме того, снизить вредное воздействие ионизирующего излучения позволяют некоторые продукты питания. Элеутерококк снижает влияние радиации на организм 1) Продукты питания, снижающие действие радиации. Даже орехи, белый хлеб, пшеница, редиска способны в небольшой степени снижать последствия радиационного воздействия на человека. Дело в том, что в них содержится селен, препятствующий образованию опухолей, которые могут быть вызваны радиационным облучением. Очень хороши в борьбе с радиацией и биодобавки на основе водорослей (ламинарии, хлорелле). Частично избавить организм от проникших в него радиоактивных нуклидов позволяет даже лук и чеснок. АСД — препарат для защиты от радиации 2) Фармацевтические растительные препараты против радиации. Против радиации эффективное действие оказывает препарат "Корень женьшеня", который можно купить в любой аптеке. Его применяют в два приема перед едой в количестве 40-50 капель за один раз. Также для снижения концентрации радионуклидов в организме рекомендуется употреблять экстракт элеутерококк в объеме от четверти до половины чайной ложки в день вместе с выпиваемым утром и в обеденное время чаем. Левзея, заманиха, медуница также относятся к категории радио-протекционных препаратов, и приобрести их можно в аптечных пунктах.
Индивидуальная аптечка с препаратами для защиты от радиации Но, повторимся, что никакой препарат не может полностью противостоять воздействию радиации. Cамый лучший способ защиты от радиации — вообще не иметь контакта с зараженными предметами и не находится в местах с повышенным радиационным фоном. Дозиметры представляют собой измерительные приборы для числовой оценки дозы радиоактивного излучения или мощности этой дозы за единицу времени. Измерение производится с помощью встроенного или подключаемого отдельно счетчика Гейгера-Мюллера: он измеряет дозу радиации за счет подсчета количества ионизирующих частиц, проходящих через его рабочую камеру. Именно этот чувствительный элемент является главной деталью любого дозиметра. Полученные в ходе измерений данные преобразуются и усиливаются встроенной в дозиметр электроникой, а показания выводятся на стрелочный или числовой, чаще жидкокристаллический индикатор. По значению дозы ионизирующего излучения, которая обычно измеряется бытовыми дозиметрами в пределах от 0.1 до 100 мкЗв/ч (микрозиверт в час) можно оценивать степень радиационной безопасности территории или объекта. Для проверки веществ (как жидких, так и твердых) на предмет соответствия радиационным нормам необходим прибор, позволяющий производить измерение такой величины, как микрорентген. Большинство современных дозиметров позволяет измерять и эту величину в пределах от 10 до 10 000 мкР/ч, и именно поэтому такие устройства чаще называются дозиметрами-радиометрами. Виды дозиметров Все дозиметры классифицируются на профессиональные и индивидуальные (для использования в бытовых условиях). Разница между ними заключается в основном в пределах измерения и величине погрешности. В отличие от бытовых, профессиональные дозиметры имеют более широкий диапазон измерения (обычно от 0.05 до 999 мкЗв/ч), в то время как индивидуальные дозиметры в большинстве своем не способны определять дозы величиной более 100 мкЗв в час. Также профессиональные приборы отличаются от бытовых значением погрешности: для бытовых погрешность измерений может достигать 30 %, а для профессиональных — не может быть больше 7 %.
Современный дозиметр можно носить с собой везде! В число функций как профессиональных, так и бытовых дозиметров может входить звуковая сигнализация, которая включается при определенном пороге измеряемой дозы излучения. Значение, при котором срабатывает сигнализация, в некоторых приборах может задаваться самим пользователем. Данная функция позволяет легко находить потенциально опасные предметы. Назначение профессиональных и бытовых дозиметров: 1. Профессиональные дозиметры предназначены для использования на промышленных объектах, атомных подводных лодках и в других подобных местах, где есть риск получения высокой дозы облучения (это и объясняет то, что профессиональные дозиметры в основном обладают более широким диапазоном измерений). 2. Бытовые дозиметры могут использоваться населением для оценки радиационного фона в квартире или доме. Также при помощи таких дозиметров можно производить проверку стройматериалов на уровень радиационного излучения и территории, на которой планируется возвести постройку, проверять "чистоту" покупных фруктов, овощей, ягод, грибов, удобрений и т.п.
Компактный профессиональный дозиметр с двумя счетчиками Гейгера-Мюллера Бытовой дозиметр обладает небольшими размерами и массой. Работает, как правило, от аккумуляторов или батарей питания. Его можно брать с собой везде, например, при походе в лес за грибами или даже в магазин за продуктами. Функция радиометрии, которая есть практически во всех бытовых дозиметрах, позволяет быстро и эффективно оценивать состояние продуктов и их пригодность для употребления в пищу. Дозиметры прошлых лет были неудобными и громоздкими Купить дозиметр сегодня может практически каждый. Ещё не так давно они были доступны только специальным службам, обладали высокой стоимостью и большими габаритами, то значительно затрудняло их использование населением. Современные достижения в сфере электроники позволили значительно уменьшить размеры бытовых дозиметров и сделать их более доступными по цене. Обновленные приборы вскоре получили признание во всем мире и на сегодняшний день являются единственным эффективным решением для оценки дозы ионизирующего излучения. От столкновения с источниками радиации не застрахован никто. Узнать о том, что уровень радиации превышен, можно лишь по показаниям дозиметра или по особому предупреждающему знаку. Обычно подобные знаки устанавливаются вблизи техногенных источников радиации: заводов, атомных электростанций, мест захоронений радиоактивных отходов и т.п. На рынке или в магазине таких табличек Вы, конечно, не встретите. Но это вовсе не означает, что источников радиации в таких местах быть не может. Известны случаи, когда источником радиации были продукты питания, фрукты, овощи и даже медицинские препараты. Каким образом в товарах народного потребления могут оказаться радионуклиды, вопрос другой. Главное знать, как правильно вести себя в случае обнаружения источников радиации. Где можно найти радиоактивный предмет? Поскольку на промышленных объектах определенной категории вероятность столкнуться с источником радиации и получить дозу особенно высока, дозиметры здесь выдаются практически всему персоналу. Кроме того, рабочие проходят специальный обучающий курс, на котором людям объясняют, как вести себя при возникновении радиационной угрозы или при обнаружении опасного предмета. Также многие предприятия, работающие с радиоактивными веществами, оснащаются световой и звуковой сигнализацией, при срабатывании которой весь штат сотрудников предприятия быстро эвакуируется. В общем, работники промышленности хорошо осведомлены, как действовать при появлении радиационной угрозы. Дела обстоят совсем иначе, когда источники радиации обнаруживаются в быту или на улице. Многие из нас просто не знают, как поступить в таких ситуациях и что нужно делать. Предупреждающая табличка "радиоактивность" Как себя вести при обнаружении источника радиации? При обнаружении объекта радиационного излучения важно знать, как себя вести, чтобы радиационная находка не навредила ни Вам, ни окружающим. Учтите: если у Вас в руках оказался дозиметр, это не дает Вам никакого права, чтобы пытаться самостоятельно устранить обнаруженный источник радиации. Лучшее, что Вы можете сделать в такой ситуации — удалиться на безопасное расстояние от объекта и предупредить об опасности прохожих. Всю остальную работу по утилизации объекта следует доверить соответствующим органам, например, милиции. Поиском и утилизацией радиационных предметов занимаются соответствующие службы Мы уже не раз говорили о том, что источник радиации может быть обнаружен даже в продовольственном магазине. В таких ситуациях также нельзя молчать или пытаться "разобраться" с продавцами самостоятельно. Лучше вежливо предупредить администрацию магазина и обратиться в службу Санэпидем надзора. Если Вы не сделали опасную покупку, то это ещё не значит, что радиационный предмет не купит кто-либо другой!

О существовании невидимых смертоносных лучей сегодня осведомлены даже малые дети. С экранов компьютеров и телевизоров нас пугают страшными последствиями радиации: постапокалипсические фильмы и игры по-прежнему остаются модными. Однако лишь немногие могут дать внятный ответ на вопрос "что такое радиация?". И еще меньше людей осознают, насколько реальна угроза облучения. Причем, не где-то в Чернобыле или Хиросиме, а в своем собственном доме.

Что такое радиация?

На самом деле термин "радиация" не обязательно подразумевает "смертоносные лучи". Тепловая или, к примеру, солнечная радиация не несет практически никакой угрозы жизни и здоровью обитающих на поверхности Земли живых организмов. Из всех известных видов радиации реальную опасность представляет только ионизирующее излучение , которое физики также называют электромагнитным или корпускулярным. Вот оно-то и является той самой "радиацией", об опасности которой говорят с экранов телевизоров.

Ионизирующее гамма- и рентгеновское излучение — та "радиация", о которой говорят с экранов телевизоров

Особенность ионизирующего излучения состоит в том, что, в отличие от других видов излучения, оно обладает исключительно большой энергией и при взаимодействии с веществом вызывает ионизацию его молекул и атомов. Электрически нейтральные до облучения частицы вещества возбуждаются, вследствие чего образуются свободные электроны, а также положительно и отрицательно заряженные ионы.

Наиболее распространены четыре типа ионизирующего излучения: альфа, бета, гамма и рентгеновское (обладает теми же свойствами, что и гамма). Они состоят из разных частиц, а потому обладают разной энергией и, соответственно, разной проникающей способностью. Самое "слабое" в этом смысле альфа-излучение, которое представляет собой поток положительно заряженных альфа-частиц, неспособный "просочиться" даже через обычный лист бумаги (или кожу человека). Бета-излучение, состоящее из электронов, проникает сквозь кожу уже на 1-2 см, но и от него вполне реально защититься. А вот от гамма-радиации практически нет спасения: задержать высокоэнергичные фотоны (или гамма-кванты) может, разве что, толстая свинцовая или железобетонная стена. Впрочем, то, что альфа и бета-частицы легко остановить даже незначительной преградой вроде бумаги, вовсе не означает, что они никак не попадут в организм. Органы дыхания, микротравмы на коже и слизистых оболочках — "открытые ворота" для радиации с низкой проникающей способностью.

Единицы измерения и норма радиации

Основной мерой воздействия радиации принято считать экспозиционную дозу. Она измеряется в Р (рентгенах) или производных (мР, мкР) и представляет собой общее количество энергии, которое источник ионизирующего излучения успел передать предмету или организму в процессе облучения. Так как разные виды радиации обладают разной степенью опасности при одном и том же количестве переданной энергии, принято рассчитывать еще один показатель — эквивалентную дозу. Она измеряется в Б (бэрах), Зв (зивертах) или их производных и рассчитывается, как произведение экспозиционной дозы на коэффициент, характеризующий качество излучения (для бета и гамма-излучения коэффициент качества равен 1, для альфа — 20). Для оценки силы самого ионизирующего излучения используют другие показатели: мощность экспозиционной и эквивалентной дозы (измеряется в Р/сек или производных: мР/сек, мкР/час, мР/час), а также плотность потока (измеряется в (см 2 ·мин) -1) для альфа и бета-излучения.

Сегодня принято считать, что ионизирующее излучение с мощностью дозы ниже 30 мкР/час абсолютно безопасно для здоровья. Но все относительно… Как показали последние исследования, разные люди обладают разной устойчивостью к воздействию ионизирующего излучения. Примерно 20% обладают повышенной чувствительностью, столько же — пониженной. Последствия облучения малыми дозами обычно проявляются спустя годы или не проявляются вовсе, сказываясь только на потомках пораженного радиацией человека. Так что, безопасность малых доз (незначительно превышающих норму) до сих пор остается одним из самых обсуждаемых вопросов.

Радиация и человек

Итак, в чем же состоит влияние радиации на здоровье человека и других живых существ? Как уже было отмечено, ионизирующее излучение различными путями проникает в организм и вызывает ионизацию (возбуждение) атомов и молекул. Далее, под воздействием ионизации в клетках живого организма образуются свободные радикалы, которые нарушают целостность белков, ДНК, РНК и др. сложных биологических соединений. Что в свою очередь приводит к массовой гибели клеток, канцеро- и мутагенезу.

Другими словами, влияние радиации на организм человека разрушительно. При сильном облучении негативные последствия проявляются практически сразу: высокие дозы вызывают лучевую болезнь разных степеней тяжести, ожоги, слепоту, возникновение злокачественных новообразований. Но не менее опасны и малые дозы, до недавних пор считавшиеся "безвредными" (сегодня к такому выводу приходит все большее число исследователей). Отличие состоит лишь в том, что последствия радиации сказываются не сразу, а по прошествии нескольких лет, иногда десятилетий. Лейкозы, раковые опухоли, мутации, уродства, нарушения ЖКТ, системы кровообращения, психического и умственного развития, шизофрения — вот далеко не полный список заболеваний, которые способны вызвать малые дозы ионизирующего излучения.

Даже небольшое облучение приводит к катастрофическим последствиям. Но особенно опасна радиация для маленьких детей и пожилых людей. Так, по данным специалистов нашего сайта www.сайт, вероятность возникновения лейкемии при облучении малыми дозами увеличивается в 2 раза для детей младше 10 лет и в 4 раза для младенцев, находившихся на момент облучения в утробе матери. Радиация и здоровье в буквальном смысле слова не совместимы!

Защита от радиации

Характерная особенность радиации состоит в том, что она не "растворяется" в окружающей среде, подобно вредным химическим соединениям. Даже после устранения источника излучения, фон долгое время остается повышенным. Поэтому ясного и однозначного ответа на вопрос "как бороться с радиацией?" не существует до сих пор. Понятно, что на случай ядерной войны (к примеру) придуманы специальные средства защиты от радиации: спецкостюмы, бункеры и пр. Но это для "чрезвычайных ситуаций". А как быть с малыми дозами, которые до сих пор многие считают "практически безопасными"?

Известно, "спасение утопающих — дело рук самих утопающих". Пока исследователи решают, какую дозу следует признать опасной, а какую — нет, лучше самому купить прибор, измеряющий радиацию и за версту обходить территории и предметы, даже если они "фонят" совсем немного (заодно решится вопрос "как распознать радиацию?", ведь с дозиметром в руках Вы всегда будете в курсе окружающего фона). Тем более что в современном городе радиацию можно встретить в любых, даже самых неожиданных местах.

И напоследок пара слов о том, как вывести радиацию из организма. Чтобы максимально ускорить очищение, врачи рекомендуют:

1. Физические нагрузки, баня и сауна — ускоряют обмен веществ, стимулируют кровообращение и, следовательно, способствуют выведению любых вредных веществ из организма естественным путем.

2. Здоровое питание — особенное внимание следует уделить овощам и фруктам, богатым антиоксидантами (именно такую диету прописывают онкологическим больным после химиотерапии). Целые "залежи" антиоксидантов содержатся в чернике, клюкве, винограде, рябине, смородине, свекле, гранатах и других кислых и кисло-сладких плодах красных оттенков.

Радиоактивностью называют неустойчивость ядер некоторых атомов, которая проявляется в их способности к самопроизвольному превращению (по научному — распаду), что сопровождается выходом ионизирующего излучения (радиации). Энергия такого излучения достаточно велика, поэтому она способна воздействовать на вещество, создавая новые ионы разных знаков. Вызывать радиацию с помощью химических реакций нельзя, это полностью физический процесс.

Различают несколько видов радиации:

  • Альфа-частицы — это относительно тяжелые частицы, заряженные положительно, представляют собой ядра гелия.
  • Бета-частицы — обычные электроны.
  • Гамма-излучение — имеет ту же природу, что и видимый свет, однако гораздо большую проникающую способность.
  • Нейтроны — это электрически нейтральные частицы, возникающие в основном рядом с работающим атомным реактором, доступ туда должен быть ограничен.
  • Рентгеновские лучи — похожи на гамма-излучение, но имеют меньшую энергию. Кстати, Солнце — один из естественных источников таких лучей, но защиту от солнечной радиации обеспечивает атмосфера Земли.

Наиболее опасно для человека Альфа, Бета и Гамма излучение, которое может привести к серьезным заболеваниям, генетическим нарушения и даже смерти. Степень влияния радиации на здоровье человека зависит от вида излучения, времени и частоты. Таким образом, последствия радиации, которые могут привести к фатальным случаям, бывают как при однократном пребывании у сильнейшего источника излучения (естественного или искусственного), так и при хранении слаборадиоактивных предметов у себя дома (антиквариата, обработанных радиацией драгоценных камней, изделий из радиоактивного пластика). Заряженные частицы очень активны и сильно взаимодействуют с веществом, поэтому даже одной альфа-частицы может хватить, чтобы уничтожить живой организм или повредить огромное количество клеток. Впрочем, по этой же причине достаточным средством защиты от радиации данного типа является любой слой твердого или жидкого вещества, например, обычная одежда.

По мнению специалистов www.сайт, ультрафиолетовое излучение или излучение лазеров нельзя считать радиоактивным. Чем же отличается радиация и радиоактивность?

Источники радиации — ядерно-технические установки (ускорители частиц, реакторы, рентгеновское оборудование) и радиоактивные вещества. Они могут существовать значительное время, никак не проявляя себя, и Вы можете даже не подозревать, что находитесь рядом с предметом сильнейшей радиоактивности.

Единицы измерения радиоактивности

Радиоактивность измеряется в Беккерелях (БК), что соответствует одному распаду в секунду. Содержание радиоактивности в веществе также часто оценивают на единицу веса — Бк/кг, или объема — Бк/куб.м. Иногда встречается такая единица как Кюри (Ки). Это огромная величина, равная 37 миллиардам Бк. При распаде вещества источник испускает ионизирующее излучение, мерой которого является экспозиционная доза. Её измеряют в Рентгенах (Р). 1 Рентген величина достаточно большая, поэтому на практике используют миллионную (мкР) или тысячную (мР) долю Рентгена.

Бытовые дозиметры измеряют ионизацию за определенное время, то есть не саму экспозиционную дозу, а её мощность. Единица измерения — микроРентген в час. Именно этот показатель наиболее важен для человека, так как позволяет оценить опасность того или иного источника радиации.


Радиация и здоровье человека

Воздействие радиации на организм человека называют облучением. Во время этого процесса энергия радиация передается клеткам, разрушая их. Облучение может вызывать всевозможные заболевания: инфекционные осложнения, нарушения обмена веществ, злокачественные опухоли и лейкоз, бесплодие, катаракту и многое другое. Особенно остро радиация воздействует на делящиеся клетки, поэтому она особенно опасна для детей.

Организм реагирует на саму радиацию, а не на её источник. Радиоактивные вещества могут проникать в организм через кишечник (с пищей и водой), через лёгкие (при дыхании) и даже через кожу при медицинской диагностике радиоизотопами. В этом случае имеет место внутреннее облучение. Кроме того, значительное влияние радиации на организм человека оказывает внешнее облучение, т.е. источник радиации находится вне тела. Наиболее опасно, безусловно, внутреннее облучение.

Как вывести радиацию из организма? Этот вопрос, безусловно, волнует многих. К сожалению, особо эффективных и быстрых способов вывода радионуклидов из организма человека не существет. Некоторые продукты питания и витамины помогают очистить организм от небольших доз радиации. Но если облучение серьезное, то остается только надеяться на чудо. Поэтому лучше не рисковать. И если существует даже малейшая опасность подвергнуться радиации, необходимо со всей быстротой уносить ноги из опасного места и вызывать специалистов.

Является ли компьютер источником радиации?

Этот вопрос, в век распространения компьютерной техники, волнует многих. Единственной частью компьютера, которая теоретически может быть радиоактивной является монитор, да и то, только электролучевой. Современные дисплеи, жидкокристаллические и плазменные, радиоактивными свойствами не обладают.

ЭЛТ мониторы, как и телевизоры, являются слабым источником излучения рентгеновского типа. Оно возникает на внутренней поверхности стекла экрана, однако благодаря значительной толщине этого же стекла, оно и поглощает большую часть излучения. До настоящего времени не обнаружено никакого влияния ЭЛТ мониторов на здоровье. Впрочем, при повсеместном применении жидкокристаллических дисплеев этот вопрос теряет былую актуальность.

Может ли человек стать источником радиации?

Радиация, воздействуя на организм, не образует в нем радиоактивных веществ, т.е. человек не превращается сам в источник радиации. Кстати, рентгеновские снимки, вопреки распространенному мнению, также безопасны для здоровья. Таким образом, в отличие от болезни, лучевое поражение от человека к человеку передаваться не может, зато радиоактивные предметы, несущие в себя заряд, могут быть опасны.

Измерение уровня радиации

Измерить уровень радиации можно с помощью дозиметра. Бытовые приборы просто не заменимы для тех, кто хочет максимально обезопасить себя от смертельно опасного влияния радиации. Основное предназначение бытового дозиметра — измерение мощности дозы радиации в том месте, где находится человек, обследование определенных предметов (грузов, стройматериалов, денег, продуктов питания, детских игрушек и т.п.) , просто необходимо тем, кто часто бывает в районах радиационного загрязнения, вызванных аварией на Чернобыльской АЭС (а такие очаги присутствуют практически во всех областях европейской территории России). Поможет дозиметр и тем, кто бывает в незнакомой местности, удаленной от цивилизации: в походе, собирая грибы и ягоды, на охоте. Обязательно необходимо обследовать на радиационную безопасность место предполагаемого строительства (или покупки) дома, дачи, огорода или земельного участка, иначе вместо пользы подобная покупка принесет только смертельно опасные заболевания.

Очистить продукты, землю или предметы от радиации практически невозможно, поэтому единственный способ обезопасить себя и свою семью — держаться от них подальше. А именно бытовой дозиметр поможет выявить потенциально опасные источники.

Нормы радиоактивности

В отношении радиоактивность существует большое число норм, т.е. стараются нормировать практически все. Другое дело, что нечистые на руку продавцы, в погоне за большой прибылью, не соблюдают, а иногда и откровенно нарушают нормы, установленные законодательством. Основные нормы, установленные в России, прописаны в Федеральном законе №3-ФЗ от 05.12.1996 г «О радиационной безопасности населения» и в Санитарных правилах 2.6.1.1292-03 «Нормы радиационной безопасности».

Для вдыхаемого воздуха , воды и продуктов питание регламентировано содержание как техногенных (полученных в результате деятельности человека), так и естественных радиоактивных веществ, которые не должны превышать нормы, установленные СанПиН 2.3.2.560-96.

В строительных материалах нормируется содержания радиоактивных веществ семейства тория и урана, а также калия-40, удельная эффективная активность их рассчитывается по специальным формулам. Требования к строительным материалам также указаны в ГОСТ.

В помещениях регламентируется суммарное содержание торона и радона в воздухе: для новых зданий оно должно быть не больше 100 Бк (100 Бк/м 3), а для уже эксплуатируемых — менее 200 Бк/м 3 . В Москве применяются также дополнительные нормы МГСН2.02-97, где регламентируются максимально допустимые уровни ионизирующего излучения и содержание радона на участках застройки.

Для медицинской диагностике предельные дозовые значения не обозначены, однако выдвигаются требований минимально достаточных уровней облучения, чтобы получить качественную диагностическую информацию.

В компьютерной технике регламентируется предельный уровень излучения для электро-лучевых (ЭЛТ) мониторов. Мощность дозы рентгеновского изучения на любой точке на расстоянии 5 см от видеомонитора или персонального компьютера не должна превышать 100 мкР в час.


Проверить же соблюдаются ли производителями установленные законодательно нормы можно только самостоятельно, используя миниатюрный бытовой дозиметр. Пользоваться им очень просто, достаточно нажать одну кнопку и сверить показания на жидкокристаллическом дисплее прибора с рекомендованными. Если норма значительно превышена, значит данный предмет представляет собой угрозу жизни и здоровья, и о нём следует сообщить в МЧС, чтобы он был уничтожен. Защитите себя и свою семью от радиации!

Радиоактивное излучение (или ионизирующее) – это энергия, которая высвобождается атомами в форме частиц или волн электромагнитной природы. Человек подвергается такому воздействию как через природные, так и через антропогенные источники.

Полезные свойства излучения позволили успешно использовать его в промышленности, медицине, научных экспериментах и исследованиях, сельском хозяйстве и других областях. Однако с распространением применения этого явления возникла угроза здоровью людей. Малая доза радиоактивного облучения способна повысить риск приобретения серьёзных заболеваний.

Отличие радиации от радиоактивности

Радиация, в широком смысле, означает излучение, то есть распространение энергии в виде волн или частиц. Радиоактивные излучения делят на три вида:

  • альфа-излучение – поток ядер гелия-4;
  • бета-излучение – поток электронов;
  • гамма-излучение – поток высокоэнергетических фотонов.

Характеристика радиоактивных излучений основана на их энергии, пропускных свойствах и виде испускаемых частиц.

Альфа-излучение, которое представляет собой поток корпускул с положительным зарядом, может быть задержано толщей воздуха или одеждой. Этот вид практически не проникает через кожный покров, но при попадании в организм, например, через порезы, очень опасен и пагубно действует на внутренние органы.

Бета-излучение обладает большей энергией – электроны движутся с высокой скоростью, а их размеры малы. Поэтому данный вид радиации проникает через тонкую одежду и кожу глубоко в ткани. Экранировать бета-излучение можно при помощи алюминиевого листа в несколько миллиметров или толстой деревянной доски.

Гамма-излучение – это высокоэнергетическое излучение электромагнитной природы, которое обладает сильной проникающей способностью. Для защиты от него нужно использовать толстый слой бетона или пластину из тяжёлых металлов таких, как платина и свинец.

Феномен радиоактивности был обнаружен в 1896 году. Открытие сделал французский физик Беккерель. Радиоактивность – способность предметов, соединений, элементов испускать ионизирующее изучение, то есть радиацию. Причина явления заключается в нестабильности атомного ядра, которое при распаде выделяет энергию. Существует три вида радиоактивности:

  • естественная – характерна для тяжёлых элементов, порядковый номер которых больше 82;
  • искусственная – инициируется специально с помощью ядерных реакций;
  • наведённая – свойственна объектам, которые сами становятся источником радиации, если их сильно облучить.

Элементы, обладающие радиоактивностью, называют радионуклидами. Каждый из них характеризуется:

  • периодом полураспада;
  • видом испускаемой радиации;
  • энергией радиации;
  • и другими свойствами.

Источники радиации

Человеческий организм регулярно подвергается действию радиоактивного излучения. Приблизительно 80% ежегодно получаемого количества приходится на космические лучи. В воздухе, воде и почве содержатся 60 радиоактивных элементов, являющихся источниками естественной радиации. Основным природным источником излучения считается инертный газ радон, высвобождающийся из земли и горных пород. Радионуклиды также проникают в организм человека с пищей. Часть ионизирующего облучения, которому подвергаются люди, исходит от антропогенных источников, начиная от атомных генераторов электричества и ядерных реакторов до используемой для лечения и диагностики радиации. На сегодняшний день распространёнными искусственными источниками излучения являются:

  • медицинское оборудование (основной антропогенный источник радиации);
  • радиохимическая промышленность (добыча, обогащение ядерного топлива, переработка ядерных отходов и их восстановление);
  • радионуклиды, применяющиеся в сельском хозяйстве, лёгкой промышленности;
  • аварии на радиохимических предприятиях, ядерные взрывы, радиационные выбросы
  • строительные материалы.

Радиационное облучение по способу проникновения в организм делится на два типа: внутреннее и внешнее. Последнее характерно для распылённых в воздухе радионуклидов (аэрозоль, пыль). Они попадают на кожу или одежду. В таком случае источники радиации можно удалить, смыв их. Внешнее же облучение вызывает ожоги слизистых оболочек и кожных покровов. При внутреннем типе радионуклид попадает в кровоток, например, введением в вену или через раны, и удаляется путём экскреции или с помощью терапии. Такое облучение провоцирует злокачественные опухоли.

Радиоактивный фон существенно зависит от географического положения – в некоторых регионах уровень радиации может превышать средний в сотни раз.

Влияние радиации на здоровье человека

Радиоактивное излучение из-за ионизирующего действия приводит к образованию в организме человека свободных радикалов – химически активных агрессивных молекул, которые вызывают повреждение клеток и их гибель.

Особенно чувствительны к ним клетки ЖКТ, половой и кроветворной систем. Радиоактивное облучение нарушает их работу и вызывает тошноту, рвоту, нарушение стула, температуру. Воздействуя на ткани глаза, оно может привести к лучевой катаракте. К последствиям ионизирующего излучения также относят такие повреждения, как склероз сосудов, ухудшение иммунитета, нарушение генетического аппарата.

Система передачи наследственных данных имеет тонкую организацию. Свободные радикалы и их производные способны нарушать структуру ДНК – носителя генетической информации. Это приводит к возникновению мутаций, которые сказываются на здоровье последующих поколений.

Характер воздействия радиоактивного излучения на организм определяется рядом факторов:

  • вид излучения;
  • интенсивность радиации;
  • индивидуальные особенности организма.

Результаты радиоактивного излучения могут проявиться не сразу. Иногда его последствия становятся заметны через значительный промежуток времени. При этом большая однократная доза радиации более опасна, чем долговременное облучение малыми дозами.

Поглощённое количество радиации характеризуется величиной, называемой Зиверт (Зв).

  • Нормальный радиационный фон не превышает 0,2 мЗв/ч, что соответствует 20 микрорентгенам в час. При рентгенографии зуба человек получает 0,1 мЗв.
  • Смертельная разовая доза составляет 6-7 Зв.

Применение ионизирующих излучений

Радиоактивное излучение широко применяется в технике, медицине, науке, военной и атомной промышленности и других сферах человеческой деятельности. Явление лежит в основе таких устройств, как датчики задымления, генераторы электроэнергии, сигнализаторы обледенения, ионизаторы воздуха.

В медицине радиоактивное излучение используется в лучевой терапии для лечения онкологических заболеваний. Ионизирующая радиация позволила создать радиофармацевтические препараты. С их помощью проводят диагностические обследования. На базе ионизирующего излучения устроены приборы для анализа состава соединений, стерилизации.

Открытие радиоактивного излучения было без преувеличения революционным – применение этого явления вывело человечество на новый уровень развития. Однако это также стало причиной возникновения угрозы экологии и здоровью людей. В связи с этим поддержание радиационной безопасности является важной задачей современности.

" мы узнаем: "
Радиа́ция (от лат. radiātiō «сияние», «излучение»):


  • Радиация (в радиотехнике) — исходящий от любого источника поток энергии в форме радиоволн (в отличие от излучения — процесса испускания энергии);

  • Радиация — ионизирующее излучение;

  • Радиация — тепловое излучение;

  • Радиация — синоним излучения;

  • Адаптивная радиация (в биологии) — явление различной адаптации родственных групп организмов к изменениям условий окружающей среды, выступающее как одна из основных причин дивергенции;

  • Солнечная радиация — излучение Солнца (электромагнитной и корпускулярной природы). "

Как мы видим, понятие достаточно "объемное" и включает в себя много разделов.
Обратимся к морфологическому значение слов (ссылка): "ионизирующее излучение, поток микрочастиц или высокочастотное электромагнитное поле, способные вызвать ионизацию ".
Как мы видим, добавлено еще упоминание об электромагнитном поле!
Обратимся к этимологии слова (ссылка): "Происходит от лат. radiātio «сияние, блеск, излучение», из radiāre «испускать лучи, сиять, сверкать», далее от radius «палочка, спица, луч, радиус», дальнейшая этимология неясна "
Как уже успели убедиться, штампы, связывающие слово "радиация" с альфа-, бета- и гамма- излучением не совсем корректны. Они используют только одно из значений.
Для того, чтобы "говорить на одном языке", необходимо заложить базовые понятия:
1. Давайте будем использовать упрощенное определение. "Радиация" - это излучение . Необходимо помнить, что излучение может быть совершенно различным (корпускулярное или волновое, тепловое или ионизирующее и тд)и происходить по разным физическим законам. В некоторых случаях, для упрощения понимания можно это слово заменить словом "воздействие".
...........................
Теперь, давайте поговорим о штампах.

Как уже упоминалось выше, многие наверняка слышали про альфа-, бета- и гамма- радиацию. Что же это такое?
Это виды ионизирующего излучения.

"Причиной радиоактивности вещества являются нестабильные ядра, входящие в состав атомов, которые при распаде выделяют в окружающую среду невидимые излучения или частицы. В зависимости от различных свойств (состав, проникающая способность, энергия), сегодня выделяют множество видов ионизирующего излучения, из которых наиболее значимыми и распространенными являются:


  • Альфа-излучение. Источником радиации в нем являются частицы с положительным зарядом и сравнительно большим весом. Альфа-частицы (2 протона + 2 нейтрона) довольно громоздки и потому легко задерживаются даже незначительными преградами: одеждой, обоями, оконными занавесками и т.д. Даже если альфа-излучение попадает на обнаженного человека, в этом нет ничего страшного, дальше поверхностных слоев кожи оно не пройдет. Однако, несмотря на малую проникающую способность, альфа-излучение обладает мощной ионизацией, что особо опасно, если вещества-источники альфа-частиц попадают непосредственно в организм человека, например в легкие или пищеварительный тракт.

  • Бета-излучение. Представляет собой поток заряженных частиц (позитронов или электронов). Такое излучение обладает более значительной проникающей способностью, чем альфа-частицы, задержать его может деревянная дверь, оконное стекло, кузов автомобиля и т.д. Для человека опасно при воздействии на незащищенные кожные покровы, а также при попадании внутрь радиоактивных веществ.

  • Гамма-излучение и близкое к нему рентгеновское излучение. Ещё одна разновидность ионизирующей радиации, которая является родственной световому потоку, но с лучшей способностью к проникновению в окружающие предметы. По своему характеру это высокоэнергетическое коротковолновое электромагнитное излучение. Для того, чтобы задержать гамма-излучение в отдельных случаях может потребоваться стена из нескольких метров свинца, или нескольких десятков метров плотного железобетона. Для человека такое излучение является самым опасным. Основным источником этого вида излучения в природе является Солнце, однако, до человека смертоносные лучи не доходят благодаря защитному слою атмосферы.

Схема образования радиации различных типов "


"Различают несколько видов радиации:

  • Альфа-частицы — это относительно тяжелые частицы, заряженные положительно, представляют собой ядра гелия.

  • Бета-частицы — обычные электроны.

  • Гамма-излучение — имеет ту же природу, что и видимый свет, однако гораздо большую проникающую способность.

  • Нейтроны — это электрически нейтральные частицы, возникающие в основном рядом с работающим атомным реактором, доступ туда должен быть ограничен.

  • Рентгеновские лучи — похожи на гамма-излучение, но имеют меньшую энергию. Кстати, Солнце — один из естественных источников таких лучей, но защиту от солнечной радиации обеспечивает атмосфера Земли.

Как мы видим на рисунке выше, излучение, оказывается, бывает не только 3-х видов. Эти излучения создаются (в большинстве случаев) вполне определенными веществами, которые имеют свойство самопроизвольно или после определенного воздействия (или католизатора) совершать "самопроизвольное превращение" или "распад" с сопутствующим видом излучения.
Кроме радиации от таких элементов выделяют еще и солнечную радиацию .
Обратимся к "Википедия ": "Со́лнечная радиа́ция — электромагнитное и корпускулярное излучение Солнца."
Т.е. излучение как частиц, так и волн. Корпускулярно-волновой дуализм физики и попытки "латать в нем дыры" оставим для очередной нобелевки соостветствующим академикам!
"Солнечная радиация измеряется по её тепловому действию (калории на единицу поверхности за единицу времени) и интенсивности (ватты на единицу поверхности). В целом, Земля получает от Солнца менее 0,5×10 −9 от его излучения.

Электромагнитная составляющая солнечной радиации распространяется со скоростью света и проникает в земную атмосферу. До земной поверхности солнечная радиация доходит в виде прямых и рассеянных лучей. Всего Земля получает от Солнца менее одной двухмиллиардной его излучения. Спектральный диапазон электромагнитного излучения Солнца очень широк — от радиоволн до рентгеновских лучей — однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра.

Существует также корпускулярная часть солнечной радиации, состоящая преимущественно из протонов, движущихся от Солнца со скоростями 300—1500 км/с (см. Солнечный ветер). Во время солнечных вспышек образуются также частицы больших энергий (в основном протоны и электроны), образующие солнечную компоненту космических лучей.

Энергетический вклад корпускулярной составляющей солнечной радиации в её общую интенсивность невелик по сравнению с электромагнитной. Поэтому в ряде приложений термин «солнечная радиация» используют в узком смысле, имея в виду только её электромагнитную часть ."
Пропускаем слова про "используют в узком смысле" и запоминаем, что "спектральный диапазон"..."от радиоволн до рентгеновских лучей"!
По сути, кроме уже упомянутых веществ, способных к образованию ионизирующего излучения, будем учитывать и вклад нашего Солнца в этот процесс.
Посмотрим, что такое "тепловая радиация "...

" Тепловая радиация характеризуется теплообменом с помощью электромагнитных волн между телами на расстоянии, определяющем тепловую энергию. Большая часть радиации находится в инфракрасном спектре."
"ТЕПЛОВОЕ ИЗЛУЧЕНИЕ, тепловая радиация - электромагнитные волны, вызванные тепловыми колебаниями молекул и переходящие в теплоту при поглощении."
"Например, при тепловой радиации твердые тела излучают электромагнитные волны с непрерывной частотой длин волн Я 4004 - 0 8 мкм. В отличие от твердых тел излучение газов является селективным, прерывистым, состоящим из отдельных полос с небольшим диапазоном длин волн.
"

Как мы видим, это полностью волновое излучение, большая часть которого инфракрасное. Запомним очень интересную особенность "излучение газов является селективным, прерывистым, состоящим из отдельных полос с небольшим диапазоном длин волн", она пригодится чуть позже.

Кроме разделения радиации на виды излучения "корпускулярное" и "волновое", делят на "альфа-", "бета-", "гамма-", "рентген-", "инфракрасное-", "ультрафиолетовое-", "видимое-", "микроволновое-", "радио-" излучения. Теперь понимаете оговорку выше, про использование слова радиация в общем смысле?
Но этого деления маловато. Еще делят радиацию на естественную и искусственную, при этом искажая значение этих слов. Я не буду подробно останавливаться, а приведу, с моей точки зрения, более правильную классификацию.
Что такое "естественная радиация"?

"Естественной радиоактивностью обладает почва, вода, атмосфера, некоторые продукты и вещи, многие космические объекты. Первоисточником естественной радиации во многих случаях служит излучение Солнца и энергия распада некоторых элементов земной коры. Естественной радиоактивностью обладает даже сам человек. В организме каждого из нас имеются такие вещества как рубидий-87 и калий-40, создающие персональный радиационный фон. "
Под искусственной радиацией мы будем понимать то, к чему "прикоснулась рука человека". Т.е. изменение "радиационного фона" произошло под действием человека (в результате его действий).
"Источником радиационного излучения может быть здание, стройматериалы, предметы обихода, в которые входят вещества с нестабильными атомными ядрами. "
Такое разделение способствует тому, что понятие "естественный радиационный фон" уже больше не применимо. Изначально введенное понятие только для маскировки множества явлений уже можно не учитывать. Разделить излучение, исходящее в конкретном месте на "естественную" и "искусственную" не возможно. Поэтому понятие "естественный радиационный фон" мы уменьшим до правильного "радиационный фон". Почему так можно? Простейший пример:
В некоторой местности до воздействия на эту местность человеком (тот самый "сферический в вакууме") "естественный радиационный фон" составлял 5 ед. В результате нахождения там одного человека (а мы помним, что каждый человек имеет радиоактивный фон) прибор уже намерил 6 ед. Какое значение "естественного радиационного фона" будет 5 или 6 ед? Далее...этот человек на подошве своих ботинок принес пару десятков радиоактивных атомов на эту местность. В результате "естественный радиоактивный фон" стал 6,5 ед. Человеку понадобилось уйти с этого места и прибор уже показал 5,5 ед. "Естественный радиоактивный фон" будет составлять 5,5 ед. Но мы с вами помним, что до вмешательства человека, фон был 5 ед! В рассматриваемой ситуации мы смогли заметить, что человек своими действиями повысил "фон" на 0,5 ед.
Что же в реальности? А в реальности "естественный радиоактивный фон" измерить нельзя. Его значение будет все время меняться и зависить от множества факторов, принебречь которыми, нельзя. Ну например, вспомним про солнечную радиацию. Ее значение очень сильно зависит от времени года. От времени года, от температуры зависит и природная радиоактивность. Посему, можно измерить лишь "радиоактивный фон". В некоторых случаях возможно выделить из "радиоактивного фона" нечто близкое к "естественному радиоактивному фону".
Посему, договоримся использовать термин "радиоактивный фон" вместо "естественного уровня радиации" или "естественный радиоактивный фон". Будем считать под этим термином величину радиации, которую измерили в данной местности.
Что такое "искусственная радиация"?
Как уже говорилось выше, будем использовать этот термин для обозначения радиоактивного фона от тех действий, которые произвел человек.
Источники радиации.
Не будем разделять источники по видам радиации. Попробуем перечислить основные и часто встречаемые...

"В настоящее время на Земле сохранилось 23 долгоживущих радиоактивных элемента с периодами полураспада от 10 7 лет и выше. "

"Цепочки радиоактивного распада (радиоактивные ряды), родоначальниками которых являются радионуклиды, обладают значительной устойчивостью и большим периодом полураспада, они получили название радиоактивных семейств. Различают 4-е радиоактивных семейства:

Родоначальником 1-ого является уран,
2-ого - торий,
3-его - актиний (актиноуран),
4-ого - нептуний.
"


"Основные радиоактивные изотопы, встречающиеся в горных породах Земли, - это калий-40, рубидий-87 и члены двух радиоактивных семейств, берущих начало соответственно от урана-238 и тория-232 - долгоживущих изотопов, входящих в состав Земли с самого ее рождения. Значение радиоактивного изотопа калий-40 особенно велико для обитателей почвы - микрофлоры, корней растений, почвенной фауны. Соответственно заметно его участие во внутреннем облучении организма, его оганов и тканей, поскольку калий является незаменимым элементом, участвующим в ряде метаболических процессов.
Уровни земной радиации неодинаковы, поскольку зависят от концентрации радиоактивных изотопов на конкретном участке земной коры.
"..."Большая часть поступления связана с радионуклидами ряда урана и тория, которые содержатся в почве. Следует учитывать, что до попадания в организм человека радиоактивные вещества проходят по сложным маршрутам в окружающей среде. "

"Входит в состав радиоактивных рядов 238 U, 235 U и 232 Th. Ядра радона постоянно возникают в природе при радиоактивном распаде материнских ядер. Равновесное содержание в земной коре 7·10 −16 % по массе. Ввиду химической инертности радон относительно легко покидает кристаллическую решётку «родительского» минерала и попадает в подземные воды, природные газы и воздух. Поскольку наиболее долгоживущим из четырёх природных изотопов радона является 222 Rn, именно его содержание в этих средах максимально.
Концентрация радона в воздухе зависит, в первую очередь, от геологической обстановки (так, граниты, в которых много урана, являются активными источниками радона, в то же время над поверхностью морей радона мало), а также от погоды (во время дождя микротрещины, по которым радон поступает из почвы, заполняются водой; снежный покров также препятствует доступу радона в воздух). Перед землетрясениями наблюдалось повышение концентрации радона в воздухе, вероятно, благодаря более активному обмену воздуха в грунте ввиду роста микросейсмической активности. "

"Уголь содержит незначительное количество природных радионуклидов, которые после его сжигания концентрируются в зольной пыли и поступают в окружающую среду с выбросами, несмотря на совершенствование систем очистки "
"Некоторые страны эксплуатируют подземные ресурсы пара и горячей воды для производства электроэнергии и теплоснабжения. При этом происходит значительное поступление радона в окружающую среду. "

"В качестве удобрений ежегодно используются несколько десятков млн. тонн фосфатов. Большинство разрабатываемых в настоящее время фосфатных месторождений содержит уран, присутствующий в довольно высокой концентрации. Содержащиеся в удобрениях радиоизотопы проникают из почвы в пищевые продукты, приводят к повышению радиоактивности молока и других продуктов питания. "

" Космическое излучение складывается из частиц, захваченных магнитным полем Земли, галактического космического излучения и корпускулярного излучения Солнца. В его состав входят в основном электроны, протоны и альфа-частицы."
"Космическому внешнему облучению подвергается вся поверхность Земли. Однако облучение это неравномерно. Интенсивность космического излучения зависит от солнечной активности, географического положения объекта и возрастает с высотой над уровнем моря. Наиболее интенсивно оно на Северном и Южном полюсах, менее интенсивно в экваториальных областях. Причина этого - магнитное поле Земли, отклоняющее заряженные частицы космического излучения. Наибольший эффект действия космического внешнего облучения связан с зависимостью космического излучения от высоты (рис.4).
Солнечные вспышки представляют большую радиационную опасность во время космических полетов. Космические лучи, идущие от Солнца, в основном состоят из протонов широкого энергетического спектра (энергия протонов до 100 МзВ), Заряженные частицы от Солнца способны достигать Земли через 15-20 мин после того, как вспышка на его поверхности становится видимой. Длительность вспышки может достигать нескольких часов.

Рис.4. Величина солнечного излучения во время максимальной и минимальной активности солнечного цикла в зависимости от высоты местности над уровнем моря и географической широты. "
Интересные картинки: