Какие элементы проявляют степень окисления 4. Как определить степень окисления

Какие элементы проявляют степень окисления 4. Как определить степень окисления

Валентность не учитывает электроотрицательность атомов, соседних с данным, и не имеет знака. Но в соединении электроны, образующие химическую связь, смещены к атому, имеющему большую электрсотрицательность, и, следовательно, данный атом приобретает определенный заряд.

Для характеристики атома в молекуле введено понятие о степени окисления. Степень окисления отдельных атомов, образующих молекулу, получается, если заряды атомов распределяются так, что их валентные электроны оказываются принадлежащими более электроотрицательному из них. Иначе: степень окисления атома в молекуле есть тот электрический заряд, который мог бы возникнуть у атома, если бы общая электронная пара двух атомов различных элементов была бы полностью смещена к более электроотрицательному атому. А электронная пара, принадлежащая двум атомам одного и того же элемента, была бы поделена пополам.

Степень окисления (английский термин oxidation number буквально - «окислительное число») выражает величину электрического заряда данного атома и основывается на предположении, что электроны в каждой связи в молекуле (или ионе) полностью принадлежат более электроотрицательному атому. В качестве синонима к термину «окислительное число атомов» встречается название «электрохимическая валентность». Таким образом, под степенью окисления атомов в соединениях понимается заряд иона элемента, вычисленный исходя из допущения, что молекула состоит только из ионов.

Кислород в соединениях проявляет главным образом степень окисления, равную -2(в и пероксидах степень окисления кислорода равна +2 и -1). Для водорода характерна степень окисления +1, но встречается -1 (в гидридах металлов).

Принимая во внимание, что молекулы электронейтральны, легко определить степень окисления элементов в них. Так, например, в соединениях и степени окисления серы равны соответственно -2, +4 и +6;марганец в имеет степени окисления +7, +6, +4 и +2. Хлор в виде простого вещества и в соединениях с другими элементами проявляет соответственно следующие степени окисления: 0, -1, +1, +3, +4, +5, +6, +7.

Если молекула образована за счет ковалентной связи, как, например, , степень окисления более электроотрицательного атома обозначается со знаком минус, а менее электроотрицательного атома - со знаком плюс.

Так, в степень окисления серы +4, а кислорода -2.

Степень окисления элемента в свободном состоянии, т. е. в виде простых веществ, равна нулю, например . В соединениях и степень окисления соответственно равна +5, +6. В ионе аммония ковалентность атома азота равна 4, а степень окисления -3.

Для комплексных соединений обычно указывают степень окисления центрального иона. Например, в и степень окисления железа равна +3, никеля +2 и платины +4.

Степень окисления может быть и дробным числом; так, например, если в и для кислорода она равна -2 и -1, то в и она соответственно и .

Степень окисления нередко не равна валентности данного элемента. Например, степень окисления селена в виде простого вещества равна 0, валентность в основном состоянии равна 2, а в возбужденном может быть 2, 4 и 6.

В органических соединениях - метане , метиловом спирте , формальдегиде , муравьиной кислоте НСООН, а также в двуокиси углерода степени окисления углерода соответственно -4, -2, 0, +2, +4, тогда как валентность углерода во всех указанных веществах равна четырем.

Понятие о степени окисления, хотя и является формальным и часто не характеризует настоящее состояние атомов в соединениях, тем не менее очень полезно и удобно при классификации различных веществ и при рассмотрении окислительно-восстановительных процессов. Зная степень окисления атома данного элемента в соединении, можно определить, восстановителем или окислителем является это соединение. Так, например, элементы шестой главной подгруппы - сера, селен и теллур в своей высшей степени окисления +6 в соединениях являются только окислителями (и относительно сильными).

В отличие от атомов в степени окисления +6, атомы элементов в промежуточной степени +4 в соединениях типа могут быть в зависимости от условий как восстановителями, так и окислителями, при этом является главным образом восстановителем.

Сера, селен и теллур в низшей степени окисления -2 в соединениях и проявляют только восстановительные свойства. Таким образом, мы видим, что рассмотренные атомы элементов в степени окисления +6 проявляют аналогичные свойства и значительно отличаются от атомов, находящихся в степени окисления +4 или тем более в степени -2. Это относится к другим главным и побочным подгруппам периодической системы Д. И. Менделеева, в которых элементы проявляют различную степень окисления.

Понятие о степени окисления особенно плодотворно при составлении уравнений окислительно-восстановительных реакций. Окисление какого-либо атома в молекуле характеризуется повышением его степени окисления и наоборот восстановление атома - уменьшением его степени окисления (см. схему).

Задание 54.
Какую низшую степень окисления проявляют водород, фтор, сера и азот? Почему? Составьте формулы соединений кальция с данными элементами в этой степени окисления. Как называются соответствующие соединения?
Решение:
Низшая степень окисления определяется тем условным зарядом, который приобретает атом при присоединении того числа электронов, которое необходимо для образования устойчивой электронной оболочки инертного газа ns2np6 (в случае с водородом ns 2). Водород, фтор, сера и азот находятся соответственно в IА-, VIIА-, VIА- и VА- группах периодической системы химических элементов и имеют структуру внешнего энергетического уровня s 1 , s 2 p 5 , s 2 p 4 и s 2 p 3 .

Таким образом, для завершения внешнего энергетического уровня, атому водорода и атому фтора необходимо присоединить по одному электрону, атому серы – два, атому азота – три. Отсюда низкая степень окисления для водорода, фтора, серы и азота равна соответственно -1, -1, -2 и -3. Формулы соединений кальция с данными элементами в этой степени окисления:

CaH 2 – гидрид кальция;
CaF 2 – фторид кальция;
CaS – сульфид кальция;
Ca 3 N 2 – нитрид кальция.

Задание 55.
Какую низшую и высшую степени окисления проявляют кремний, мышьяк, селен и хлор? Почему? Составьте формулы соединений данных элементов, отвечающих этим степеням окисления.
Решение:
Высшую степень окисления элемента определяет, как правило, номер группы периодической системы
Д. И. Менделеева, в которой он находится. Низшая степень окисления определяется тем условным зарядом, который приобретает атом при присоединении того числа электронов, которое необходимо для образования устойчивой восьмиэлектронной оболочки инертного газа ns 2 np 6 (в случае с водородом ns 2). Кремний, мышьяк, селен и хлор находятся соответственно в IVА-, VА-, VIа- и VIIА- группах и имеют структуру внешнего энергетического уровня соответственно s 2 p 2 , s 2 p 3 , s 2 p 4 и s 2 p5. Таким образом, высшая степень окисления кремния мышьяка, селена и хлора равна соответственно +4, +5, +6 и +7. Формулы соединений данных элементов, отвечающих этим степеням окисления: H 2 SiO 3 – кремневая кислота; Н 3 AsO 4 – мышьяковая кислота; H 2 SeO 4 – селеновая кислота; HClO 4 – хлорная кислота.

Низшая степень окисления кремния мышьяка, селена и хлора равна соответственно -4, -5, -6 и -7. Формулы соединений данных элементов, отвечающих этим степеням окисления: H 4 Si, H 3 As, H 2 Se, HCl.

Задание 56.
Хром образует соединения, в которых он проявляет степени окисления +2, +3, +6. Составьте формулы его оксидов и гидроксидов, отвечающих этим степеням окисления. Напишите уравнения реакций, доказывающих амфотерность гидроксида хрома (III).
Решение:
Хром образует соединения, в которых проявляет степени окисления +2, +3, +6. Формулы его оксидов и гидроксидов, отвечающих этим степеням окисления:

а) оксиды хрома:

CrO – оксид хрома (II);
Cr 2 O 3 – оксид хрома (III);
CrO 3 - оксид хрома (VI).

б) гидроксиды хрома:

Cr(OH) 2 – гидроксид хрома (II);
Cr(OH) 3 – гидроксид хрома (III);
H 2 CrO 4 – хромовая кислота.

Cr(OH) 3 – гидроксид хрома (III) – амфолит, т. е. вещество, которое реагирует как с кислотами, так и с основаниями. Уравнения реакций, доказывающих амфотерность гидроксида хрома (III):

а) Cr(OH) 3 + 3HCl = CrCl 3 + 3H 2 O;
б) Cr(OH) 3 + 3NaOH = NaCrO 3 + 3H 2 O.

Задание 57.
Атомные массы элементов в периодической системе непрерывно увеличиваются, тогда, как свойства простых тел изменяются периодически. Чем это можно объяснить? Дайте мотивированный ответ.
Решение:
В большинстве случаев с возрастанием заряда ядра атомов элементов закономерно увеличиваются их относительные атомные массы, потому что происходит закономерное увеличение содержания протонов и нейтронов в ядрах атомов. Свойства простых тел изменяются периодически, потому что на наружном энергетическом уровне у атомов периодически изменяется количество электронов. У атомов элементов периодически с возрастанием заряда ядра возрастает число электронов на внешнем энергетическом уровне, которое необходимо для образования устойчивой восьмиэлектронной оболочки (оболочки инертного газа). Например, периодическая повторяемость свойств у атомов Li, Na и K объясняется тем, что на наружном энергетическом уровне их атомов имеется по одному валентному электрону. Также периодически повторяются свойства у атомов Не, Ne, Ar, Kr, Xe и Rn – у атомов этих элементов на наружном энергетическом уровне содержится по восемь электронов (у гелия – два электрона) – все они являются химически инертными, так как их атомы не могут ни присоединять, ни отдавать электроны атомам других элементов.

Задание 58.
Какова современная формулировка периодического закона? Объясните, по-чему в периодической системе элементов аргон, кобальт, теллур и торий помещены соответственно перед калием, никелем, иодом и протактинием, хотя и имеют большую атомную массу?
Решение:
Современная формулировка периодического закона: «Свойства химических элементов и образуемых ими простых или сложных веществ находятся в периодической зависимости от величины заряда ядра атомов элементов».

Так как у атомов К, Ni, I, Pa - обладающих меньшей относительной массой, чем соответственно у Ar, Co, Te, Th – заряды атомных ядер на единицу больше

то калию, никелю, йоду и протактинию присваивается порядковые номера соответственно 19, 28, 53 и 91.Таким образом элементу в периодической системе присваивается порядковый номер не по возрастанию его атомной массы, а по количеству протонов, содержащихся в ядре данного атома, т. е. по заряду ядра атома. Номер элемента указывает заряд ядра (количество протонов, содержащихся в ядре атома), общее число электронов, содержащихся в данном атоме.

Задание 59.
Какую низшую и высшую степени окисления проявляют углерод, фосфор, сера и йод? Почему? Составьте формулы соединений данных элементов, отвечающих этим степеням окисления.
Решение:
Высшую степень окисления элемента определяет, как правило, номер группы периодической системы Д. И. Менделеева, в которой он находится. Низшая степень окисления определяется тем условным зарядом, который приобретает атом при присоединении того числа электронов, которое необходимо для образования устойчивой восьмиэлектронной оболочки инертного газа ns2np6 (в случае с водородом ns2). Углерод, фосфор, сера и йод находятся соответственно в IVА-, VА-, VIа- и VIIА- группах и имеют структуру внешнего энергетического уровня соответственно s 2 p 2 , s 2 p 3 , s 2 p 4 и s 2 p 5 . Таким образом, высшая степень окисления углерода, фосфора, серы и йода равна соответственно +4, +5, +6 и +7. Формулы соединений данных элементов, отвечающих этим степеням окисления: СО 2 – оксид углерода (II); Н 3 РO 4 – ортофосфорная кислота; H 2 SO 4 – серная кислота; HIO 4 – йодная кислота.

Низшая степень окисления углерода, фосфора, серы и йода равна соответственно -4, -5, -6 и -7. Формулы соединений данных элементов, отвечающих этим степеням окисления: СH 4 , H 3 Р, H 2 S, HI.

Задание 60.
Атомы каких элементов четвертого периода периодической системы образуют оксид, отвечающий их высшей степени окисления Э 2 О 5 ? Какой из них дает газообразное соединение с водородом? Составьте формулы кислот, отвечающих этим оксидам и изобразите их графически?
Решение:
Оксид Э 2 О 5 , где элемент находится в своей высшей степени окисления +5, характерен для элементов V группы. Такой оксид могут образовывать два элемента четвёртого периода и V- группы – это элемент №23 (ванадий) и №33 (мышьяк). Ванадий и мышьяк, как элементы пятой группы, образуют водородные соединения состава ЭН 3 , потому что они могут проявлять низшую степень окисления -3. Так как мышьяк – неметалл, то он образует с водородом газообразное соединение – H 3 As – арсин.

Формулы кислот, отвечающих оксидам в высшей степени окисления ванадия и мышьяка:

H 3 VO 4 – ортованадиевая кислота;
HVO 3 – метаванадиевая кислота;
HAsO 3 – метамышьяковая кислота;
H 3 AsO 4 – мышьяковая (ортомышьяковая) кислота.

Графические формулы кислот:

При определении этого понятия условно полагают, что связующие (валентные) электроны переходят к более электроотрицательным атомам (см. Электроотрицательность), а потому соединения состоят как бы из положительно и отрицательно заряженных ионов . Степень окисления может иметь нулевое, отрицательное и положительное значения, которые обычно ставятся над символом элемента сверху.

Нулевое значение степени окисления приписывается атомам элементов, находящихся в свободном состоянии, например: Cu, H 2 , N 2 , P 4 , S 6 . Отрицательное значение степени окисления имеют те атомы, в сторону которых смещается связующее электронное облако (электронная пара). У фтора во всех его соединениях она равна −1. Положительную степень окисления имеют атомы, отдающие валентные электроны другим атомам. Например, у щелочных и щелочноземельных металлов она соответственно равна +1 и +2. В простых ионах , подобных Cl − , S 2− , K + , Cu 2+ , Al 3+ , она равна заряду иона . В большинстве соединений степень окисления атомов водорода равна +1, но в гидридах металлов (соединениях их с водородом) - NaH, CaH 2 и других - она равна −1. Для кислорода характерна степень окисления −2, но, к примеру, в соединении с фтором OF 2 она будет +2, а в перекисных соединениях (BaO 2 и др.) −1. В некоторых случаях эта величина может быть выражена и дробным числом: для железа в оксиде железа (II, III) Fe 3 O 4 она равна +8/3.

Алгебраическая сумма степеней окисления атомов в соединении равна нулю, а в сложном ионе - заряду иона. С помощью этого правила вычислим, например, степень окисления фосфора в ортофосфорной кислоте H 3 PO 4 . Обозначив ее через x и умножив степень окисления для водорода (+1) и кислорода (−2) на число их атомов в соединении, получим уравнение: (+1) 3+x+(−2) 4=0, откуда x=+5. Аналогично вычисляем степень окисления хрома в ионе Cr 2 O 7 2− : 2x+(−2) 7=−2; x=+6. В соединениях MnO, Mn 2 O 3 , MnO 2 , Mn 3 O 4 , K 2 MnO 4 , KMnO 4 степень окисления марганца будет соответственно +2, +3, +4, +8/3, +6, +7.

Высшая степень окисления - это наибольшее положительное ее значение. Для большинства элементов она равна номеру группы в периодической системе и является важной количественной характеристикой элемента в его соединениях. Наименьшее значение степени окисления элемента, которое встречается в его соединениях, принято называть низшей степенью окисления; все остальные - промежуточными. Так, для серы высшая степень окисления равна +6, низшая −2, промежуточная +4.

Изменение степеней окисления элементов по группам периодической системы отражает периодичность изменения их химических свойств с ростом порядкового номера.

Понятие степени окисления элементов используется при классификации веществ, описании их свойств, составлении формул соединений и их международных названий. Но особенно широко оно применяется при изучении окислительно-восстановительных реакций . Понятие «степень окисления» часто используют в неорганической химии вместо понятия «валентность» (см.

Современная формулировка Периодического закона, открытого Д. И. Менделеевым в 1869 г.:

Свойства элементов находятся в периодической зависимости от порядкового номера.

Периодически повторяющийся характер изменения состава электронной оболочки атомов элементов объясняет периодическое изменение свойств элементов при движении по периодам и группам Периодической системы.

Проследим, например, изменение высших и низших степеней окисления у элементов IA – VIIA-групп во втором – четвертом периодах по табл. 3.

Положительные степени окисления проявляют все элементы, за исключением фтора. Их значения увеличиваются с ростом заряда ядер и совпадают с числом электронов на последнем энергетическом уровне (за исключением кислорода). Эти степени окисления называют высшими степенями окисления. Например, высшая степень окисления фосфора Р равна +V.




Отрицательные степени окисления проявляют элементы, начиная с углерода С, кремния Si и германия Ge. Значения их равны числу электронов, недостающих до восьми. Эти степени окисления называют низшими степенями окисления. Например, у атома фосфора Р на последнем энергетическом уровне недостает трех электронов до восьми, значит, низшая степень окисления фосфора Р равна – III.

Значения высших и низших степеней окисления повторяются периодически, совпадая по группам; например, в IVA-группе углерод С, кремний Si и германий Ge имеют высшую степень окисления +IV, а низшую степень окисления – IV.

Эта периодичность изменения степеней окисления отражается на периодическом изменении состава и свойств химических соединений элементов.

Аналогично прослеживается периодическое изменение электроотрицательности элементов в 1-6-м периодах IA– VIIA-групп (табл. 4).

В каждом периоде Периодической системы электроотрицательность элементов увеличивается при возрастании порядкового номера (слева направо).




В каждой группе Периодической системы электроотрицательность уменьшается при возрастании порядкового номера (сверху вниз). Фтор F обладает наивысшей, а цезий Cs – наинизшей электроотрицательностью среди элементов 1-6-го периодов.

У типичных неметаллов – высокая электроотрицательность, а у типичных металлов – низкая.

Примеры заданий частей А, В

1. В 4-м периоде число элементов равно


2. Металлические свойства элементов 3-го периода от Na до Сl

1) силиваются

2) ослабевают

3) не изменяются

4) не знаю


3. Неметаллические свойства галогенов с увеличением порядкового номера

1) возрастают

2) понижаются

3) остаются без изменений

4) не знаю


4. В ряду элементов Zn – Hg – Со – Cd один элемент, не входящий в группу, – это


5. Металлические свойства элементов повышаются по ряду

1) In – Ga – Al

2) К – Rb – Sr

3) Ge – Ga – Tl

4) Li – Be – Mg


6. Неметаллические свойства в ряду элементов Аl – Si – С – N

1) увеличиваются

2) уменьшаются

3) не изменяются

4) не знаю


7. В ряду элементов О – S – Se – Те размеры (радиусы) атома

1) уменьшаются

2) увеличиваются

3) не изменяются

4) не знаю


8. В ряду элементов Р – Si – Аl – Mg размеры (радиусы) атома

1) уменьшаются

2) увеличиваются

3) не изменяются

4) не знаю


9. Для фосфора элемент с меньшей электроотрицательностью – это


10. Молекула, в которой электронная плотность смещена к атому фосфора, – это


11. Высшая степень окисления элементов проявляется в наборе оксидов и фторидов

1) СlO 2 , РСl 5 , SeCl 4 , SO 3

2) PCl, Аl 2 O 3 , КСl, СО

3) SeO 3 , ВСl 3 , N 2 O 5 , СаСl 2

4) AsCl 5 , SeO 2 , SCl 2 , Cl 2 O 7


12. Низшая степень окисления элементов – в их водородных соединениях и фторидах набора

1) ClF 3 , NH 3 , NaH, OF 2

2) H 3 S + , NH+, SiH 4 , H 2 Se

3) CH 4 , BF 4 , H 3 O + , PF 3

4) PH 3 , NF+, HF 2 , CF 4


13. Валентность для многовалентного атома одинакова в ряду соединений

1) SiH 4 – AsH 3 – CF 4

2) РН 3 – BF 3 – ClF 3

3) AsF 3 – SiCl 4 – IF 7

4) H 2 O – BClg – NF 3


14. Укажите соответствие между формулой вещества или иона и степенью окисления углерода в них



Степень окисления - условная величина, использующаяся для записи окислительно-восстановительных реакций. Для определения степени окисления используется таблица окисления химических элементов.

Значение

Степень окисления основных химических элементов основана на их электроотрицательности. Значение равно числу смещённых в соединениях электронов.

Степень окисления считается положительной, если электроны смещаются от атома, т.е. элемент отдаёт электроны в соединении и является восстановителем. К таким элементам относятся металлы, их степень окисления всегда положительная.

При смещении электрона к атому значение считается отрицательным, а элемент - окислителем. Атом принимает электроны до завершения внешнего энергетического уровня. Окислителями является большинство неметаллов.

Простые вещества, не вступающие в реакцию, всегда имеют нулевую степень окисления.

Рис. 1. Таблица степеней окисления.

В соединении положительную степень окисления имеет атом неметалла с меньшей электроотрицательностью.

Определение

Определить максимальную и минимальную степень окисления (сколько электронов может отдавать и принимать атом) можно по периодической таблице Менделеева.

Максимальная степень равна номеру группы, в которой находится элемент, или количеству валентных электронов. Минимальное значение определяется по формуле:

№ (группы) – 8.

Рис. 2. Таблица Менделеева.

Углерод находится в четвёртой группе, следовательно, его высшая степень окисления +4, а низшая - -4. Максимальная степень окисления серы +6, минимальная - -2. Большинство неметаллов всегда имеет переменную - положительную и отрицательную - степень окисления. Исключением является фтор. Его степень окисления всегда равна -1.

Следует помнить, что к щелочным и щелочноземельным металлам I и II групп соответственно, это правило не применимо. Эти металлы имеют постоянную положительную степень окисления - литий Li +1 , натрий Na +1 , калий K +1 , бериллий Be +2 , магний Mg +2 , кальций Ca +2 , стронций Sr +2 , барий Ba +2 . Остальные металлы могут проявлять разную степень окисления. Исключением является алюминий. Несмотря на нахождение в III группе, его степень окисления всегда +3.

Рис. 3. Щелочные и щелочноземельные металлы.

Из VIII группы высшую степень окисления +8 могут проявлять только рутений и осмий. Находящиеся в I группе золото и медь проявляют степень окисления +3 и +2 соответственно.

Запись

Чтобы правильно записывать степень окисления, следует помнить о нескольких правилах:

  • инертные газы не вступают в реакции, поэтому их степень окисления всегда равна нулю;
  • в соединениях переменная степень окисления зависит от переменной валентности и взаимодействия с другими элементами;
  • водород в соединениях с металлами проявляет отрицательную степень окисления - Ca +2 H 2 −1 , Na +1 H −1 ;
  • кислород всегда имеет степень окисления -2, кроме фторида кислорода и пероксида - O +2 F 2 −1 , H 2 +1 O 2 −1 .

Что мы узнали?

Степень окисления - условная величина, показывающая, сколько электронов принял или отдал атом элемента в соединении. Величина зависит от количества валентных электронов. Металлы в соединениях всегда имеют положительную степень окисления, т.е. являются восстановителями. Для щелочных и щелочноземельных металлов степень окисления всегда одинаковая. Неметаллы, кроме фтора, могут принимать положительную и отрицательную степень окисления.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 219.