Из чего состоит амперметр. Последние события

Из чего состоит амперметр. Последние события

Амперметр - прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно с тем участком электрической цепи, силу тока в котором измеряют. Поэтому, чем ниже внутреннее сопротивление амперметра (в идеале - 0), тем меньше будет влияние прибора на исследуемый объект, и тем выше будет точность измерения.

Для увеличения предела измерений амперметр снабжается шунтом (для цепей постоянного и переменного тока), трансформатором тока (только для цепей переменного тока) или магнитным усилителем (для цепей постоянного тока). Комплектное устройство из токоизмерительной головки и трансформатора тока специальной конструкции называется «токоизмерительные клещи».

Очень опасно пытаться использовать амперметр в качестве вольтметра (подключать его непосредственно к источнику питания), что может привести к коротким замыканиям!

Общая характеристика

По конструкции амперметры делятся:

  • со стрелочной измерительной головкой без электронных схем;
  • со стрелочной измерительной головкой с использованием электронных схем;
  • с цифровым индикатором.

Приборы со стрелочной головкой

Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол крена, пропорциональный величине измеряемого тока.

Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными - силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

Приборы со стрелочной головкой могут снабжаться дополнительными электронными схемами для усиления сигнала, подаваемого на головку (для измерения токов, существенно меньших чем ток полного отклонения головки, который для большинства магнитоэлектрических приборов составляет 50 мкА и более), защиты головки от перегруза и прочее.

Приборы с цифровым индикатором

В последнее время приборы со стрелочной измерительной головкой стали вытесняться приборами с цифровым индикатором на основе жидких кристаллов и светодиодов.

Принцип действия стрелочной измерительной головки

Принцип действия самых распространённых в амперметрах систем измерения:

  • В магнитоэлектрической системе прибора крутящий момент стрелки создаётся благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки (вращающий момент). С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки устанавливается при равенстве вращающего момента и момента пружины.
  • В электромагнитной системе прибора вращающий момент стрелки создаётся между катушкой и подвижным ферромагнитным сердечником, к которому прикрепляется указательная стрелка.
  • В электродинамической системе измерительная головка состоит из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействие между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки.

Во всех вышеуказанных системах угол поворота стрелки устанавливается при равенстве вращающего момента и момента сопротивления пружины.

Включение амперметра в электрическую цепь

В электрической цепи амперметр соединяется последовательно с нагрузкой, а при больших токах - через трансформатор тока, магнитный усилитель или шунт. Для измерения токов может также применяться милливольтметр и калиброванный шунт (первичные токи шунтов могут быть выбраны из стандартного ряда, вторичное напряжение стандартизировано - чаще всего 75 мВ). При высоких напряжениях (выше 1000В) - в цепях переменного тока для гальванической развязки амперметров также применяют трансформаторы тока, а цепях постоянного тока - магнитные усилители.

§ 72. ИЗМЕРЕНИЕ СИЛЫ ТОКА. РАСШИРЕНИЕ ПРЕДЕЛОВ ИЗМЕРЕНИЯ

АМПЕРМЕТРА

Для измерения силы тока в электрических цепях служат ампер­метры, миллиамперметры и микроамперметры различных систем. Их включают в цепь последовательно, и через прибор проходит весь ток, протекающий в цепи.

При различных электрических измерениях весьма важно, чтобы измерительный прибор как можно меньше изменял электрический режим цепи, в которую его включают. По этой причине амперметр должен обладать незначительным сопротивлением по сравнению с сопротивлением цепи. Пусть в электрическую цепь включен источ­ник электрической энергии, напряжение которого U = 10 в. Сопро­тивление потребителя r п =20 ом. В этой цепи, согласно закону Ома, ток

Допустим, что обмотка миллиамперметра, которым следует из­мерить ток, имеет сопротивление

r а =30 ом. Тогда при включении прибора в цепь в ней установится ток

Таким образом, если включить в цепь прибор с большим сопротив­лением, то нарушится ее электрический режим и сила тока будет измерена с ошибкой на 0,3 а.

Этот пример подтверждает, что желательно измерять силу тока в цепи таким прибором, у которого собственное сопротивление наи­меньшее. Присоединять амперметр к полюсам источника тока без нагрузки нельзя. Это объясняется тем, что по обмотке амперметра, имеющей малое сопротивление, в данном случае пройдет большой ток и она может перегореть. По той же причине нельзя включать амперметр параллельно нагрузке. По обмотке и отдельным элемен­там электроизмерительных приборов некоторых систем во избежа­ние возможности их порчи нельзя пропустить сколько-нибудь зна­чительный ток. В частности, это относится к спиральным пружинам и подвижной катушке магнитоэлектрического прибора.

Если такой измерительный прибор нужно при­способить для измерения значительной силы то­ка - расширить пределы измерения амперметра, та он снабжается шунтом.

Шунт - это относительно малое, но точно из­вестное сопротивление (r ш), присоединяемое параллельно измерительному механизму. Схема включения амперметра с шунтом показана на рис. 84. При таком включении шунта из n частей тока, протекающего в цепи, через прибор прохо­дит лишь одна его часть, а через шунт - остальные n-1 частей.

Это происходит потому, что сопротивление шунта меньше сопротивления амперметра n - 1 раз. Число n показыва­ет, во сколько раз нужно увеличить предел измерения амперметра. Таким образом, шунт служит для расширения пределов измерения прибора.

Пусть амперметр позволяет измерять силу тока Iа = 5 а, а в данном случае необходимо этим прибором измерить силу тока I=30 а. Значит, нужно увеличить предел измерения прибора в

раз. Сопротивление шунта, который надо присоединить параллельно амперметру, чтобы обеспечить такое расшире­ние предела измерения, можно определить по формуле:

Если сопротивление амперметра r а = 0,15 ом, то сопротивление шунта

После присоединения шунта к прибору каждое деление шкалы прибора будет соответствовать величине, в n раз большей, чем ука­зана на ней. В нашем случае, если стрелка прибора с шунтом установится на делении 5, это значит, что в цепи протекает ток I=5xn = = 5x6= 30 а.

Шунт должен иметь четыре зажима, это необходимо для устра­нения влияния на сопротивление шунта переходных сопротивлений контактов. Шунты изготовляют из манганина - сплава, у которого температурный коэффициент сопротивления практически равен нулю.

Изначально вольтметры и амперметры были только механическими, и лишь спустя многие годы, с развитием микроэлектроники, начали выпускаться цифровые вольтметры и амперметры. Тем не менее, даже сейчас механические измерительные приборы пользуются популярностью. Они, по сравнению с цифровыми, устойчивы к помехам и дают более наглядное представление о динамике измеряемой величины. Их внутренние механизмы остаются практически теми же, что и канонические магнитоэлектрические механизмы первых вольтметров и амперметров.

В данной статье мы рассмотрим устройство типичного стрелочного прибора, чтобы каждый новичок мог бы понимать основные принципы работы вольтметров и амперметров.



В своей работе стрелочный измерительный прибор использует магнитоэлектрический принцип. Постоянный магнит с выраженными полюсными наконечниками закреплен неподвижно. Между этими полюсами расположен неподвижный стальной сердечник так, что в воздушном кольцеобразном зазоре между сердечником и полюсными наконечниками магнита формируется .

В зазор вставлена подвижная алюминиевая рамка, на которую очень тонким проводом намотана катушка. Рамка закреплена на полуосях, и может поворачиваться вместе с катушкой. К рамке спиральными пружинами прикреплена стрелка прибора. Через пружины к катушке подводится ток.



Когда по проводу катушки проходит ток I, то, поскольку катушка помещена в магнитное поле, и ток в ее проводниках течет пересекая перпендикулярно магнитные силовые линии в зазоре, на нее будет действовать вращающая сила со стороны магнитного поля. Электромагнитная сила создаст вращающий момент М, и катушка вместе с рамкой и стрелкой станет поворачиваться на некоторый угол α.

Поскольку индукция магнитного поля в зазоре неизменна (магнит постоянный), то вращающий момент будет всегда пропорционален именно току в катушке, и величина его будет зависеть от тока и от неизменных конструктивных параметров данного конкретного прибора (с1). Этот момент будет равен:

Препятствующий повороту рамки момент противодействия, возникающий из-за наличия пружин, окажется пропорционален углу закручивания пружин, то есть углу поворота стрелки, связанной с подвижной частью:

Таким образом, поворот будет продолжаться до тех пор, пока момент М, создаваемый током в рамке не окажется равным моменту противодействия Мпр от пружин, то есть пока не наступит равновесие. В этот момент стрелка остановится:

Очевидно, угол закручивания пружин будет пропорционален току рамки (и измеряемому току), по этой причине приборы магнитоэлектрической системы обладают равномерной шкалой. Коэффициент пропорциональности k между углом поворота стрелки и единицей измеряемого тока называется чувствительностью прибора.

Обратная величина именуется ценой деления или постоянной прибора. Значение измеренной величины определяется как произведение цены деления на .

Чтобы избежать мешающих колебаний подвижной рамки при переходах стрелки от одного ее положения к другому, в данных приборах применяют магнитно-индукционные или воздушные демпферы.

Магнитно-индукционный демпфер представляет собой пластину из алюминия, которая закреплена на поворотной оси прибора, и всегда движется вместе со стрелкой в поле постоянного магнита. Возникающие вихревые токи тормозят катушку. Суть в том, что по правилу Ленца, вихревые токи а пластине, взаимодействуя с порождающим их магнитным полем постоянного магнита, препятствуют движению пластины, и колебания стрелки быстро затухают. Роль такого магнитно-индукционного демпфера и выполняет алюминиевый каркас, на который намотана катушка.

При повороте рамки, магнитный поток от постоянного магнита, пронизывающий алюминиевый каркас, изменяется, а значит в алюминиевом каркасе индуцируются вихревые токи, которые при взаимодействии с магнитным полем постоянного магнита оказывают тормозящее действие, и колебания стрелки прекращаются.

Воздушные демпферы магнитоэлектрических приборов представляют собой цилиндрические камеры с помещенными внутри поршнями, связанными с подвижными системами приборов. Когда подвижная часть приходит в движение, поршень в форме крыла тормозится в камере, и колебания стрелки затухают.

Для достижения нужной точности измерений, прибор не должен быть подвержен влиянию силы тяжести в процессе измерения, а отклонение стрелки должно быть связано лишь с вращающим моментом, возникающим при взаимодействии тока катушки с магнитным полем постоянного магнита и с торможением рамки пружинами.

Чтобы исключить вредное влияние силы тяжести и избежать связанных с ним погрешностей, к подвижной части прибора добавляют противовесы в виде грузиков, перемещающихся на стержнях.

Для снижения трения стальные наконечники выполняются из отполированной износостойкой стали или из вольфрамо-молибденового сплава, а подпятники изготавливают из твердого минерала (агат, корунд, рубин и т. д.). Зазор между наконечником и подпятником настраивают при помощи стопорного винта.

Для точной установки стрелки в нулевое исходное положение, прибор оснащается корректором. Корректором в стрелочном приборе служит винт, выведенный наружу, и соединенный поводком с пружиной. При помощи винта можно передвигать немного спираль на оси, регулируя таким образом исходное положение стрелки.

Большинство современных приборов имеют подвижную часть, подвешенную на паре растяжек в виде упругих металлических лент, служащих для подачи тока на катушку, и создающих противодействующий момент. Растяжки соединены с парой плоских пружин, расположенных взаимно перпендикулярно.

Справедливости ради отметим, что кроме классического механизма, рассмотренного выше, встречаются также и приборы с магнитами не только п-образной формы, но и с цилиндрическими магнитами, и с магнитами в форме призм, и даже с внутрирамочными магнитами, которые сами могут быть подвижными.

Для измерения тока или напряжения, магнитоэлектрический прибор включают в цепь постоянного тока по схеме амперметра или вольтметра, разница лишь в сопротивлении катушки и в схеме включения прибора в цепь. Разумеется через катушку прибора не должен проходить весь измеряемый ток при измерении тока, и не должна потребляться большая мощность при измерении напряжения. Для создания надлежащих условий служит добавочный резистор, встроенный в корпус измерительного прибора.

Сопротивление добавочного резистора в схеме вольтметра превосходит сопротивление катушки во много раз, и этот резистор изготовлен из металла с чрезвычайно малым , такого как манганин или константан. Резистор, включаемый параллельно катушке в амперметре, называется шунтом.

Сопротивление шунта напротив во много раз меньше сопротивления измерительной рабочей катушки, поэтому через провод катушки проходит только мизерная доля измеряемого тока, в то время как основной ток течет через шунт. Добавочный резистор и шунт позволяют расширить пределы измерения прибора.

Направление отклонения стрелки прибора зависит от направления тока через измерительную катушку, поэтому при включении прибора в цепь важно правильно соблюсти полярность, иначе стрелка будет двигаться в другую сторону. Соответственно, магнитоэлектрические приборы в каноническом виде непригодны для включения в цепь переменного тока, поскольку стрелка будет просто вибрировать оставаясь на одном месте.

Тем не менее, к достоинствам магнитоэлектрических приборов (амперметров, вольтметров) относятся высокая точность, равномерность шкалы и устойчивость к помехам, порождаемым внешними магнитными полями. К недостаткам - непригодность к измерению переменного тока (чтобы измерить переменный ток, нужно будет его сначала выпрямить), требование к соблюдению полярности и уязвимость тонкой проволоки измерительной катушки к перегрузкам.

Магнитное действие тока используется в электроизмерительных приборах двух типов: магнитоэлектрических и электромагнитных.

В магнитоэлектрическом приборе имеется неподвижный постоянный магнит и подвижная рамка, которая поворачивается под действием силы Ампера, когда в рамке идет ток (рие. 22.30). Спираль на оси рамки противодействует повороту рамки.

Чем больше ток, протекающий по рамке, тем на больший угол она поворачивается. Рамка соёдинена со стрелкой, конец которой перемещается по шкале. Магнитоэлектрические приборы отличаются большой точностью и высокой чувствительностью, но пригодны только для постоянного тока.

В электромагнитном приборе (рис. 22.31) имеется неподвижная катушка К и подвижный сердечник из мягкой стали А, который втягивается в катушку, когда по ней течет ток. Сердечник соединен со стрелкой, конец которой перемешается по шкале, когда сердечник втягивается в катушку. Колебания стрелки при включении прибора в цепь успокаивает воздушный тормоз который называют демпфером. Этот прибор менее точен и чувствителен, чем магнитоэлектрический, но он может применяться в цепях и постоянного, и переменного тока и не боится перегрузок.

Включение любого измерительного прибора не должно заметно изменять режим работы электрической цепи. Например, включение амперметра, так же как и вольтметра, не должно изменять силу тока в цепи.

Заметим, что по своему внутреннему устройству амперметр ничем не отличается от вольтметра, кроме величины сопротивления. Амперметр включается в цепь последовательно, поэтому его сопротивление должно быть как можно меньше. Иначе при его включении сила тока будет заметно уменьшаться. Вольтметр включается в цепь параллельно к тем двум точкам, между которыми он измеряет напряжение, поэтому его сопротивление должно быть как можно больше.

Напряжение между точками А и В (рис. 22.32) равно произведению для одной из ветвей между ними. Если такой ветвью является вольтметр, то Поскольку постоянно, напряжение пропорционально силе тока в вольтметре

Следовательно, вольтметр представляет собой амперметр, на шкале которого нанесены деления, соответствующие произведению силы тока в приборе на сопротивление прибора

Если амперметром, который рассчитан на измерение силы тока не более нужно измерить ток превышающий не больше чем раз, то параллельно амперметру присоединяется шунт (рис. 22.33, а), сопротивление которого должно быть в несколько раз меньше, чем сопротивление амперметра . Из рис. 22.33, а видно, что Так как получаем

Поскольку по условию то имеем откуда