Где стоят ик фильтры в аналоговой камере. Инфракрасные светофильтры для фотографии

Где стоят ик фильтры в аналоговой камере. Инфракрасные светофильтры для фотографии


Тест: Александр СЛАБУХА, Сергей ЩЕРБАКОВ

Перед нами два фильтра, через которые ничего не видно. Точнее через один из них, имеющий темно-красную, почти черную окраску, все же удается что-то разглядеть. Это инфракрасный фильтр B+W Infrared Dark Red 092, выпускаемый компанией Schneider Optics — дочерним подразделением концерна Schneider-Kreuznach.

Будь этот фильтр один, данный материал, скорее всего, не появился бы. Cokin 007, Hoya R72, Heliopan RG715 — эти фильтры, давно представленные на нашем рынке и уже вполне освоенные фотографами, практически являются аналогами «девяносто второго». И в этом плане вряд ли от B+W 092 следует ожидать каких-либо сюрпризов.

Зато от полностью черного B+W Infrared Black 093, а это второй рассматриваемый фильтр, сюрпризы вполне возможны. Их причина — в спектральных характеристиках этого фильтра применительно к художественной фотографии, принципиально отличающихся от характеристик B+W Infrared Dark Red 092.

Фильтр B+W Infrared Dark Red 092 блокирует видимый свет до длины волны 650 нм, пропускает 50% на 700 нм. От 730 до 2000 нм пропускает более 90% излучения. Рекомендуется для художественной фотографии на черно-белых инфракрасных материалах. Увеличение экспозиции для различных материалов может составить 20-40x.

Фильтр B+W Infrared Black 093 блокирует видимый свет до длины волны 800 нм, пропускает 88% на 900 нм. Предназначен преимущественно для научной фотографии. Редко используется в художественной фотографии по причине катастрофического падения светочувствительности черно-белых инфракрасных пленок общего назначения.

Если сказать совсем коротко, фильтр 093 пропускает только инфракрасное излучение, в то время как в полосе пропускания 092 фильтра есть определенная доля видимого спектра, которая может быть зафиксирована, например, сенсорами цифровых фотокамер.

Фильтры выпускаются в круглых резьбовых оправах диаметрами от 30,5 мм до 77 мм. Правда, в московских магазинах такого изобилия не встретишь, а представленный ассортимент обычно ограничивается самыми ходовыми диаметрами, начиная от 58 мм и выше.

На тестирование поступили фильтры с диаметром 72 мм. Признаться, нам бы хотелось 77 мм, чтобы поработать профессиональными светосильными зумами (напомним, что эти объективы, как правило, имеют именно такую присоединительную резьбу для фильтров). Выход из положения, впрочем, нашелся — переходное понижающее кольцо 72/77 мм.

Будет виньетирование от оправы фильтра или нет, зависит от конструкции оправы объектива и его фокусного расстояния (точнее, угла поля зрения). Единственный объектив, где мы наблюдали виньетирование, был особоширокоугольный зум Sigma 10-20/3.5-5.6 EX DC HSM (для цифровых зеркальных камер с сенсором APS-C). Но даже на фокусах 10-12 мм наблюдалось лишь незначительное срезание углов кадра, а начиная с f=13 мм оно полностью исчезало.

Камеры
То обстоятельство, что тестируемые фильтры резьбовые, причем большого диаметра, предопределило и выбор типа тестовой камеры — зеркальная со сменной оптикой. И хотя ролик инфракрасной черно-белой фотопленки мы все же отсняли, но основным инструментом тестирования была камера цифровая.

В интернете встречается информация о пригодности той или иной цифровой камеры для инфракрасной съемки. Сама матрица чувствительна, иногда даже весьма значительно, к инфракрасному излучению. Но перед цифровым сенсором стоит фильтр (internal IR cut filter), который это излучение задерживает. И от того, каковы спектральные характеристики матрицы и этого фильтра, зависит, насколько пригодна конкретная камера к инфракрасной фотосъемке. Впрочем, в абсолютную непригодность современных зеркалок нам как-то не верится…

В качестве тестовых камер мы выбрали Nikon D50 и Canon EOS 350D. Считается, что первая хорошо подходит для инфракрасной съемки, а вторая — не очень.

Основная часть съемки выполнена объективами Nikkor AF 24-120/3.5-5.6, Tokina AF 20-35/2.8 и Tokina AF 80-400/4.5-5.6 на камере Nikon D50; EF-S 17-55/2.8 IS USM и EF 28-105/3.5-4.5 II USM — на Canon EOS 350D.

Фокусировка
Несмотря на то, что при установленном фильтре 092 картинка в видоискателе едва различима, система автофокуса обеих камер оказалась работоспособной. В условиях достаточного освещения, например, днем на природе, камеры вполне четко фокусировались на объект (вот только сам он с трудом просматривался в видоискателе).

Следует ли из этого, что можно положиться на автоматику камеры? Ответ будет таким: смотря какой камеры, да и то не всегда. Дело в том, что в инфракрасном участке спектра фокальная плоскость оказывается несколько смещенной, т.е. объектив рисует резкое изображение немного не в той плоскости, что для видимого участка спектра. А автофокус настроен на работу именно в видимом диапазоне.

Здесь, правда, есть некоторые нюансы. Так, камера Nikon D50 без и с установленным фильтром 092 фокусировалась строго на одну и ту же дистанцию. А это значит, что кадры, снятые с автофокусировкой через этот инфракрасный фильтр, будут получаться не в фокусе.

С камерой Canon EOS 350D картина иная. С надетым фильтром она автофокусировалась на чуть более близкую дистанцию, снимки получались вполне резкими, так что ручную коррекцию фокуса можно не делать. Как показала практика, при использовании Canon EOS 350D шкала коррекции для съемки а инфракрасном диапазоне подходит для сильного фильтра 093, а для фильтра 092 метку следовало бы сдвинуть примерно вдвое ближе к обычной метке фокусировки в видимом диапазоне.

Говоря о коррекции фокуса, мы имеем в виду следующее. Иногда на оправах объективов, точнее на шкале дистанций, нанесена одна или несколько (в случае зум-объектива) дополнительных к основной меток. Их назначение — скорректировать фокусировку объектива таким образом, чтобы после установки инфракрасного фильтра изображение в фокальной плоскости камеры оставалось резким. Поступают следующим образом. Сначала без фильтра производят фокусировку на объект — автоматически или вручную. Затем, установив фильтр и переведя автофокус камеры в ручной режим, сдвигают метражную шкалу объектива так, чтобы дистанция наводки на резкость напротив основной метки переместилась на «инфракрасную».

При работе с фильтром 093 приходится поступать именно так. И хотя камеры иногда смогли сфокусироваться и через такой черный фильтр, все же стоит признать, что для работы с ним системы автофокуса не предназначены.

Выполняя такую коррекцию фокусировки с фильтром 092, мы всякий раз на камере Nikon D50 получали кристально резкие инфракрасные снимки, причем на полностью открытой диафрагме. В абсолютно тех же условиях изображение с фильтром 093 получалось чуть мыльным.

А что делать, если на объективе нет фокусировочных инфракрасных меток (как правило, это бюджетные недорогие объективы)? Нужно попытаться самостоятельно практическим путем определить хотя бы приблизительно необходимую подвижку и сильно диафрагмировать объектив. Диафрагмирование, правда, будет заметно удлинять выдержки, а они при инфракрасной съемке и так большие. Если не сказать — длительные.

Экспозиция

Съемка с инфракрасными фильтрами требует увеличения экспозиции, в практическом плане — отрабатываемой затвором выдержки. Для фильтра 092 это увеличение значительное, для 093 — очень значительное.

Экспозамер Nikon D50 вполне точно работает через фильтр 092, при этом увеличение экспозиции составляет порядка 5-6 ступеней, что очень даже неплохо. Назовем эту экспозицию базовой для инфракрасной съемки. Но даже если бы экспозамер камеры работал с фильтром неточно или не работал вообще (как с 093), найти базовую экспозицию несложно, хотя бы по гистограмме снимка — она должна быть «хорошей». Кстати, найдя расхождение базовой и обычной экспозиций (т.е. для съемки в видимом диапазоне спектра) в ступенях EV, можно не пользоваться камерной экспосистемой, а замеряться внешним экспонометром.

Экспозамер на камере Canon EOS 350D тоже работает через фильтр 092, но снимки получаются темными (сильная недодержка), и требуется дополнительно добавить 4-5 ступеней. При этом общее увеличение экспозиции до базовой составляет 10-11 ступеней.

По сравнению с 092 фильтр 093 потребует увеличить экспозицию еще ступени на 4. Таким образом, при съемке через него придется увеличивать экспозицию: для Nikon D50 на 10 ступеней, для Canon EOS 350D — на 16 (!).

Что такое 16 ступеней на практике? Скажем, в солнечный день при чувствительности ISO 200 выдержка при диафрагме f/5.6 может составлять 1/2000 с. Увеличение на 16 ступеней удлиняет ее до… 30 с! А в пасмурную погоду при плохой освещенности счет пойдет на минуты. Так что работа на высоких ISO (при этом выдержки будут короче) для камеры Canon мера вынужденная, но изображению на пользу это не идет. Длительные выдержки и высокие ISO — это как раз те причины, которые осложняют инфракрасную съемку Canon EOS 350D.

При съемке через фильтр 092 мы бы рекомендовали не ограничиваться базовой экспозицией, а делать дополнительно 2-3 кадра, увеличивая каждый раз выдержку еще на одну ступень. При этом снимок на ЖК-экране камеры будет выглядеть просто ужасно, а гистограмма — показывать сильную передержку, но все же эти дополнительные «бракованные» кадры сделать желательно. Почему — расскажем чуть позже.

Обработка
При съемке с обоими фильтрами получаются сильно окрашенные изображения. Для 092 преобладающий оттенок красно-оранжевый, для 093 — красно-фиолетовый. Во всяком случае, большинство натурных снимков камерой Nikon были именно такими. (Оттенок зависит от спектрального состава освещения, характеристик инфракрасного фильтра, характеристик внутреннего отрезающего фильтра и цветных фильтров на матрице, а также алгоритма интерпретации цветов процессором камеры или компьютерной программой.) Поэтому сильная коррекция баланса белого неизбежна, и делать ее лучше в RAW-файле. Мы использовали конвертеры Adobe Camera Raw (ACR) и Pixmantec RawShooter 2006 (RS 2006).

При переводе изображения в черно-белое практически полностью беспроблемным оказался фильтр 093. Достаточно выставить баланс белого пипеткой, как изображение становится монохромно серым (или почти таким). Да, оно вялое, контраст сильно понижен, но это легко правится прямо в конвертере или позднее в редакторе. Словом, фильтр 093 — это легкое и быстрое преобразование инфракрасного изображения в черно-белое.

Чего не скажешь о фильтре 092. В этом случае картинка никак не получится чисто черно-белой. Причина в том, что данный фильтр помимо инфракрасного пропускает и часть видимого участка спектра, поэтому изображение на снимке есть комбинация обычного и инфракрасного. Так что в конвертере, несмотря на то, что снимок будет выглядеть цветным, нужно создать хорошую основу, чтобы потом в редакторе получить визуально приятный инфракрасный эффект. Словом, придется повозиться.

Как отличить обычный черно-белый снимок от инфракрасного? Прежде всего, по тональности зеленой растительности — она становится светло-серой и даже почти белой. Все правильно — зелень хорошо отражает инфракрасное излучение, поэтому и должна выглядеть светлой. Такое ее высветление на снимке называется вуд-эффектом (wood effect), но к дереву это не имеет никакого отношения. (На самом деле, эффект назван именем известного физика-экспериментатора, который применял ультрафиолетовую и инфракрасную съемку в своих исследованиях — Роберта Вуда/Robert Wood).

Как нами было замечено, некоторые снимки переводились в черно-белое инфракрасное изображение довольно легко, другие — весьма хлопотно. По распределению тональностей изображение отличалось от обычного черно-белого, но и на инфракрасное не очень походило. Понятно, что инфракрасная составляющая картинки как-то распределилась по RGB-каналам изображения. Важно уметь эту информацию находить и наиболее эффективно извлекать.

На снимках, выполненных Nikon D50, в большинстве случаев инфракрасный сигнал находился в синем канале изображения, иногда — в зеленом и совсем редко — в красном или во всех трех одновременно. (Для других камер эта зависимость может сохраниться, но может быть иной, поэтому поизучайте свою модель.)

Чтобы не вытягивать «слабый» синий канал, мы советуем делать при съемке несколько дублей, увеличивая экспозицию относительно базовой. Передержки в 2-3 ступени будет вполне достаточно.

При наличии такого запаса исходного материала процедура конвертации снимков, снятых через фильтр 092, значительно облегчается. Нужно выбрать кадр с наилучшим синим каналом и «тянуть» этот канал, не обращая внимания на остальные. Такова общая схема, детали в каждом конкретном случае могут варьироваться.

И еще. Изначально хорошая наполненность «инфракрасного канала» (например, синего) потребует меньших его преобразований в конвертере, а следовательно, шумов и артефактов в финальном изображении тоже будет меньше. Мы, например, получали абсолютно чистые, без шумов инфракрасные снимки, хотя исходный цветной кадр больше походил на откровенный брак.

Так что затраченное на съемку дублей время вполне оправдано.

Заключение
Какому из рассмотренных инфракрасных фильтров отдать предпочтение? Для фотографов, все еще остающихся верными фотопленке, вряд ли это будет B+W Infrared Black 093. Для работы с ним требуются фотопленки, сенсибилизация которых далеко заходит в инфракрасную область.

Но этот же фильтр позволяет быстро (если только не принимать в расчет весьма продолжительные выдержки при съемке) и легко получать цифровые черно-белые фотографии.

Фильтр B+W Infrared Dark Red 092 можно считать универсальным, подходящим для пленочной и цифровой фотографии. А некоторые хлопоты, которые могут возникнуть при обработке сделанных с его помощью кадров, с лихвой компенсируются эксплуатационными преимуществами — работающей автоматикой камеры и более короткими выдержками при съемке.
F&V

Если закрыть глаза и поднести руку к лицу, можно почувствовать ее тепло. Открыв глаза, мы увидим руку воочию. Хотя оба эти явления знакомы человеку тысячи лет, но то, что в основе их лежит общий принцип — излучение, мы поняли лишь относительно недавно, фактически одновременно с появлением фотографии.

Тепло, ощущаемое кожей, — это т.н. дальнее инфракрасное излучение (условно от микронной до миллиметровой длин волн), которое расположено за видимым участком спектра 400-700 нм. А непосредственно рядом с ним — ближнее инфракрасное (700-900 нм), которое сейчас без особого труда можно использовать для фотографии.

В истории инфракрасной фотографии есть два события и два связанных с ними человека, обязательно заслуживающие упоминания. Первое событие доказало, что за видимым есть свет невидимый, второе продемонстрировало возможность фотосъемки в этом невидимом диапазоне.

Раскладывая свет в спектр с помощью призмы, английский астроном Уильям Гершель/William Herschel в своих экспериментах обнаружил (1800 г.), что за видимым диапазоном есть что-то, что способно действовать на светочувствительные материалы в области ультрафиолета и нагревать градусники в инфракрасной области.

Используя сенсибилизированные эмульсии и собственноручно созданные фильтры, знаменитый американский физик Роберт Вуд/Robert Wood сделал в 1910 г. первые инфракрасные фотографии. Среди них были и ландшафтные снимки, демонстрирующие неожиданную для неискушенных зрителей белизну живой растительной зелени и черноту ясного дневного неба.

Чтобы фотографировать в инфракрасном диапазоне, пришлось изобрести сенсибилизацию и фильтры, отрезающие видимую составляющую света. Вещество-сенсибилизатор работает как посредник — улавливает энергию инфракрасного излучения и затем запускает процесс засвечивания чувствительных в коротковолновой области спектра солей серебра. Т.к. при этом их чувствительность к видимому излучению сохраняется, отделить инфракрасную картинку от видимой глазом, если не отрезать последнюю фильтром, нельзя. Если этого не делать, то смесь видимого и инфракрасного изображения будет давать для ландшафтных сюжетов унылую неконтрастную картину, в чем-то близкую смеси позитива и его же собственного негатива.

Матрицы цифровых камер в отличие от традиционных материалов обладают хорошей светочувствительностью и к видимому свету, и к ближнему инфракрасному. Т.к. яркостной контраст инфракрасного изображения не совпадает с яркостным контрастом в видимых цветовых каналах, для корректного воспроизведения видимого глазом изображения инфракрасную составляющую приходится отрезать специальным фильтром, который обычно устанавливается прямо на матрице.

Другой причиной, по которой в цифре инфракрасный диапазон отрезать необходимо (а для фотопленок общего назначения, к нему не чувствительных, такой проблемы просто не существует), является дисперсия — зависимость показателя преломления от длины волны.

Более длинная волна преломляется линзами фотообъективов меньше, чем короткая. Для того чтобы фотографии были четкими, используют оптические системы из стекол разных сортов, что позволяет более-менее свести в одну точку видимые лучи. Но такие ахроматы и апохроматы не учитывают инфракрасных лучей. В результате либо видимое изображение, либо инфракрасное оказываются несфокусированным, а суммарная картинка выглядит нечеткой и неконтрастной.

Современному фотографу-любителю инфракрасная фотография вполне доступна. Для этого понадобится решить две задачи: найти чувствительный к инфракрасному излучению фотоматериал (пленка или матрица) и фильтр, отрезающий видимое изображение. При этом такая пара должна быть правильно подобрана исходя из следующего принципа: фильтр должен как можно сильнее отрезать видимую и ультрафиолетовую области и оставлять только инфракрасную — и при этом пересекаться с областью, в которой светочувствительный материал еще обладает достаточной чувствительностью.

В инструкции к инфракрасным пленкам приводятся рекомендации, с какими фильтрами и при каких условиях обработки можно получить хороший результат. Производители же цифровых фотокамер (за исключением разве что узкоспециализированных) не пишут, как с их помощью снимать в инфракрасном диапазоне.

Проходя через объектив, свет разных длин волн преломляется по-разному. В результате в плоскости пленки или матрицы точно сфокусированными оказываются только лучи некоторого спектрального диапазона. Фокусировка по видимому в видоискателе изображению приводит к тому, что инфракрасные лучи не фокусируются в точку, а образуют пятно в этой плоскости. Если фотоматериал малочувствителен к инфракрасному излучению, это пятно на резкость изображения существенно не повлияет.

При инфракрасной съемке все наоборот. Мы хотим выделить довольно слабый инфракрасный сигнал на фоне сильного видимого. При этом нужно выполнить два условия: сфокусировать именно инфракрасные лучи и не позволить лучам видимого диапазона размыть изображение.

Фокусироваться при инфракрасной съемке можно как вручную, так и с помощью автоматики камеры. Поскольку визуальная фокусировка через инфракрасный фильтр невозможна, вручную приходится фокусироваться, либо используя метод последовательных проб (для цифры, даже зеркальной, это вполне пригодный прием), либо пользуясь указателем сдвига для съемки в инфракрасном диапазоне. Этот указатель обычно наносится на шкалах дистанций большинства хороших объективов. (Чтобы иметь представление о конкретных цифрах, приведем пример. Для объектива Canon EF 28-105/3.5-4.5 II USM при фокусном расстоянии 28 мм фокус для инфракрасных лучей, приходящих из бесконечности, достигается при установке на шкале дистанций значения примерно 4 м.)

Шкалы коррекции для съемки в инфракрасном диапазоне, которые наносятся на объективы, рассчитываются для случая использования определенных светочувствительных материалов и конкретных фильтров. Поэтому надеяться на то, что ими можно пользоваться для любого инфракрасного фильтра на любой цифровой зеркалке, нельзя.

Система автофокуса зеркальной камеры использует датчики, обладающие определенной спектральной чувствительностью. Если их диапазон чувствительности расширен и в инфракрасную область, то и за фильтром эти датчики работать будут. Но полагаться на них тоже особенно не стоит. У систем фильтр + матрица и фильтр + датчик автофокуса максимумы чувствительности, вообще говоря, совпадать совсем не должны.

Итак, самый надежный способ фокусировки — методом последовательных проб. Если же вы постоянно пользуетесь конкретным набором аппаратуры для инфракрасной съемки, то будете знать ее особенности и нанесете на шкалу объектива собственные метки или при везении просто будете пользоваться автофокусом.

Второму условию — не позволить видимым лучам размыть инфракрасное изображение — удовлетворить нетрудно, выбирая «правильный» фильтр. Для сильных фильтров оно выполняется автоматически. А вот для слабых, через которые проходит и видимое изображение, четкий снимок иногда получить непросто. Покупая фильтр, лучше ориентироваться на «непрозрачный», т.е. полностью отрезающий видимый участок спектра.
____________________________________

Инфракрасные фильтры Schneider
Оба фильтра Schneider были промерены в нашей лаборатории на спектрометре. Для сравнения приводятся результаты измерений ИК-фильтра Heliopan RG715. Как видно на графиках спектральных зависимостей коэффициента пропускания (1), полученные результаты хорошо согласуются
с заявленными характеристиками фильтров. Максимум пропускания 092 IR и RG715 расположен в видимой области на длине волны 750 нм. Максимум пропускания 093 IR лежит за пределами полосы пропускания лабораторного спектрометра (792 нм) в ближней ИК-области.

На графике (2) показана спектральная зависимость коэффициента пропускания теплового фильтра, устанавливаемого перед матрицей для отсекания ИК-излучения. Протестированный фильтр был снят с ПЗС-матрицы типоразмера 1/1,8 дюйма от компактной камеры. Как видно, пересечение областей пропускания тестируемых фильтров и защитного теплового фильтра лежит в узкой полосе длин волн 650-700 нм, а коэффициент пропускания в этой полосе не превышает уровень 0,1. Поэтому требуется значительное увеличение экспозиции для тональной проработки изображения. Волновой характер коэффициента пропускания на длинах волн 450-600 нм является признаком того, что фильтр интерференционный (в старой литературе можно встретить термин дихроичный).

А какова спектральная чувствительность собственно цифрового сенсора? Мы приводим типовую относительную чувствительность ПЗС-матрицы Sony типоразмера 1/3 дюйма, сделанной по технологии EX view HAD CCD (данные производителя). Матрица черно-белая без цветных мозаичных фильтров перед фотодиодами. На графике (3) видно, что спектральная чувствительность распространяется на ближнюю ИК-область спектра, вплоть до 1000 нм. На уровне 50% от максимума граничная длина волны составляет 800 нм, а на уровне 20% — 910 нм.
___________________________________

Schneider B+W Infrared Dark Red 092
Характеристики : пропускание 0% на 650 нм, 90% на 730 нм
Ориентировочная цена : 2900 руб. (D 72 мм)
Плюсы : высокая резкость изображения
Минусы : хлопотное получение ИК-картинки
Доп. информация :

Здравствуйте, друзья!

Я давно хотел написать на эту тему, но всё как-то казалось, что материала маловато и сейчас, спустя год кажется также. Процесс набора материала очень долгий и если быть к себе очень критичным, то можно и одной теме всю жизнь посвятить.

Что даёт инфракрасная фотосъемка

Давно вы занимаетесь фотографией или начали недавно, скорее всего, вы обратили внимание, что многие достопримечательности уже сфотографированы со всех сторон. Видов природы столько, что сервера Амазон и Гугл уже не вмещают, а фотостоки не принимают. Проблема заключается в том, что мало просто сфотографировать. В наше время когда вы вряд ли будете первым в месте съемки, нужно сфотографировать как-то по особенному.

И здесь нам приходят на помощью необычные способы съемки и экзотические светофильтры.

Видеоролик интервью со мной для канала Наука 2.0 про инфракрасную фотосъемку

Единственное замечание к ролику — я всё-таки снимаю инфракрасные фото как раз на коротких выдержках. На длинных снимал когда у меня не было модифицированной камеры.

Цифровые фотокамеры для инфракрасной фотографии

Современные фотокамеры устроены так чтобы инфракрасный спектр, который попадает в объектив не влиял на изображение. Для того, чтобы он не влиял в фотокамеру ставят фильтр, которые этот спектр отсекает.

На приведённом ниже графике вы можете увидеть, что кремний из которого сделан сенсор камеры вполне себе пропускает излучение с длиной волны до 300нм и до 1100нм. Далее он становится «прозрачным» для излучения (за ИК излучением начинаются радиоволны).

На самом деле сенсор фотокамеры, это не просто кремний, а целый «бутерброд», в котором возникает масса дополнительных проблем с правильным распознаванием цвета.

На каждом этапе прохождения излучения через границу между слоями электромагнитная волна может менять амплитуду и направление. Часть излучения отражается обратно, часть переходит на следующий слой «бутерброда». Из отразившейся обратно части излучения, часть переотражается в предыдущем слое и переходит на следующий слой изменённой, а часть выходит за пределы сенсора (полностью отражается обратно). Т.к. степень отражения излучения зависит от его длины волны, то влияет этот процесс на спектральную чувствительность сенсора нелинейно. Особенно это касается лучей, приходящих на сенсор под углом (помните ?)

Обычно с «лишним» спектром ЭМ волн борются с помощью специального фильтра, который отсекает инфракрасный и ультрафиолетовый спектр, чтобы получить чистую картинку с видимым спектром. Иначе мы имеем искаженные цвета (красные цвета усиливаются, черный становится тёмно-фиолетовым) и т.д.). Такую проблему имела, например, камера Leica M8 .

Собственной картинки снятого ИК/УФ фильтра у меня пока нет (донорская камера лежит и ждёт пока я её разберу), так что вы можете посмотреть процесс разборки и как выглядит сам фильтр на сайте компании Lifepixel , известного американского модификатора камер.

Пленочные фотокамеры для инфракрасной фотографии

Я не занимался инфракрасной фотографией на пленочных камерах. В теории тут есть свои плюсы и минусы. Есть плюс в том, что вы можете купить инфракрасную плёнку любого производителя и начать снимать, никакие фильтры вам не мешают. А минус в том, что единственный доступный способ фокусировки это ставить на объективе шкалу дистанций на специальную красную метку. С одной стороны это просто, а с другой... Разные длины волн фокусируются в разных местах и потому с одними инфракрасными фильтрами вы будете попадать точно в фокус, а с другими снимки будут нерезкими. Придётся экспериментально искать правильное положение фокуса для конкретного инфракрасного фильтра.
Еще есть один плюс... Плёночные камеры дешевые и пленка для них тоже недорогая.

Объективы для инфракрасной фотографии

Инфракрасный спектр не блокируется стеклом объектива, так что подойдет любой объектив. Если на нём есть специальная красная метка для занятий инфракрасной фотографией — вообще здорово, может облегчит работу с некоторыми инфракрасными светофильтрами, не нужно будет тщательно фокусироваться.

Теория и практика светофильтров для инфракрасной фотографии

Для инфракрасной фотографии существуют специальные фильтры с разным пропускаемым спектром. Дело в том, что диапазон инфракрасного спектра большой, а нас интересует только определенный участок, плюс если к инфракрасному спектру подмешивать видимый спектр, то будет иногда интереснее, чем просто инфракрасный спектр.

Я использую светофильтры B+W 092 , B+W 093 , но существует еще много других инфракрасных светофильтров которых у меня нет или они уже не производятся.

Внешний вид

Почти непрозрачный инфракрасный фильтр B+W 092 , который выглядит темно-красным с фиолетовым оттенком (dark purplish red), если смотреть на просвет.

Кривая пропускания

Блокирует видимый спектр до 650нм
Пропускает только 50% с 650нм до 730нм (отсюда тёмно-красный цвет)
730-2000нм — пропускает более 90% спектра

Это светофильтр в основном используется пейзажными фотографами для фотосъемки на чёрно-белую инфракрасную плёнку и на модифицированную для инфракрасной съемки цифровую камеру.
20-40.

кадр инфракрасного фото со светофильтром B+W 092 и балансом белого по-умолчанию

кадр инфракрасного фото со светофильтром B+W 092 с другим балансом белого

пример обработанной инфракрасной фотографии, сделанной со светофильтром B+W 092

Обработка может быть совсем разной, цвета неба, деревьев и прочего здесь условны и вы выбираете такие, которые вам нравятся. Чаще всего небо и здания лучше сделать естественных цветов. А вот листья деревьев, трава и проч. могут быть какие угодно.

Попытка имитировать работу инфракрасного фильтра 092 в фотошопе

Раньше инфракрасное изображение всегда переводили в ч.б., но сейчас появилась мода и на цветные инфракрасные фотографии.

Уверен, что вы снимите что-то более интересное т.к. это просто тестовый снимок, чтобы показать как работает фильтр.

Такое ч.б. изображение не получить имитацией в фотошопе или в настройках камеры — проверено. Потому как все объекты отражающие ИК (листья деревьев и трава, например) получают бОльшую яркость, а поглощающие (вода, например) становятся темнее.

Обратите внимание, что на настоящем инфракрасном фото чёрные фары стали белыми, листья деревьев белые даже снизу. На снимке появились тучи на небе. И это с фильтром, где всё-таки есть примесь видимого спектра.

Примеры снимков

Внешний вид

Инфракрасный фильтр 093 — с бликом от мощного источника света. По блику его иногда называют тёмно-зелёным. Такой блик получается потому что фильтр пропускает только ИК спектр (красный) и отражает синий и зеленый, которые мы и видим

Фильтр B+W 093 полностью блокирует видимый спектр, таким образом фильтр выглядит как полностью непрозрачный.
Этот светофильтр делает возможными инфракрасные фотографии без примешивания красной составляющей, в отличие от предыдущего светофильтра (092).

Кривая пропускания

Результирующее изображение обычно переводят в черно-белое.

Такое ч.б. изображение не получится имитацией в фотошопе — проверено. Потому как все объекты отражающие ИК (листья деревьев и трава, например) получают бОльшую яркость, а поглощающие (вода, например) становятся темнее.

Пропускание B+W 093 начинается с 800 нм, поднимается до 88% на 900 нм и остается таким высоким далеко за пределы чувствительности инфракрасной плёнки. Этот фильтр редко используется для пейзажной съемки т.к. вынуждает снимать на очень чувствительные пленки (высоком ISO). Но в научном плане, судебной экспертизе и проч. ограничение спектра только инфракрасным особенно важно. Фактор фильтра очень зависит от освещения и характеристик светочувствительного материала (плёнка, сенсор).

пример инфракрасного фото снятого с фильтром B+W 093 с балансом белого по-умолчанию

пример ифракрасного фото, снятого со светофильтром B+W 093 с другим балансом белого

пример инфракрасного фото, снятого со светофильтром B+W 093 и переведённого в черно-белое

Примеры снимков с инфракрасным фильтром B+W 093

>

Очарование снимков с этим фильтром в передаче цветов зелёной растительности в оранжево-красных цветах, которая получается благодаря высокой способности отражать инфракрасный спектр у хлорофилла в растениях.
Фактор этого фильтра очень зависит от светочувствительного материала (плёнка, сенсор) и степени отражения инфракрасного спектра от объекта съемки.

Камера

Хорошие инфракрасные фильтры довольно «плотные» (тёмные) и потому обычной камерой приходится снимать со штатива. Например, через B+W 093, который пропускает только инфракрасный спектр вообще ничего не видно глазами. Выдержка при этом становится весьма длинной. В яркий солнечный день параметры съемки могут быть F4 1/4sec iso 1600. По этой причине снимок может иметь довольно сильные шумы, которые впрочем успешно подавляются в RAW-конвертере. Но хуже то, что на длинной выдержке листья деревьев часто получаются размытыми.
Потому я сильно рекомендую купить модифицированную под инфракрасную съемку камеру и снимать на нормальной выдержке. Тогда для инфракрасной съемки в яркий солнечный день параметры могут быть такими: F4 1/200sec iso 100. Как видите, можно вполне нормально снимать что угодно с рук.
Вариантов найти модифицированную камеру или модифицировать свою несколько. Самый простой — купить или модифицировать в американской конторе LifePixel . Второй путь — попытаться сделать это самому. Я отдавал свой Nikon D300 на модификацию специалистам, которые работают с мелкой электроникой. Они успешно разобрали камеру, но рамка на сенсоре по их словам так «закисла» на винтах, что её было не снять. Так что пришлось всё собрать обратно. Третий вариант — найти специалиста там где живёте. Если будет необходимость, обращайтесь ко мне , я постараюсь помочь с камерой модифицированной под инфракрасную съемку.

Фокусировка

При смене фильтров желательно перефокусироваться тщательно, используя LiveView фотокамеры на максимальном увеличении. Причину я уже выше объяснял, фильтр с другим спектром смещает фокусировку. Также имеет смысл использовать шторки на ЖК экран фотокамеры или увеличитель («лупу») на ЖК экран для более точной фокусировки на солнце, иначе экран засвечивает и плохая фокусировка портит хороший снимок.

Какой светофильтр выбрать

При выборе фильтра стоит учесть, что плотные инфракрасные светофильтры, которые отсекают весь видимый спектр оставляют только один по сути канал в цветном изображении и потому оно превращается в черно-белое.
На экране фотокамеры оно чаще выглядит как фиолетовое, но это условно т.к. инфракрасный спектр цвета не имеет и с помощью баланса белого вы можете поставить любой цвет, если хотите оставить изображение цветным.

Другое дело светофильтры где пропускается часть видимого спектра. Он примешивается к инфракрасному и тогда есть некоторая информация в цветовых каналах изображения, это позволяет перекрашивать изображение в разные необычные цвета.

Вы также можете заказать себе установку специального светофильтра прямо на матрицу и тогда у вас будет то цветное изображение, которое вы «заказывали».
В этом есть свой плюс т.к. аналоговое расщепление изображение на цвета не даёт артефактов на изображении, в отличие от цифровой «раскраски». Но есть и минус — ограничение свободы выбора раскраски.

Итоги

Вариантов съемки много хороших и разных, желаю вам поскорее взять камеру и идти на улицу пока на дворе лето (если вы этого еще не сделали или делаете редко)! Особенно это касается инфракрасной съемки, зимой от которой мало пользы.

Удачных вам снимков! :)

P.S. Я еще многое мог бы вам рассказать об инфракрасной фотосъемке, но если буду вдаваться слишком глубоко, то не успею написать другие интересные статьи. Так что позже постепенно буду дополнять эту статью.

Главные причины, почему вы должны купить систему безопасности и камеры видеонаблюдения. Если вы читаете это, скорее всего, вы думали о покупке системы видеонаблюдения, за соседями наблюдать, за женой, не знаю, за кошкой например. Вот несколько причин, почему сейчас самое время, чтобы пойти и купить пару видеокамер и построить себе систему безопасности. Камеры видеонаблюдения и видеорегистраторы сейчас стоят недорого - технологии видеонаблюдения постоянно меняются и всё время появляются новые продукты. Производство камер видеонаблюдения стало очень распространенным - конкурирующие заводы и фирмы бьются насмерть. "У нас отличный дизайн, а у нас удобное ПО, а у нас открытый АПИ для гиков, а мы написали клиентов для айфонов/андроидов". "Ха, зато у нас есть клиент с нативной поддержкой КДЕ под фрибсд". Маркетологи работают, отделы продаж снижают цены, кровища хлещет - отличное время. ПЗС-сенсор (глаз камеры безопасности) представляет собой большую часть стоимости производства камеры видеонаблюдения, и за эти годы цены на комплектующие значительно сократилось. Ниже у же некуда. Обычные аналоговые камеры видеонаблюдения падают в цене и есть много хороших камер безопасности, доступных по цене от двадцати долларов и выше. Как когда-то с персональными компьютерами - сначала они стоили чудовищных денег, занимали комнату и работали на перфокартах. Сейчас у каждого есть, и все умеют пользоваться, и все дешевеют и дешевеют. Для владельца малого бизнеса или владельца дома это означает что хороших и качественных систем видеоконтроля достаточно много в пределах бюджета. Статистика говорит нам о сокращения бюджета в отделениях милиции во всем мире, о увеличении числа мелких краж дорогих вещей, что означает сокращение ресурсов для реагирования и расследования преступлений. Это говорит о том, что у домовладельца или владельца малого бизнеса появилась возможность с использованием камер безопасности помочь милиции. Видеозаписи могут оказатся важной частью доказательства, что будет способствовать милиции в расследовании. Есть принципиальная разница между "у меня украли вещи" и "у меня вынесли полдома, вот видео, где лица, называющие друг друга Миша и Гриша скручивают мою плазму со стены. Кстати я копию в новости отправил, вечером в криминальной хронике покажут." Спасение утопающих - дело самих утопающих. Простая концепция для владельцев бизнеса - системы безопасности и камеры видеонаблюдения могут уменьшить шансы кражи (у этих камеры висят, пойдем к другим), и представить доказательства для судебного расследования преступлений. Видеонаблюдение может помочь уменьшить или предотвратить потери для бизнеса.

Существует замечательный вид фотографии, которая открывает взгляду иной, «параллельный» мир, скрытый от глаза человека, - инфракрасная фотография. Изображения, полученные при помощи инфракрасных фильтров, позволяют нам попасть в сказку, которая в то же время является неотъемлемой частью нашего повседневного пространства.

Инфракрасная фотография началась в пленочную эпоху, когда появились специальные пленки, способные к регистрации инфракрасного излучения. Но, поскольку в наше время цифровые зеркальные фотоаппараты гораздо популярнее пленочных и достать специальную пленку стало достаточно тяжело (к тому же, надо заметить, не каждая пленочная зеркалка позволит снимать на ИК-пленку из-за наличия внутри камеры инфракрасного датчика, который будет засвечивать кадры), в этом фотоуроке мы коснемся только аспектов инфракрасной съемки при помощи цифровых зеркальных камер.

Для начала, чтобы понять процесс получения инфракрасного изображения, необходимо разобраться в теории. Излучение, формирующее цветное изображение, воспринимаемое человеческим глазом, имеет длину волны в пределах от 0,38 мкм (фиолетовый цвет) до 0,74 мкм (красный цвет). Пик чувствительности глаза приходится, как известно, на зеленый цвет, имеющий длину волны примерно 0,55 мкм. Диапазон волн с длиной менее 0,38 мкм называют ультрафиолетовым, а более 0,74 мкм (и до 2000 мкм) - инфракрасным. Источниками инфракрасного излучения являются все нагретые тела.

Отраженное солнечное ИК-излучение чаще всего формирует картинку на пленке или матрице фотоаппарата. Поскольку самое распространенное применение инфракрасная фотография нашла в пейзажном жанре , необходимо отметить, что лучше всего ИК-излучение отражают трава, листья и хвоя, и поэтому они на снимках получаются белыми. Все тела, поглощающие ИК-излучение, на снимках выходят темными (вода , земля, стволы и ветви деревьев).

Теперь можно перейти к практической части.

Начнем с фильтров. Для получения инфракрасного изображения необходимо использовать ИК-фильтры, обрезающие большую часть или все видимое излучение. В магазинах можно найти, например, B+W 092 (пропускает излучение от 0,65 мкм и длиннее), B+W 093 (0,83 мкм и длиннее), Hoya RM-72 (0,74 мкм и длиннее), Tiffen 87 (0,78 мкм и длиннее), Cokin P007 (0,72 мкм и длиннее). Все фильтры, кроме последнего, являются обычными резьбовыми фильтрами, навинчивающимися на объектив. Фильтры французской фирмы Cokin необходимо использовать с фирменным креплением, которое состоит из кольца с резьбой под объектив и держателя фильтров. Особенность такой системы состоит в том, что для объективов с разным диаметром резьбы нужно приобретать только соответствующее кольцо, а сам фильтр и держатель остаются теми же, что получается гораздо дешевле, чем приобретение одинаковых резьбовых фильтров для каждого объектива. Кроме того, в стандартный держатель можно установить до трех фильтров с разными эффектами.

Поскольку мы рассматриваем ИК-съемку исключительно при помощи цифровых зеркальных фотокамер, нужно отметить, что у разных моделей камер разная способность к регистрации инфракрасного излучения. Сами по себе матрицы фотокамер достаточно хорошо воспринимают ИК-излучение, однако производители устанавливают перед матрицей фильтр (так называемый Hot Mirror Filter), обрезающий большую часть волн инфракрасного диапазона.

Делается это для минимизации появления нежелательных эффектов на снимках (например, муара). От того, насколько сильно фильтруется ИК-излучение, зависит возможность применения камеры для ИК-съемки. Например, камерой Nikon D70 с фильтром Cokin P007 можно снимать с рук, а для Canon EOS 350D и большинства других камер из-за длинных выдержек всегда потребуется штатив. Некоторые фотографы, увлеченные ИК-фотосъемкой, прибегают к модификации камеры, удаляя инфракрасный фильтр.

Теперь коснемся обработки снимков в Photoshop. Полученные кадры, в зависимости от установки баланса белого, будут иметь красную или фиолетовую тональность. Для получения классического черно-белого инфракрасного снимка нужно будет обесцветить снимок, например, с использованием карты градиента, предварительно настроив уровни и контраст. Также существует несколько способов получения очень эффектных цветных инфракрасных фотографий. Например, можно воспользоваться инструментом Channel Mixer, установив для начала для красного канала Red - 0%, Blue - 100%, для синего - Red - 100%, Blue - 0%, а затем путем небольших манипуляций с процентным соотношением того или иного цвета в каналах подобрать такие значения, при которых картинка будет выглядеть наиболее привлекательно.

В заключение отметим основные плюсы инфракрасной фотографии: отсутствие дымки на снимках и всегда хорошо проработанное небо, отсутствие мусора, поскольку он не отражает ИК-лучи, и, конечно, важнее всего то, о чем было сказано в самом начале, - возможность увидеть необычный, неповседневный мир, в котором, помимо сказочного цвета, все движущиеся объекты исчезают или превращаются в «призраков».

Хотели бы вы узнать, как бы выглядел окружающий мир, если бы человеческий глаз воспринимал световые лучи не только, так называемого «видимого спектра», но и далеко за его пределами?

Одним из способов увидеть мир таким, каким его неспособен увидеть человеческий глаз, является фотосъемка в инфракрасном диапазоне.

ИК фильтр на объектив, необходимый элемент для инфракрасной съемки

Уже давно из сугубо технической, прикладной области, инфракрасная съемка вошла в мир художественной фотографии. При помощи съемки в ИК диапазоне, можно получить невероятные по красоте, «космические» пейзажи.

Вообще, данный вид съемки и последующей обработки, предмет для отдельной большой статьи или даже цикла статей. Но сегодня наша цель просто познакомиться с основами.

Итак, как получить инфракрасный снимок? Вариантов много. Раньше для этого использовалась специальная фотопленка. В специализированной цифровой технике используются особые матрицы.

Но можно попробовать сделать инфракрасный снимок и на простой цифровой фотоаппарат.

Оборудование для инфракрасной фотографии

По большому счету, оптика любой камеры пропускает лучи в ИК диапазоне. Но проблема в том, что матрицы современных камер оснащены специальными Hot-mirror фильтрами. И эти фильтры часто практически полностью отсекают ИК спектр.

Есть простой способ проверить, насколько ваша цифрозеркалка подходит к инфракрасной съемке. Возьмите обычный пульт дистанционного управления — от телевизора, музыкального центра и т.п. Все они работают на основе ИК лучей.

Поставьте свою камеру на штатив и в полной темноте сделайте насколько снимков, на разных выдержках и значениях диафрагмы. При этом держа пульт направленным в объектив и удерживая нажатой любую кнопку.

Если на сделанных кадрах появилась светлая точка, значит фильтр вашей камеры в достаточной степени пропускает ИК лучи и можно двигаться дальше. Если нет, то вариантов несколько. Поискать другую камеру или попробовать действовать дальше «на авось». Любопытно что часто слабым Hot Mirror оснащены относительно недорогие мыльницы, а не навороченные зеркалки.

Экспериментируйте с выдержкой и диафрагмой. Возможно для достижения цели вам потребуется очень длительная выдержка, чтобы ИК лучи пробились через фильтр.

Некоторые пускаются во все тяжкие, занимаясь тюнингом внутренностей своих цифрозеркалок под ИК съемку. Если вы решили пойти по этому пути, то для данной цели вполне можно недорого купить «донора» из числа БУ зеркалок. Суть тюнинга заключается в механическом удалении Low Pass фильтра, на который обычно механически напылен Hot Mirror фильтр.

В интернете, особенно англоязычном, много сообществ где есть подробные инструкции по разборке и удалению фильтров с разных моделей камер.

Механическое удаление фильтра после разборки камеры

Второй неотъемлемой частью является покупка светофильтра на объектив. Наиболее популярные и проверенные модели — Hoya R72 и Cokin 007. Но учитывая недешевую стоимость ИК фильтров (от 80-100$) имеет смысл сначала протестировать вашу камеру с этим фильтром, а не покупать вслепую, в интернет магазине.

Правда есть руководства по изготовлению IF фильтра из подручных средств. Но это отдельный разговор.

Интереснее всего в инфракрасном диапазоне выглядят пейзажи. Это связано с тем, что по сути, мы фиксируем способность предметов не излучать, а поглощать волны ИК волны. Например небо поглащает их в огромном количестве и на снимке будет уходить в черноту, зелень деревьев наоборот отражает лучи и на снимке будут выглядеть белыми, как покрытые инием в морозный день.

Учитывая что при применении ИК фильтров количество света попадающего на матрицу крайне мало, придется снимать на длительных выдержках а следовательно потребуется штатив.

Hoya R72 — один из самых популярных инфракрасных фильтров.

Кроме того, стоит перевести камеру в ручной режим фокусировки, так как автофокус может безбожно врать из за фильтра.
Затем стоит поэкспериментировать с различными параметрами экспозиции, анализируя полученный результат.

После того, как мы получили заветный кадр, следует заняться пост обработкой. Так как редкий кадр, сделанный в инфракрасном диапазоне будет шедевром без обработки.

Способов обработки существует великое множество. Рассмотрим один, самый простой.

Обработка инфракрасной фотографии

Существует огромное количество техник пост процессинга (обработки) инфракрасных снимков. Рассмотрим вкратце один из самых простых.

На выходе из камеры вы получите что то подобное.

Инфракрасное фото на выходе из камеры

Если съемка велась в RAW, имеет смысл изменить баланс белого, чтобы сделать зелень максимально приближенной к чистому белому цвету.

Затем, открываем снимок в Photoshop и корректируем уровни Levels. Лучше делать это для каждого канала отдельно (Red, Green, Blue).

Примерный вид Levels для необработанного снимка

Коррекция levels — смещаем ползунки слайдера к краям гистограммы

В итоге наш снимок станет более контрастным и приобретет визуальную «глубину».

Фото после изменения баланса белого и коррекции уровней

Следующий шаг — инверсия цвета.

Для этого открываем Channel Mixer (Image – Adjustments – Channel Mixer.)

Выбираем красный канал и для него Red убираем до 0, а Blue поднимаем до 100

корректируем канал Red

Затем открываем канал Blue и для него делаем наоборот. Red в 100% а Blue в 0%

Корректируем канал blue

Затем нажимаем Ok и наслаждаемся результатом. Для достижения лучшего эффекта можно еще поработать с инструментами насыщенности цветов — Adjustments – Hue/Saturation

Итоговый IF снимок

Примеры инфракрасных фотографий

Ну а для вдохновения, чтобы у вас появилось желание таки попробовать поснимать в данной технике, большая галерея инфракрасных снимков.