Как работает шгн. Штанговые глубинные насосы (ШГН): конструкция, принцип работы, разновидности

Как работает шгн. Штанговые глубинные насосы (ШГН): конструкция, принцип работы, разновидности

Бóльшая часть добывающего фонда скважин нефтедобывающих предприятий оборудуется штанговыми насосными установками. Контроль работы штанговых насосов осуществляется, как известно, посредством динамометрирования. То есть посредством снятия диаграммы изменения нагрузки на устьевой шток при его ходе вверх-вниз.

Навык чтения динамограмм, умение их правильно интерпретировать необходимо как специалистам технологической службы нефтедобывающего предприятия, так и специалистам геологической службы.

Инженерам-технологам динамограммы помогают в принятии решений о необходимости текущего ремонта скважины (ТРС) или, например, о необходимости горячей обработки скважины для удаления отложений парафина без привлечения бригады ТРС.

Специалистам геологической службы навык чтения динамограмм необходим как самый первый этап в анализе причин снижения дебита добывающей скважины. Если динамограмма «рабочая», значит дело не в насосе. Значит можно переходить к поиску «геологических» причин снижения дебита.

Теоретическая динамограмма

Прежде чем перейти к разбору реальных динамограмм необходимо разобраться с теоретической динамограммой.

Как известно, динамограмма – это диаграмма изменения нагрузки на устьевой шток в зависимости от его хода. Теоретическая динамограмма – это такая идеализированная динамограмма, которая не учитывает силы трения, инерционные и динамические эффекты, возникающие в реальных условиях. Из-за таких эффектов прямые линии теоретической динамограммы превращаются в волнообразные, характерные для реальной. Также в теоретической динамограмме предполагается полной заполнение цилиндра штангового насоса, то есть коэффициент подачи насоса равен 1, чего в реальных условиях никогда не бывает (коэффициент подачи насоса обычно меньше единицы).

Теоретическая динамограмма имеет форму параллелограмма (рисунок 1).

Рисунок 1. Динамограмма теоретическая

Рисунок 2. Схема ШГН

Точка А на динамограмме - это крайнее нижнее положение плунжера насоса. Отрезок AB - ход вверх полированного штока. При этом происходит деформация (растяжение) штанг, но плунжер насоса все еще находится в крайнем нижнем положении. Отрезок BC - ход вверх полированного штока и плунжера насоса.

Точка C - крайнее верхнее положение плунжера насоса. Отрезок CD - ход вниз полированного штока. При этом происходит деформация (сжатие) штанг, но плунжер насоса все еще находится в крайнем верхнем положении. Отрезок DA - ход вниз полированного штока и плунжера насоса

В общем-то ничего сложного. Левая часть динамограммы характеризует работу насоса при нахождении плунжера в нижнем положении и соответственно работу всасывающего клапана насоса. Правая часть динамограммы - работу насоса при нахождении плунжера в верхнем положении и соответственно работу выкидного клапана насоса.

Имея на руках динамограмму работы насоса можно рассчитать дебит жидкости скважины. Динамограф, которым и снимают динамограммы, выдает в том числе и информацию о числе качаний (в минуту) станка-качалки и длине хода плунжера. Зная, какой насос спущен в скважину, рассчитать дебит не составляет труда. Формула для расчета теоретического дебита жидкости:

Q т = 1440 · π /4 · · L · N

где
Q т – дебит жидкости (теоретический), м 3 /сут
D – диаметр плунжера, м
L – длина хода, м
N – число качаний, кач./мин.

Длину хода и число качаний, как я уже сказал, нам выдает динамограф вместе с динамограммой. Диаметр плунжера обычно указан в названии насоса. Например, у насоса НГН-2-44 диаметр плунжера 44 мм, у НГН-2-57 соответственно 57 мм.

Для того чтобы получить фактический дебит жидкости скважины, необходимо полученный по формуле результат умножить на коэффициент подачи насоса (η ), который как мы уже знаем всегда меньше единицы.

Примеры реальных динамограмм

Фактические динамограммы имеют огромное количество форм и разновидностей. Все их здесь рассмотреть не получится, приведу только несколько характерных примеров:

Влияние газа, неполное заполнение плунжера

Не работают оба клапана

Обрыв или отворот штанг

Выход плунжера из цилиндра насоса

Отложения парафина

Прежде чем закончить статью рассмотрим еще один вопрос:

Как часто снимают динамограммы?

Политика различных нефтедобывающих компаний в отношении частоты снятия динамограмм может отличаться. Но, как правило, динамограммы снимают 1 раз месяц на обычном, ничем не осложненном фонде скважин.

При необходимости динамограммы снимают чаще (например, раз в неделю) на фонде скважин осложненных частыми отложениями парафина. Также динамограммы снимают при наличии соответствующих показаний (как говорят медицинские работники). Например, при снижении дебита жидкости скважины, при повышении динамического уровня, после изменения параметров работы штангового насоса (длина хода, число качаний) и других.

Если на скважине проводились геолого-технические мероприятия (ГТМ), то после запуска скважины до выхода ее на режим динамограммы снимаются, как правило, ежедневно. То же самое можно сказать и о новых скважинах запущенных из бурения.

Тема 7. Штанговые скважинные насосные установки (ШСНУ)

Схема штанговой скважинной насосной установки.

2. Станки-качалки.

Устьевое оборудование.

Штанги насосные (ШН).

Штанговые скважинные насосы ШСН.

Условные обозначения скважинных штанговых насосов.

7. Конструкция скважинных насосов.

8. Замковая опора.

Производительность насоса.

Правила безопасности при эксплуатации скважин штанговыми насосами.

Схема штанговой скважинной насосной установки

Прекращение или отсутствие фонтанирования обусловило использование других способов подъема нефти на поверхность, например, посредством штанговых скважинных насосов. Этими насосами в настоящее время оборудовано большинство скважин. Дебит скважин - от десятков килограмм в сутки до нескольких тонн. Насосы опускают на глубину от нескольких десятков метров до 3000 м иногда до 3200 - 3400 м.

ШСНУ включает:

а) наземное оборудование - станок-качалка (СК), оборудование устья, блок управления;

б) подземное оборудование - насосно-компрессорные трубы (НКТ), штанги насосные (ШН), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Штанговая глубинная насосная установка (рисунок 7.1) состоит из скважинного насоса 2 вставного или невставного типов, насосных штанг 4 , насосно-компрессорных труб 3 , подвешенных на планшайбе или в трубной подвеске 8 устьевой арматуры, сальникового уплотнения 6 , сальникового штока 7 , станка качалки 9 , фундамента 10 и тройника 5 . На приеме скважинного насоса устанавливается защитное приспособление в виде газового или песочного фильтра 1 .

Рис. 7.1. Схема штанговой насосной установки

1 – хвостовик; 2 – скважинный насос; 3 – насосно-компрессорные трубы; 4 – насосные штанги; 5 – устьевая арматура; 6 – устьевой сальник; 7 - полированный шток; 8 – канатная подвеска; 9 – стойка; 10 – фундамент.

2. Станки-качалки

Станок-качалка (рисунок 7.2), является индивидуальным приводом скважинного насоса.

Рисунок 7.2 - Станок-качалка типа СКД

1 - подвеска устьевого штока; 2 - балансир с опорой; 3 - стойка; 4 - шатун; 5 - кривошип; 6 - редуктор; 7 - ведомый шкив; 8 - ремень; 9 - электродвигатель; 10 - ведущий шкив; 11 - ограждение; 12 - поворотная плита; 13 - рама; 14 - противовес; 15 - траверса; 16 - тормоз; 17 - канатная подвеска.

Основные узлы станка-качалки - рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирно-подвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т. е. регулирование дискретное.


Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной салазке.

Монтируется станок-качалка на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска 17 . Она позволяет регулировать посадку плунжера в цилиндр насоса для предупреждения ударов плунжера о всасывающий клапан или выхода плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования.

Амплитуду движения головки балансира (длина хода устьевого штока - 7) регулируют путем изменения места сочленения кривошипа шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие). За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т. д.), а также самозапуск СК после перерыва в подаче электроэнергии.

Долгое время нашей промышленностью выпускались станки-качалки типоразмеров СК. В настоящее время по ОСТ 26-16-08-87 выпускаются шесть типоразмеров станков-качалок типа СКД, основные характеристики приведены в таблице 4.

Термин «ШГН»

ШГН – это сокращенное обозначение штангового насоса, при помощи которого осуществляется добыча нефти. Такой способ добычи нефти является самым распространенным методом искусственного подъема нефти. Это связано с его простотой, эффективностью и надежностью. Практически две трети всего фонда действующих сегодня скважин эксплуатируются при помощи штанговых насосов.

Способ добычи нефти штанговым насосом имеет и такие преимущества перед механизированным:
- высокий коэффициент полезного действия;
- ремонт возможно проводит прямо на промыслах;
- могут быть использованы самые разные приводы для первичных двигателей;
- установки штанговых насосов могут использоваться в сложных условиях эксплуатации – при наличии в нефти парафина, в пескопроводящих скважинах, при повышенном газовом факторе и при откачке коррозионной жидкости.

Но штанговые насосы имеют свои недостатки – ограниченность по глубине спуска, малая подача и ограничения по наклону ствола скважины.

В самом простейшем виде глубинный насос состоит из плунжера, который двигается вверх и вниз по цилиндру. Кроме того, плунжер имеет обратный клапан, который дает возможность жидкости течь вверх. Обратный клапан, который также называют выкидным, представляет из себя клапан типа шар-седло. Второй клапан, который является всасывающим, представляет из себя шаровой клапан, который расположен внизу цилиндра и тоже позволяет течь жидкости вверх.

ШНГ относят к объемному типу насоса, который работает возвратно-поступательным движением плунжера благодаря наземному приводу через колонну штанг. Верхняя штанга – полированный шток. Она проходит через сальник на устье самой скважины и соединяется с головкой балансира станка качалки при помощи траверсы и канатной гибкой подвески.

Штанговые насосы делят на вставные и невставные. Вставные насосы опускают в скважину в предварительно собранном виде. А невставные насосы спускают только в полуразборном виде. Для каждого вида работ используют наиболее подходящий вид штангового насоса.

Штанговые скважинные насосные установки (ШСНУ) предназ­начены для подъема пластовой жидкости из скважины на дневную поверхность.

Свыше 70% действующего фонда скважин оснащены глубинны­ми скважинными насосами. С их помощью добывается в стране око­ло 30% нефти.

В настоящее время ШСНУ, как правило, применяют на скважи­нах с дебитом до 30...40 м 3 жидкости в сутки, реже до 50 м 3 при сред­них глубинах подвески 1000... 1500 м. В неглубоких скважинах уста­новка обеспечивает подъем жидкости до 200 м 3 /сут.

В отдельных случаях может применяться подвеска насоса на глу­бину до 3000 м.

Привод предназначен для преобразования энергии двигателя в возвратно-поступательное движение колонны насосных штанг.

Штанговая скважинная насосная установка включает:

а) наземное оборудование - станок-качалка (СК), оборудование устья, блок управления;

б) подземное оборудование - насосно-компрессорные трубы (НКТ), штанги насосные (ШН), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Рис. 1. Штанговая скважинная насосная установка:

1 - фундамент; 2 - рама; 3 - электродвигатель; 4 - цилиндр; 5 - кривошип; б - груз; 7 - шатун; 8 - груз; 9 - стойка; 10 - балансир; 11 - механизм фиксации головки балансира; 12 - головка балансира; 13 - канатная подвеска; 14 - полированная штанга;

15 - оборудование устья скважины; 16 - обсадная колонна; 17 - насосно- компрессорные трубы; 18 - колонна штанг; 19 - глубинный насос; 20 - газовый якорь; 21 - уплотнение полированной штанги; 22 - муфта трубная; 23 - муфта штанговая; 24 - цилиндр глубинного насоса; 25 - плунжер насоса; 26 - нагнетательный клапан; 27 - всасывающий клапан.

В скважину на колонне НКТ под уровень жидкости спускают цилиндр насоса. Затем на насосных штангах внутрь НКТ спускают поршень (плунжер), который устанавливают в цилиндр насоса. Плунжер имеет один или два клапана, открывающихся только вверх, называемых выкидными. Верхний конец штанг крепится к головке балансира станка-качалки. Для направления жидкости из НКТ в нефтепровод и предотвращения ее разлива на устье скважины устанавливают тройник и выше него сальник, через который пропускают сальниковый шток.

Верхняя штанга , называемая полированным штоком, пропускается через сальник и соединяется с головкой балансира станка-качалки с помощью канатной подвески и траверсы.

Плунжерный насос приводится в действие от станка-качалки, где вращательное движение, получаемое от двигателя при помощи редуктора, кривошипно-шатунного механизма и балансира, преобразуется в возвратно-поступательное движение, передаваемое плунжеру штангового насоса через колонну штанг.



При ходе плунжера вверх под ним снижается давление, и жидкость из межтрубного пространства через открытый всасывающий клапан поступает в цилиндр насоса.

При ходе плунжера вниз всасывающий клапан закрывается, а нагнетательный клапан открывается, и жидкость из цилиндра переходит в подъёмные трубы. При непрерывной работе насоса уровень жидкости в НКТ повышается, жидкость доходит до устья скважины и через тройник переливается в выкидную линию.

Приводы ПО «Уралтрансмаш»

Условное обозначение приводов на примере ПШГНТ4-1,5-1400:

ПШГН – привод штанговых глубинных насосов;

Т – редуктор установлен на тумбе;

1,5 – наибольшая длина хода устьевого штока 1,5 м;

1400 – наибольший допустимый крутящий момент на ведомом валу редуктора;

Лекция № 2. Подземное оборудование ШНУ

Назначение, типы, конструкция и маркировка скважинных

Штанговых насосов.

Скважинные штанговые насосы предназначены для откачивания из нефтяных скважин жидкости обводненностью до 99%, температу­рой до 130°С, содержанием сероводорода не более 50мг/л, минера­лизацией воды не более 10г/л.

Скважинные насосы имеют вертикальную конструкцию одинар­ного действия с неподвижным цилиндром, подвижным металличес­ким плунжером и шариковыми клапанами. Насосы изготавливают следующих типов:

1) НВ1 - вставные с замком наверху;

2) НВ2 - вставные с замком внизу;

3) НН - невставные без ловителя;

4) НН1 - невставные с захватным штоком;

5) НН2 - невставные с ловителем

Рис. 2. Насосы скважинные невставные
Цилиндр невставного (трубно­го) скважинного насоса (см. рис.2) присоединяется к колонне НКТ и вместе с ней спускается в скважину. Плунжер НСН вводится через НКТ в цилиндр вместе с под­вешенным к нему всасывающим кла­паном на насосных штангах. Чтобы не повредить плунжер при спуске, его диаметр принимают меньшим внутреннего диаметра НКТ пример­но на 6 мм. Применение НСН целе­сообразно в скважинах с большим де­битом, небольшой глубиной спуска и большим межремонтным перио­дом. Для смены насоса (цилиндра) не­обходимо извлекать штанги и трубы.

Насос НН1 состоит из цилиндра, плунжера, нагнетательного и всасы­вающего клапанов. В верхней части плунжера размещается нагнетатель­ный клапан и шток с переводником под штанги.

К нижнему концу плунжера с по­мощью наконечника на захватном штоке свободно подвешивается вса­сывающий клапан. При работе клапан сажается в седло корпуса. Подвешивать всасывающий клапан к плун­жеру необходимо для слива жидкости из НКТ перед их подъемом, а также для замены клапана без подъема НКТ. Наличие захватного штока внутри плунжера ограничивает длину его хода, которая в на­сосах НН1 не превышает 0,9 м.

В насосе НН2С в отличие от насоса НН1 нагнетательный клапан установлен на нижнем конце плунжера. Для извлечения всасываю­щего клапана без подъема НКТ используется ловитель (байонетный замок), который крепится к седлу нагнетательного клапана. Ловитель имеет две фигурные канавки для зацепления. В клетку всасывающе­го клапана ввинчен шпиндель (укороченный шток) с двумя утолщен­ными шпильками. После посадки всасывающего клапана в седло кор­пуса поворотом колонны штанг на 1-2 оборота против часовой стрел­ки добиваются того, что шпильки шпинделя скользят по канавкам ловителя и всасывающий клапан отсоединяется от плунжера. Захват осуществляется после посадки плунжера на шпиндель при повороте колонны штанг по часовой стрелке.

Насос ННБА позволяет осуществлять форсированный отбор жид­кости из скважин через НКТ, диаметр которых меньше диаметра плун­жера.

Это достигнуто особой конструкцией его - наличием автосцепа, включающего сцеп и захват, и сливного устройства. Насос в собран­ном виде без сцепа спускается в скважину на НКТ. Затем на штангах спускается сцеп с мерным штоком. Сцеп проталкивает золотник слив­ного устройства вниз и сцепляется с захватом, закрепленным на плун­жере, при этом сливное отверстие закрывается. При подъеме насоса следует поднять колонну штанг. При этом захват проталкивает зо­лотник вверх, открывая сливное отверстие. После этого сцеп отделя­ется от захвата и колонна штанг свободно поднимается.

Цилиндр вставного насоса (см. рис. 3) спускается внутри труб на колонне штанг и монтируется на них с помощью специального зам­кового соединения. Это позволяет менять вставной насос без спуска и подъема труб. Но при одинаковых диаметрах плунжеров вставной насос требует применения НКТ большего диаметра.

Скважинные насосы исполнения НВ1С предназначены для отка­чивания из нефтяных скважин маловязкой жидкости.

Насос состоит из составного цилиндра на нижний конец которо­го навернут сдвоенный всасывающий клапан, а на верхний конец - замок плунжера, подвижно расположенного внутри цилиндра, на резь­бовые концы которого навинчены: снизу сдвоенный нагнетательный клапан, а сверху - клетка плунжера. Для присоединения плунжера к колонне насосных штанг насос снабжен штоком, навинченным на клетку плунжера и закрепленным контргайкой. В расточке верхнего переводника цилиндра располо­жен упор, упираясь на который, плунжер обеспечивает срыв скважинного насоса с опоры.

Скважинные насосы испол­нения НВ1Б. Это насосы, по на­значению, конструктивному ис­полнению, принципу работы аналогичны насосам исполнения НВ1С и отличаются от них толь­ко тем, что в качестве цилиндра использованы цельные цилинд­ры исполнения ЦБ, характеризу­ющиеся повышенной прочнос­тью, износостойкостью и транс­портабельностью по сравнению с цилиндрами исполнения ЦС.

Скважинные насосы испол­нения НВ2 имеют область при­менения аналогичную области применения скважинных насо­сов исполнения НВ1, однако мо­гут быть спущены в скважины на большую глубину.

Рис. 3. Насосы скважинные вставные
Конструктивно скважинные насосы состоят из цилиндра с всасывающим клапаном, на­винченным на нижний конец.

На всасывающий клапан навинчен упорный ниппель с конусом. На верхнем конце цилиндра располо­жен защитный клапан, предотвращающий осаждение песка в цилин­дре при остановке насоса.

Внутри цилиндра подвижно установлен плунжер с нагнетатель­ным клапаном на нижнем конце и клеткой плунжера на верхнем кон­це. Для присоединения плунжера насоса к колонне насосных штанг насос снабжен штоком, навинченным на клетку плунжера и законт­ренным контргайкой.

В расточке верхнего конца цилиндра расположен упор.

Насос спускается в колонну насосно-компрессорных труб на ко­лонне насосных штанг и закрепляется в опоре нижней частью при помощи ниппеля упорного с конусом. Такое закрепление насоса позволяет разгрузить от пульсирующих нагрузок.

Это обстоятельство обеспечивает применение его на больших глубинах скважин.

Цилиндры скважинных насосов выпускают в двух исполнениях:

® ЦБ - цельный (безвтулочный), толстостенный;

® ЦС - составной (втулочный).

Цилиндр втулочного насоса состоит из кожуха, в котором разме­щены втулки. Фиксация втулок в кожухе обеспечивается гайками.

Втулки подвергаются воздействию переменного внутреннего гид­равлического давления, обусловленного столбом откачиваемой жид­кости, и постоянного усилия, возникающего в результате торцевого обжатия рабочих втулок. Втулки всех насосов при различных внут­ренних диаметрах имеют одинаковую длину - по 300 мм.

Втулки всех насосов изготавливают трех типов: легированные из стали марки 38ХМЮА, стальные из стали марок 45 и 40Х, чугунные марки СЧ26-48.

Легированные втулки изготавливают только тонкостенными, стальные - тонкостенные, с увеличенной толщиной стенки и толсто­стенные, чугунные - толстостенные.

Для увеличения долговечности внутреннюю поверхность втулок упрочняют физико-термическими методами: чугунные - закалива­ют токами высокой частоты, стальные азотируют, цементируют, нит­рируют. В результате этой обработки твердость поверхностного слоя составляет до 80 HRc.

Механическая обработка втулок заключается в шлифовании и хонинговании. Основные требования к механической обработке - высокий класс точности и чистоты внутренней поверхности, а также перпендикулярность торцов к оси втулок.

Макрогеометрические отклонения внутреннего диаметра втулки должны быть не более 0,03 мм. Плоскостность торцевых поверхнос­тей должна обеспечивать равномерное непрерывное пятно по краске не менее 2/3 толщины стенок втулки.

Цельнотянутые цилиндры представляют собой длинную сталь­ную трубу, внутренняя поверхность которой рабочая. Труба при этом играет роль и цилиндра и кожуха одновременно. Подобная конструк­ция лишена таких недостатков, как негерметичность между торцами рабочих втулок, искривление оси цилиндра. При этом увеличивает­ся жесткость насоса и создается возможность использовать плунжер большого диаметра при одинаковом по сравнению с втулочным на­сосом наружном диаметре.

Плунжер глубинного насоса представляет собой стальную трубу с внутренней резьбой на концах. Для всех насосов длина плунжера постоянна и составляет 1200 мм. Их изготавливают из стали 45, 40Х или 38ХМЮА. По способу уплотнения зазора цилиндр – плунжер различают полностью металлические и гуммированные плунжеры. В паре металлический плунжер - цилиндр уплотнение создается нор­мированным зазором большой длины, в гуммированных - за счет манжет или колец, изготовленных из эластомера или пластмассы.

В настоящее время применяют плунжеры (рис. 4):

а) с гладкой поверхностью;

б) с кольцевыми канавками;

в) с винтовой канавкой;

г) с кольцевыми канавками, цилиндрической расточкой и скошен­ным концом в верхней части («пескобрей»);

д) манжетные плунжеры;

е) гуммированные плунжеры.

а - гладкий (исполнение Г); б - с кольцевыми канавками (исполнение К); в - с винтовой канавкой (исполнение В); г - типа «пескобрей» (исполнение П); д - манжетный, гуммированный плунжер; 1 - корпус плунжера; 2 - самоуплотняющееся резиновое кольцо; 3 - набухающие резиновые кольца.

Насосные штанги

Штанги насосные предназначены для передачи возвратно-поступательного движения плунжеру насоса (рис. 5). Изготавливаются в основном из легированных сталей круглого сечения диаметром 16, 19, 22, 25 мм, длиной 8000 мм и укороченные – 1000, 1200, 1500, 2000 и 3000 мм как для нормальных, так и для коррозионных условий эксплуатации.

Рис. 5 – Насосная штанга

Шифр штанг – ШН-22 обозначает: штанга насосная диаметром 22 мм. Марка сталей – сталь 40, 20Н2М, 30ХМА, 15НЗМА и 15Х2НМФ с пределом текучести от 320 до 630 МПа. Насосные штанги применяются в виде колонн, составленных из отдельных штанг, соединенных посредством муфт.

Муфты штанговые выпускаются: соединительные типа МШ (рис. 6) – для соединения штанг одинакового размера и переводные типа МШП – для соединения штанг разного диаметра.

Для соединения штанг применяются муфты – МШ16, МШ19, МШ22, МШ25; цифра означает диаметр соединяемой штанги по телу (мм). АО «Очерский машиностроительный завод» изготавливает штанги насосные из одноосно-ориентированного стеклопластика с пределом прочности не менее 800 МПа. Концы (ниппели) штанг изготавливаются из сталей. Диаметры штанг 19, 22, 25 мм, длина 8000 – 11000 мм.

Рис. 6 – Соединительная муфта насосной штанги:

а – исполнение I; б – исполнение II

Преимущества: снижение веса штанг в 3 раза, снижение энергопотребления на 18 – 20 %, повышение коррозионной стойкости при повышенном содержании сероводорода и др. Применяются непрерывные штанги «Кород».

Наиболее распространенный способ добычи нефти – применение штанговых скважинных насосных установок (УШГН). Насосы спускают на глубину от нескольких со­тен метров до 2000 метров (в отдельных случаях до 3000 м). В скважине, оборудован­ной УШГН, подача жидкости осущест­вляется глубинным плунжерным на­сосом, который приводится в действие с помощью специ­ального привода станка-качалки (СК) посредством ко­лонны штанг.

Оборудование УШГН включает:

Наземное оборудование:

· Оборудование устья;

· Станок-качалка.

Подземное оборудование:

· Насосные штанги;

· Штанговый скважинный насос;

· Различные защитные устройства (газовый или песочный якорь, фильтр и т.д.).

Принцип работы УШГН

Электродвигатель через клиноремённую передачу и редуктор придаёт двум массивным кривошипам, расположенных с двух сторон редуктора, круговое движение. Крившипно - шатунный механизм в целом преобразо­вывает в возвратно-поступательное движение балан­сира, который враща­ется на опорной оси, укреплённой на стойке. Ба­лансир сообщает воз­вратно-поступательное движение канатной под­веске, штангам и плунжеру. При ходе плунжера вверх нагнетатель­ный клапан под действием жидкости закрывается и вся жидкость, на­ходящиеся под плунжером, поднимается вверх на высоту равную длине хода плунжера. В это время скважинная жидкость через всасы­вающий клапан заполняет цилиндр насоса. При ходе плунжера вниз всасывающий клапан закрывается, жидкость под плунже­ром сжима­ется, и открывается нагнетательный клапан. В цилиндр погру­жаются штанги, связанные с плунжером.

Таким образом, ШСН - поршневой насос однородного действия, а в це­лом комплекс из насоса и штанг - двойного действия.

В скважине, оборудованной УШГН, подача жидкости осуществляется глубинным плунжерным насо­сом, который приводится в действие с помо­щью специального привода СК посредством колонны штанг.

СК преобразует вращательное движение электродвигателя в воз­вратно-поступательное движение подвески штанг.

Краткая характеристика оборудования УШГН

2. Насосные штанги

Скважинные штанговые насосы (ОСТ 26-26-06-86) являются надеж­ным и экономичным эксплуатационным оборудованием нефтяных сква­жин, широко применяемых для отбора пластовой жидкости (смеси нефти, воды и газа).

Штанговые глубинные насосы (ШГН), применяются в скважинах:

· с дебитом от 5 до 150 м 3 /сут.;

· с глубиной спуска насоса до 2000м. и более;

· с кривизной ствола скважины до 8-10 (максимальное отклоне­ние от вертикали) при больших отклонениях по кривизне должны приме­няться специальные за­щитные приспособления для штанг и насоса;

· с газовым фактором до 150 м 3 /м 3 , при высоких газовых факто­рах применяются якоря (газосепара­торы);

Насосы разделяются на невставные (трубные) и вставные.

Невставные насосы.

Цилиндр спускается в скважину на насосных трубах без плунжера. Плунжер спускается отдельно на насосных штангах. Плунжер вводится в цилиндр вместе с подвешенным к плунжеру всасывающим клапаном. Чтобы плунжер довести до цилиндра насоса без повреждений через трубы, последние должны иметь внутренний диаметр больше наружного диа­метра плунжера (примерно на 6 мм). Применение НСН целесообразно в скважи­нах с большим дебитом, не­большой глубиной спуска и большим межре­монтным периодом.

а - невставной насос с штоком типа НН-1; б - не­вставной насос с ло­вите­лем типа НН-2: 1 - нагнета­тельные клапаны; 2 – цилиндры; 3 – плун­жеры; 4 - патрубки-удлинители; 5 - всасывающие клапаны; 6 - седла кону­сов; 7 - захватный шток; 8 - второй нагнетательный клапан; 9 – ловитель; 10 - наконечник для захвата клапана; в - вставной насос типа НВ-1: 1 – штанга; 2 – НКТ; 3 - посадочный ко­нус; 4 - замковая опора; 5 – цилиндр; 6 – плун­жер; 7 - направляющая трубка.

Рисунок 2.8 – Сборочный чертёж невставного насоса

Вставные насосы.

Цилиндр в сборе с плунжером и клапанами спускается на штангах. В этом случае на конце насосных труб заранее устанавливается специальное посадочное устройство - замковая опора, на которой происходит посадка и уплотнение насоса.

В НН-1(рис 2.3, а) всасывающий клапан 5 держится в седле конуса 6 и соединен с плунжером 3 специальным штоком 7. Это позволяет при подъеме штанг, следовательно, и плунжера сразу извлечь всасывающий клапан 5. Такая операция необходима не только для замены или ремонта

клапана, но и для спуска жидкости из насосных труб перед их подъемом.

В насосах НН-2 (рис 2.3, б) - два нагнетательных клапана. Это суще­ственно уменьшает (на объем плунжера) объем вредного пространства и повышает коэффициент наполнения при откачке газированной жидкости.

Вставные насосы НВ-1 имеют один или два клапана, размещенные в верхней и нижней части плунжера.

Насосные штанги.

Для передачи возвратно – поступательного движения от привода к плунжеру скважинного насоса используется колонна насосных штанг. Она собирается из отдельных штанг, соединенных муфтами.

Насосные штанги представляют собой стержни круглого поперечного сечения с высаженными концами, на которых располагается участок квадратного сечения и резьба.

Штанги выпускаются диаметрами 16, 19, 22, 26, а допускаемое напря­жение для наиболее широко распространенных марок сталей составляет 70…130 МПа.