Неплохой повышающий преобразователь, который имеет смысл доработать. Преобразователь частоты. Устройство, принцип работы, схемы управления и расчеты преобразователя частоты, инвертора

Неплохой повышающий преобразователь, который имеет смысл доработать. Преобразователь частоты. Устройство, принцип работы, схемы управления и расчеты преобразователя частоты, инвертора

Выполненный на микро-

Типовые включения микросхем серии ВР504х приведены на рис. 28.11 и 28.13 . В качестве диодов выпрямителя рекомендуется использовать , рассчитанные на обратное напряжение не ниже 700- 800 В при среднем выпрямленном токе не менее 0,5 А и пиковом токе до 20 А.

С1 может быть емкостью

Рис. 28. П. бестрансформаторного преобразователя сетевого напряжения на микросхеме ВР5041А

3.3- 10 мкФ и рассчитан на напряжение 450 В. фильтра СЗ может иметь емкость 100-470 мкФ. фильтра R1 должен быть сопротивлением 10-22 Ом мощностью 0,25 Вт. С2 - пленочный, на напряжение не ниже 400 В. Он должен быть размещен в непосредственной близости от вывода входа микросхемы.

Микросхемы серии ВР5042, ВР5047, ВР5048, которых представлены на рис. 28.12 и рис. 28.13, используют внешнюю катушку индуктивности. С1 имеет емкость

3.3- 22 мкФ и рассчитан на напряжение 450 В. фильтра СЗ может иметь емкость 100-470 мкФ. фильтра R1 должен быть сопротивлением

10-22 Ом мощностью 0,25 Вт. С2 - пленочный, емкостью 0,1-0,22 мкФ на напряжение не ниже 400 В. Для защиты микросхемы от повреждения параллельно клеммам питающей сети рекомендуется установить , а в разрыв провода, соединяющего вход микросхемы - плавкий или многоразовый предохранитель FU1. Внешняя должна выдерживать ток не менее 0,4 А. Индуктивность этой катушки при использовании микросхем ВР5048, ВР5048-15, ВР5042-15, составляет 1 мГн для ВР5048-24, ВР5047А24 - 1,5 мГн.

Особо стоит выделить микросхему ВР5046 (рис. 28.14), которая позволяет в отличие от ранее рассмотренных микросхем получить выходное

напряжение иной полярности. Дроссель L1 имеет индуктивность 0,47 мГн для микросхемы ВР5046-5 и 1,5 мГн для микросхемы ВР5046 и рассчитан на ток не менее 0,57 и 0,3 А, соответственно.

ВР5085-15 отличается от микросхем серии ВР504х цоколевкой, хотя и выполнена в корпусе SIP16. Типовая ее включения показана на рис. 28.15 .

С выхода преобразователя можно снимать два напряжения: 5 Б и 15 В при максимальном токе нагрузки 350 мА и 80 мА, соответственно. фильтра СЗ и С4 могут иметь емкость 220-1000 мкФ. Рекомендуемое значение емкости конденсатора С1 33-820 мкФ на напряжение 450 В.

Дроссель L1 имеет индуктивность 1 мГн и рассчитан на ток не менее 0,6 А.

Рис. 28.14. бестрансформаторного преобразователя сетевого напряжения на микросхеме ВР5046


Рис. 28.15. бестрансформаторного преобразователя сетевого напряжения с выходными напряжениями 5 и 15 В на микросхеме ВР5085-15

Рис. 28.16. источника питания на микросхеме SR036 (SR037) без гальванической развязки от питающей сети

Напряжения на микросхеме SR036 (SR037 ), рис. 28.16, производимой фирмой Supertex, позволяет получить на выходах стабилизированное напряжение 3,3 В (или 5,5 В для микросхемы SR037 ), и 18 Б, соответственно, при токе нагрузки по каждому из каналов до 30 мА .

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. - СПб.: Наука и Техника, 2013. -352 с.

Насколько схем простых импульсных преобразователей постоянного напряжения.

Основные достоинства импульсных преобразователей:
Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного.

Импульсные преобразователи подразделяются на группы:

  • – понижающие, повышающие, инвертирующие;
  • – стабилизированные, нестабилизированные;
  • – гальванически изолированные, неизолированные;
  • – с узким и широким диапазоном входных напряжений.

Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы – они проще в сборке и не капризны при настройке.

Нестабилизированный транзисторный преобразователь

Этот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка – 2х10 витков, вторичная обмотка – 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.


Стабилизированный транзисторный преобразователь напряжения

Трансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.


Нестабилизированный преобразователь напряжения на основе мультивибратора

Двухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.

Преобразователь на специализированной микросхеме MAX631

Преобразователь стабилизирующего типа на микросхеме MAX631 фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент – дроссель L1.


Нестабилизированный двухступенчатый умножитель напряжения на MAX660

Можно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.

Импульсный повышающий стабилизатор на микросхеме MAX1674

Типовая схема включения импульсного повышающего стабилизатора на микросхеме MAX1674 фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД – 94%, ток нагрузки – до 200 мА.

MCP1252-33X50: Два напряжения от одного источника питания

Позволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 – накопители энергии.

Импульсный повышающий стабилизатор на микросхеме MAX1724EZK33 фирмы MAXIM

Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД – 90%.


Импульсный понижающий стабилизатор на микросхеме TL497

Типовая схема включения импульсного понижающего стабилизатора на широкодоступной микросхеме фирмы TEXAS. Резистором R3 регулируется выходное напряжение в пределах +2,8…+5 вольт. Резистором R1 задается ток короткого замыкания, который вычисляется по формуле: Iкз(А)= 0,5/R1(Ом)

Интегральный инвертор напряжения на микросхеме ICL7660

Интегральный инвертор напряжения, КПД – 98%.

Два изолированных преобразователя на микросхемах DC-102 и DC-203

Два изолированных преобразователя напряжения DA1 и DA2, включенных по “неизолированной” схеме с общей “землей”.

Двухполярный стабилизированный преобразователь напряжения

Индуктивность первичной обмотки трансформатора Т1 – 22 мкГн, отношение витков первичной обмотки к каждой вторичной – 1:2.5.

Стабилизированный повышающий преобразователь на микросхеме MAX734

Типовая схема стабилизированного повышающего преобразователя на микросхеме фирмы MAXIM.


Нестандартное применение микросхемы MAX232

Эта микросхема обычно служит драйвером RS-232. Умножение напряжения получается с коэффициентом 1,6…1,8.

Китайский рынок импульсных DC-DC преобразователей довольно широк. И бродя по просторам всем известного AliExpress я наткнулся на маленький, дешевый, но при этом достаточно мощный преобразователь. Стоит сказать сразу, что для целей связи он, как и любой импульсные преобразователь годен ограничено, но тем не менее заслуживает пристального внимания из-за своих размеров.

Ранее я уже писал о различных импульсных преобразователях которые вполне можно использовать для своих проектов.

Но все они имеют сравнительно большие габариты и их не всегда удобно использовать. Герой этого обзора гораздо компактнее, но при этом обеспечивает сходные эксплуатационные параметры. Поставляется плата преобразователя запакованной в антистатический пакетик.


На вид малыш выглядит весьма несерьезно, однако, не стоит спешить с выводами.


Размеры платы 22 х 17 мм. В сравнении с 10 рублевой монеткой.


Преобразователь построен на основе специализированной микросхемы преобразователя MP1584, основными особенностями которой являются:

  • Входное напряжение может варьироваться в интервале от 4,5 до 28 вольт.
  • Выходное напряжение регулируется от 0,8 до 25 вольт.
  • Встроенный полевой транзистор обеспечивает рабочий ток до 3А
  • Рабочая частота до 1,5МГц (этим и объясняются такие маленькие габариты).
  • Встроенная защита от перегрева (при достижении 120 градусов по Цельсию, преобразователь отключается)
  • Достаточно низкий уровень пульсаций на входе и на выходе преобразователя.
  • Защита от короткого замыкания на выходе.

Из недостатков можно отметить полное отсутствие защиты от переполюсовки. И если вы по неосторожности попутали полярность, микросхема MP1584 с треском взорвется (один из преобразователей погиб во имя науки). 🙂


Схема включения MP1584 из даташита. Собственно по ней наш преобразователь и собран. Здесь также присутствует график КПД в зависимости от потребляемого тока.


Испытания

Для испытания преобразователя подключим к нему радиостанцию M-Tech Legend III,


Сам преобразователь запитаем от лабораторного источника питания Atten PPS3005S способного выдавать напряжения до 31 вольта и ток до 5А. Измерять ток и напряжение будем при помощи мультиметра Vichy VC8145.


Параметры будем снимать до и после преобразователя.

КПД преобразователя по мощности около 90%, что просто прекрасно. 10% потерь вполне приемлемое значение. Также надо помнить о том, что КПД сильно падает при разбросе входного и выходного напряжения менее 3В (в документации, менее 5). Так что КПД нашего малыша даже выше чем у старших братьев.

Измерим уровень пульсаций на входе и на выходе преобразователя под стандартной нагрузкой в виде радиостанции M-Tech Legend III. Исследовать сигнал на входе и на выходе будем при помощи осциллографа Atten ADS1102CAL. Главный исследуемый параметр dV (амплитуда пульсаций между курсорами CurA и CurB).

Пульсации на входе (прием)

Пульсации на выходе (прием)

Пульсации на входе (передача)

Пульсации на выходе (передача)

В сравнении с аналогичными, но более низкочастотными преобразователями, выглядит вполне неплохо.

Температурный режим

Исследуем преобразователь на предмет нагрева в процессе работы.

Дежурный режим, ток потребления 294мА


После 1 минуты работы на передачу, ток потребления 1,55А.


Как видно, сильнее всего нагрелась сама микросхема преобразователя. Безусловно, нашему малышу приходится тяжко, но в целом, он выдержал испытание.

Помехи

В документации к микросхеме MP1584 написано: By switching at 1.5MHz, the MP1584 is able to prevent EMI (Electromagnetic Interference) noise problems, such as those found in AM radio and ADSL applications. Что в переводе означает: Поскольку преобразование происходит на частоте 1,5МГц, MP1584 не должна порождать электромагнитный шум, вызывающий проблемы при работе приемопередающих устройство использующих амплитудную модуляцию и технологию ADSL. В моих опытах, радиостанция M-Tech Legend III будучи подключенной через данный преобразователь не показала сколько-нибудь заметного снижения чувствительности. И тем не менее, памятуя о принципах работы импульсных преобразователей я бы не рекомендовал использовать его для питания чувствительной техники связи. Компактный размер преобразователя позволяет размещать его даже внутри станции, но вот, насколько это пагубно скажется на чувствительности приемника, неизвестно, для проверки этого момента следует провести дополнительные исследования.

Итог

В итоге мы имеем отличный миниатюрный преобразователь который можно легко использовать для питания различных устройств, например, для сборк пауэр банка на свинцовом аккумуляторе, который будет заряжать Ваши мобильные устройства. Совсем недавно у меня как раз возникла подобного рода задача, запитать оборудование для съемки в полевых условиях, дабы не сильно зависеть от встроенных в технику аккумуляторов, и преобразователи на микросхеме MP1584 превосходно с этой задачей справились.

Импульсный преобразователь на NCP3063

Как-то попалась нам микросхема с надписью 3063 в корпусе SO8. Поиски показали, что это - NCP3063. Опытный паяльщик сразу заметит, что наименование очень похоже на известное MC34063 , а не оно ли это?

Оказалось, что не оно, но очень похоже! Даже схема практически "один в один" за тем исключением, что у MC34063 восьмой вывод - это коллектор драйверного транзистора, а у NCP3063 этот вывод не используется (возможно, используется для охлаждения, т.к. на платах он обычно запаян с первым).

Какие же новые преимущества у этой микросхемы по сравнению с предшественницей? Прежде всего, это - более высокая частота: 150кГц (основная рабочая). Далее: защита от перегрева (160 градусов) с гистерезисом (10 градусов) и какое-то "Cycle-by-Cycle" ограничение тока. Остальные параметры таковы:

  • входное напряжение: 3-40В
  • выходной ток: до 1.5А
Назначение обычное - преобразователи: повышающие и понижающие, инверторы напряжения, светодиодные драйверы и зарядные устройства.

Для тестирования "новинки" было решено собрать повышающий преобразователь для литиевого аккумулятора, который бы преобразовывал 3.7 вольт в 5, разряжая аккумулятор до 3 вольт, а затем - отключался.



Печатная плата, следуя традиции, нарисована фломастером, вытравлена купоросом.



Рекомендации по разводке цепей для подобных устройств не соблюдены. Тем не менее, преобразователь успеш

Наиболее удобно собирать высокоэффективные современные преобразователи напряжения , используя специально созданные для этих целей микросхемы.

Микросхема КР1156ЕУ5 (МС33063А, МС34063А фирмы Motorola) предназначена для работы в стабилизированных повышающих, понижающих, инвертирующих преобразователях мощностью в несколько ватт.

На рис. 4.17 приведена схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5. Преобразователь содержит входные и выходные фильтрующие конденсаторы С1, СЗ, С4, накопительный дроссель L1, выпрямительный диод VD1, конденсатор С2, задающий частоту работы преобразователя, дроссель фильтра L2 для сглаживания пульсаций. Резистор R1 служит датчиком тока. Делитель напряжения R2, R3 определяет величину выходного напряжения.

Рис. 4.17. Схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5

Частота работы преобразователя близка к 15 кГц при входном напряжении 12 B и номинальной нагрузке. Размах пульсаций напряжения на конденсаторах СЗ и С4 составлял соответственно 70 и 15 мB.

Дроссель L1 индуктивностью 170 мкГн намотан на трех склеенных кольцах К12×8×3 М4000НМ проводом ПЭШО 0,5. Обмотка состоит из 59 витков. Каждое кольцо перед намоткой следует разломить на две части. В один из зазоров вводят общую прокладку из текстолита толщиной 0,5 мм и склеивают пакет. Можно также применить кольца из феррита с магнитной проницаемостью свыше 1000.

Пример выполнения понижающего преобразователя на микросхеме КР1156ЕУ5 приведен на рис. 4.18. На вход такого преобразователя нельзя подавать напряжение более 40 В. Частота работы преобразователя - 30 кГц при Uвx=15 В. Размах пульсаций напряжения на конденсаторах С3 и С4 - 50 мВ.

Дроссель L1 индуктивностью 220 мкГн намотан аналогичным образом (см. выше) на трех кольцах, но зазор при склейке


Рис. 4.18. Схема понижающего преобразователя напряжения на микросхеме КР1156ЕУ5


Рис. 4.19.Схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5

был установлен 0,25 мм, обмотка содержала 55 витков такого же провода.

На следующем рисунке (рис. 4.19) показана типовая схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5 . Микросхема DA1 питается суммой входного и выходного напряжений, которая не должна превышать 40 В.

Частота работы преобразователя - 30 кГц при Uвx=5 В; размах пульсаций напряжения на конденсаторах СЗ и С4 - 100 и 40 мВ.

Для дросселя L1 инвертирующего преобразователя индуктивностью 88 мкГн были использованы два кольца К12×8×3

М4000НМ с зазором 0,25 мм. Обмотка состоит из 35 витков провода ПЭВ-2 0,7.

Дроссель L2 во всех преобразователях стандартный - ДМ-2,4 индуктивностью 3 мкГн.

Диод VD1 во всех схемах (рис. 4.17 - 4.19) должен быть диодом Шотки .

Для получения двухполярного напряжения из однополярного фирмой MAXIM разработаны специализированные микросхемы. На рис. 4.20 показана возможность преобразования напряжения низкого уровня (4,5.. .5 В) в двухполярное выходное напряжение 12 (или 15 В) при токе нагрузки до 130 (или 100 мА) .


Рис. 4.20. Схема преобразователя напряжения на микросхеме МАХ743

По внутренней структуре микросхема не отличается от типового построения подобного рода преобразователей, выполненных на дискретных элементах, однако интегральное исполнение позволяет при минимальном количестве внешних элементов создавать высокоэффективные преобразователи напряжения.

Так, для микросхемы МАХ743 (рис. 4.20) частота преобразования может достигать 200 кГц (что намного превышает частоту преобразования подавляющего большинства преобразователей, выполненных на дискретных элементах). При напряжении питания 5 В КПД составляет 80…82% при нестабильности выходного напряжения не более 3%.

Микросхема снабжена защитой от аварийных ситуаций: при снижении питающего напряжения на 10% ниже нормы, а также при перегреве корпуса (выше 195°С).

Для снижения на выходе преобразователя пульсаций с частотой преобразования (200 кГц) на выходах устройства установлены П-образные LC-фильтры. Перемычка J1 на выводах 11 и 13 микросхемы предназначена для изменения величины выходных напряжений.

Для преобразования напряжения низкого уровня (2,0…4,5 В) в стабилизированное 3,3 или 5,0 В предназначена специальная микросхема, разработанная фирмой MAXIM, - МАХ765. Отечественные аналоги - КР1446ПН1А и КР1446ПН1Б . Микросхема близкого назначения - МАХ757 - позволяет получить на выходе плавно регулируемое напряжение в пределах 2,7…5,5 В.


Рис. 4.21. Схема низковольтного повышающего преобразователя напряжения до уровня 3,3 или 5,0 В

Схема преобразователя, показанная на рис. 4.21, содержит незначительное количество внешних (навесных) деталей. Работает это устройство по традиционному принципу, описанному ранее. Рабочая частота генератора зависит от величины входного напряжения и тока нагрузки и изменяется в широких пределах - от десятков Гц до 100 кГц. Величина выходного напряжения определяется тем, куда подключен вывод 2 микросхемы DA1: если он соединен с общей шиной (см. рис. 4.21), выходное напряжение микросхемы КР1446ПН1А равно 5,0±0,25 В, если же этот вывод соединен с выводом 6, то выходное напряжение понизится до 3,3±0,15 В. Для микросхемы КР1446ПН1Б значения будут 5,2±0,45 В и 3,44±0,29 В, соответственно. Максимальный выходной ток преобразователя - 100 мА. Микросхема МАХ765 обеспечивает выходной ток 200 мА при напряжении 5 В и 300 мА при напряжении 3,3 В. КПД преобразователя - до 80%.

Назначение вывода 1 (SHDN) - временное отключение преобразователя путем замыкания этого вывода на общий провод. Напряжение на выходе в этом случае понизится до значения, несколько меньшего, чем входное напряжение.

Светодиод HL1 предназначен для индикации аварийного снижения питающего напряжения (ниже 2 В), хотя сам преобразователь способен работать и при более низких значениях входного напряжения (до 1,25 В и ниже).

Дроссель L1 выполняют на кольце К10×6×4,5 из феррита М2000НМ1. Он содержит 28 витков провода ПЭШО 0,5 мм и имеет индуктивность 22 мкГн. Перед намоткой ферритовое кольцо разламывают пополам, предварительно надпилив алмазным надфилем. Затем кольцо склеивают эпоксидным клеем, установив в один из образовавшихся зазоров текстолитовую прокладку толщиной 0,5 мм. Индуктивность полученного таким образом дросселя зависит в большей степени от толщины зазора и в меньшей - от магнитной проницаемости сердечника и числа витков катушки. Если смириться с увеличением уровня электромагнитных помех, то можно использовать дроссель типа ДМ-2,4 индуктивностью 20 мкГн.

Конденсаторы С2 и С5 типа К53 (К53-18), С1 и С4 - керамические (для снижения уровня вьюокочастотных помех), VD1 - диод Шотки (1N5818, 1N5819, SR106, SR160 и др.).