Типы импульсных преобразователей напряжения. Импульсные преобразователи напряжения

Типы импульсных преобразователей напряжения. Импульсные преобразователи напряжения

По свету ходит много мифов о высокочастотных силовых трансформаторах и дросселях. Постараемся их развенчать. К несчастью, с магнитными компонентами связана наименее членораздельная часть учебников и руководств, усложняющая в общем-то простые обыденные предметы и явления. Да, много неизвестных переменных, да, много тонкостей, которые надо знать, но как раз о них теория умалчивает, а популярная литература врет, предлагая эмпирические формулы для конкретных задач как решения на все случаи жизни. Например.

Миф первый . Чем больший процент площади окна сердечника заполнен медью - в идеале 100% - тем лучше. Неверно. Во многих конструкциях 100% заполнение, по сравнению со скажем 75% (то же число витков, разное сечение провода) приведет на ВЧ к бОльшим потерям. Нельзя слепо переносить методы расчета с 50 Гц на 500 кГц.

Миф второй . В оптимальном трансформаторе потери на сопротивлении обмотки и потери в сердечнике совпадают. Неверно. Часто одна цифра потерь отличается от другой на 1-2 порядка. Ну и что - это вовсе не главный критерий для конструктора. Этот подход также наследствие "пятидесяти Герц" - так обеспечивают температурное равновесие в массивных сетевых трансформаторах. А у нас вся обмотка - один или два слоя, и условия теплообмена намного упрощаются.

Миф третий . Индуктивность рассеивания должна составлять 1% от индуктивности намагничивания. Неверно. Она должна быть настолько низкой, насколько возможно - без существенного ухудшения других важных параметров. Сможете довести до 0.1% - прекрасно. А, бывает, и на 10% приходится остановиться.

Миф четвертый . Индуктивность рассеивания есть функция проницаемости сердечника. Неверно. Индуктивность рассеивания обмотки практически не зависит от того, есть ли в витке сердечник или нет. Точнее, вся разница укладывается в 10% (и это при мю в несколько тысяч!). Можете проверить.

Миф пятый . Оптимальная плотность тока в обмотках - 2А на кв.мм. Или 4А. Или 8А. А пес с ним. Плотность тока не имеет значения. Имеет значение тепловыделение в проводе, и способность, или неспособность, конструкции в целом обеспечить тепловой баланс на допустимой температуре. В зависимости от эффективности охлаждения (от излучения в вакуум до охлаждения в кипящей фазе) - допустимая плотность тока изменяется на два порядка. Ridley cтроит трансформаторы 20 лет, но мы так и не узнали "оптимальную плотность тока" - для нас важна только температура трансформатора.

Миф шестой . В оптимальном трансформаторе потери в первичке и во вторичке равны. Неверно. А если не равны, тогда что? Главное, чтоб ни одна не перегревалась.

Миф седьмой . Если диаметр провода меньше глубины скин-эффекта, то существенных потерь на ВЧ нет. Очень вредное утверждение. В многослойных обмотках даже при очень тонком проводе - потери будут.

Миф восьмой . Резонансная частота трансформаторной цепи в отсутствии нагрузки должна существенно превышать частоту преобразования. Неверно. Она не играет значения. В идеальном трансформаторе - индуктивность стремится к бесконечности, стало быть резонансная частота на обрыв стремится к нулю … и что? А то, что важен резонанс не на обрыв, а на КЗ вторичной цепи. Вот этот резонанс должен отстоять от несущей частоты на два порядка вверх, не менее.

Вариант подключения прибора


В данной конфигурации анализатор отображает импеданс трансформатора от 10Гц до 15 МГц, для состояний короткорго замыкания нагрузки и обрыва нагрузки. Для импульсных трансформаторов с короткими обмотками необходимо обеспечить КЗ по кратчайшему пути с минимальными потерями. Ведь замыкающее полукольцо даже диаметром несколько сантиметров уже имеет индуктивность, сравнимую с индуктивностью рассеяния первички. Индуктивность рассеивания зависит от частоты! В качестве балласта Rsense R=0.1..1 Ом. Омическое сопротивление обмоток измеряйте только низкоомным мостом или омметром с генератором тока. Проведя цикл измерений, можно определить:

Индуктивность намагничивания - Сопротивление обмотки - Индуктивность рассеивания - Частоту и добротность резонанса на КЗ и на обрыв - Емкость обмотки (до 3 пФ на виток).


Потактное ограничение тока, правильно реализованное, позволяет создать неубиваемый ПН. Для этого датчик тока должен быть быстрым (задержка несколько наносекунд), и быть нагружен непосредственно на управляющий вход ИС контроллера.

Контроллеры с отключением защиты на переднем фронте импульса также не панацея. Те 100 нс задержки (или около того), в течение которых защита слепа - также могут убить ПН. Поэтому бывает целесообразно принудительно ограничить скорость переключения транзистора (что также снижает уровень наводок и излучения как в датчик тока, так и в пространство).

Как протестировать токовую защиту?

Закоротите выход ПН - после выпрямителя и выходного фильтра. К сожалению, при КЗ в самом выпрямителе вашим транзисторам никакая токовая защита не поможет.

Подключите щуп к датчику тока. Постепенно повышайте питающее напряжение до момента, когда контроллер начинает генерировать несущую. На осциллографе вы должны наблюдать узкие пики - схема защиты должна быстро отключать открытые транзисторы. Амплитуда импульсов должна соответствовать порогу срабатывания защиты. Повышайте напряжение питания до максимума. Длительность импульсов должна сузится. Амплитуда может подрасти (за счет задержек распространения токовой ОС) но не существенно. А если растет пропорционально входному напряжению - стоп, ваша ОС слишком медленная.

Затем - это принципиально - цикл измерений следует повторить при минимальных и максимальных температурах воздуха

Вот это важно: параметры феррита, на котором намотан трансформатор тока, могут так уплыть с температурой, что мало не покажется.

Снаббер (snubber - успокоитель) - RC цепь, параллельная обмотке - для шунтирования ВЧ звона. Звон обязательно должен быть подавлен, иначе возможны отказы, излишние наводки и неустойчивость преобразователя. Как правило, RC шунт достаточен для успокоения непокорных обмоток, если частота звона превышает несущую примерно на два порядка или выше. А если нет - то надо искать обходные пути, ведь тогда в полосу пропускания шунта попадет и существенная доля несущей и ее ближайших гармоник.

Второе. Рассчитайте эквивалентный RLC контур под частоту и добротность колебаний. Со стороны первички, известна (должна быть известна!) индуктивность рассеивания. Со стороны вторички - известны емкости диодов.

Характеристическое сопротивление Z = 2 * Pi * f * L (для известной L), Z = 1 / (2 * Pi * f * C) для известной С

Третье. Для начала, попробуем только R-шунт, R=Z. Посчитаем тепловые потери на шунте. Если они неприлично высоки, дополняем звено емкостью С=1 / (Pi * f * R). Увеличение емкости бесполезно - потери растут, подавление звона не улучшается (емкость на ВЧ полностью проводит).

Четвертое. Пересчитаем мощность потерь на R: P = 2* C * V * Fнесушая - это потери только несущей без выделения тепла на звоне. Проверяем в реальной схеме. Первое приближение - как правило - сразу подходит для большинства случаев.

Расположение компонентов и разводка трасс рядом с ИС принципиально важны! Это повторяют в каждом даташите, но не мешает и снова повторить.

Прежде всего - частотозадающая емкость генератора. Разместите ее у самой ноги ИС. Не в пяти миллиметрах, а чем ближе - тем лучше. Иначе, возможны необъяснимые явление - например, схема, рассчитанная на 100 кГц, загенерит на мегаГерцах, из Яузы вылезет русалка и т.п. Причем на прототипе она может и не выплыть, а в серийной плате - проявится во всей красе.

Во-вторых - емкости в цепях питания - также распаять как можно ближе к ногам ИС.

Выход пилы генератора (там, где он доступен извне) не любит когда его нагружают (как и я). Поэтому при отборе сигнала с этого выхода будьте осторожны - даже 100 кОм нагрузка может изменить форму пилы. Правильнее всего генерить пилу параллельно, не подключаясь к первичной цепи генератора.

ИС 3842, 3843 позволяют устанавливать паузу между импульсами от 5% до 30% периода. 3844, 3845 - до 70%. Если необходимо удлинить паузу, можно обойти эти ограничения, изменив времязадающите R, C. Затем добавьие еще один резистор с вывода RTCT на плюс питания - это ускорит заряд и замедлит разряд, удлиняя доступное время паузы.

ИС UC3825 - минимальное время паузы (абсолютное, в миллисекундах) жестко задается емкостью Сt, смотри документацию. Но возможно поступать и так, как описано выше - подключая резистор к Сt. Вот только время это будет плавать всесте с питающим напряжением.

Выходные драйверы ИС не любят индуктивные нагрузки - например, изолирующие трансформаторы - что приводит к дребезгу сигнала на затворе. Причем если оно не проявляется в лаборатории, то в реальной жизни обязательно выплывет в самый неподходящий момент. Ведь параметры трансформатора плавают… Поэтому рекомендуется защищать затвор диодами, а параллельно первичке транчформатора - резистором.

Контроллеры первого поколения, особенно старых лет выпуска, бывают исключительно нестабильны как по опорным напряжениям (с этим можно жить), так и по временным параметрам, вплоть до неверной последовательности срабатывания триггеров и чрезмерного дрейфа несущей частоты (зависит от \стабильности опорных уровней). Если хотите - используйте ИС либо недавнего года выпуска, либо с суффиксами, указывающими на "улучшенные" варианты. Т.е. TL594 а не TL494 и т.д.

Например, недокументированная особенность брянских ИС КР1156ЕУ2 (аналог 3825) - при 12В питании, правильной разводке, при запрещающем уровне на входе ILIM выход 14 в низком уровне (норма) а на выход 11 пролезают короткие, примерно 100нс пики - "недорезанные" фронты несущей амплитудой до 9В. Где-то триггер не работает как надо. А ведь этих обрезков достаточно, чтоб открыть затвор и (а вдруг) убить схему.

Об измерении коэффициента усиления ПН с замкнутой петей ОС - лучше всего измерять ее так, как изложено в следующем разделе, используя анализатор спектра (генератора не достаточно).

Для прямоходных и обратноходных ПН при управлении по напряжению - частота среза должна быть не более четверти частоты нуля передаточной функции на правой половине комплексной плоскости. Если выполнение этого условия не позволяет надежно стабилизировать выход - значит, надо переделывать выходной фильтр.

Для всех ПН - частота среза не должна превышать1/8 несущей частоты.

Самое главное - частота среза ОС не самоцель. Важно выходное сопротивление в диапазоне частот, требуемых нагрузкой, подавление нестабильности входного напряжения, и подавление входных шумов.

Обязательно измерьте поведение петли ОС прежде чем запустить прибор в эксплуатацию.

Прибор, о котором говорится далее - вводит в разрыв цепи ОС (точки 1-2) источник напряжения (свип-генератор). Затем записываются спектры сигнала в двух любых точках схемы и выводится АЧХ отношения этих спектров. Отношение выходного спектра к входному и есть передаточная характеристика (по амплитуде). Можно повторить устройство качественно, используя генератор с трансформаторным выходом и стабилизацией напряжения на вторичной обмотке, и осциллограф.

Измерение параметров петли анализатором спектра АР102В - ПН с оптронной развязкой

Точки подключения щупов каналов А и В позволяют измерить различные передаточные функции

  • А-1 B-2: петлевое усиление
  • А-3 В-4: усиление силового узла и модулятора
  • А-4 В-2: усиление (ослабление) оптрона и цепи частотной коррекции
  • А-1 В-3: усиление ОУ, встроенного в ИС контроллера.

    Измерение параметров петли - ПН без гальванической развязки

    А-1 B-2: петлевое усиление

    А-3 В-2: усиление силового узла и модулятора

    А-1 В-3: усиление (ослабление) цепи частотной коррекции

    Всегда заземляйте измеряемую схему. Если ее первичная цепь гальванически связана с сетью, включите измерительные приборы в сеть через изолирующий 1:1 трансформатор (но не ЛАТР). Если же заземлить невозможно - изолируйте входы анализатора. Лучше не просто емкостью (она может вылететь) но через специальный развязывающий усилитель.

    На низших частотах используйте максимальный выходной сигнал генератора, а при переходе через частоту среза ОС его стоит снизить, при этом удостоверьтесь, что схема не вошла в перевозбуждение. Выше 30 кГц измерения мало надежны изза проблем с заземлением и наводками. В любом случае, сигнал генератора должен впрыскиваться в ту часть схемы, в которой мало переменных составляющих как от несущей частоты ПН, так и от сетевой частоты.

    Пример АЧХ устройства


    Очень неприятные явления. Многие компоненты импульсного ПН работают на пределе области безопасной работы, и когда летит один элемент, за ним гибнут и другие, уничтожая саму причину, по которой произошел отказ. И искать ее впотьмах - невесело. Вот краткий перечень основных причин, известных профессионалам (которые, тем не менее, молчат…).

    А. Перегрузка ключа по току - или гибнет кристалл транзистора, или сгорает проволочка между кристаллом и ногой. Поэтому необходима оперативная защита по току, независимо от мощности. Отсутствие токовой защиты часто сокращает жизнь устройства.

    Зная построение ПН автомобильных усилителей, как правило не имеющих потактной токовой защиты (ИС TL494), читатель вправе возмутиться! Собака, как мне кажется, вот где порылась. С одной стороны, ПН с токовой защитой предъявляет более высокие требования к точности и согласованию всех компонентов тракта, а выполнить их в автомобильном температурном диапазоне - приведет к удорожанию усилителя. А с другой - при 12В первичного питания и реальном (кратковременном) пределе МДП по току порядка 50…250А на плечо (1...4 хороших транзисторов) ток - с учетом всех сопротивлений цепи - просто не способен достичь разрушительных значений (другой вопрос - долговременная работа на КЗ, которая и приведет к фатальному перегреву). Сравните это с сетевым БП, где на первичке 300В, а предел по току (при тех же мощностях в нагрузку) - 5…25А.

    Б. Перегрузка по напряжению затвор-сток. МДП-транзисторы из хороших домов - IR, Motorola (добавим в список SGS-Thomson и Infineon) убить не так-то просто. Они держат перегрузки по току и напряжению сток-исток, но перегрузки на затворе и их погубят. Драйвер затвора должен гарантированно удерживать напряжение в безопасной зоне, если надо - ставьте стабилитроны. Мы не рекомендуем использовать интегральные драйверы верхнего плеча в высоковольтные схемы. Лучше - трансформаторы, они и к помехам более устойчивы.

    В. Чаще всего схема гибнет при включении. Ведь при включении выходная емкость разряжена - схема "видит" КЗ. Ваша токовая защита должна достаточно быстро сработать даже при предельно большом входном напряжении. "Мягкий запуск" контроллера не спасает от этой напасти!

    Г. Встроенный "антипараллельный" диод МДП ключа - источник проблем. Он медленный. Пусть этот диод проводит ток, это не смертельно, но во время проводимости диода недопустимо быстрое изменение напряжения на обратное, если в момент изменения на затвор не подается отпирающее напряжение. Подобный отказ часто происходит в полномостовой схеме. По завершении проводящего состояния, индуктивность рассеивания порождает дребезг, и на первом его пике напряжение истока может превысить напряжение питания - диод откроется. Ну и ладно, сейчас этим транзисторам так и так открываться. Но вот если на втором - отрицательном - пике дребезга - и на противоположном плече диоды также откроются, не миновать пробоя. Решение - ставьте снабберы.

    Д. Проверьте - правильно ли работает защита контроллера от недостаточного напряжения питания при включении. В ИС контроллеров она достаточно надежна. А в остальных компонентах (комараторы, драйверы и т.п.) - неизвестно. Требование простое - при включении питания контроллер в целом должен установиться в дежурное состояние, на затворах всех силовых ключей - строго запирающий уровень.

    Е. Отказы высоковольтных емкостей при высоких температурах.

    Ж. Отказ диодов Шотки изза избыточного обратного напряжения (при условии достаточного теплоотвода). Понижающий коэффициент 80% по напряжению - полезная подстраховка.

    Поясняю. Особенность ДШ - экспоненциальный рост обратного тока с температурой. Во многих применениях мощность рассеяния на обратном токе сопоставима с потерями на прямом токе (до 20%)! Далее идет цепной разогрев и диод умирает. Поэтому силовые ДШ более критичны к теплоотводу чем обычные диоды.

    З. Пользуйтесь правильным инструментом. Необходим скоростной запоминающий осциллограф, фиксирующий одиночные импульсы. Ведь МДП ключ может разрушиться за 10 наносекунд, и это надо уметь увидеть. Важно правильно подключить и землю осциллографа.

    Если в схеме пара транзисторов, транс и выпрямитель, почему бы не взять и не промоделировать ее в лоб? Уж не сложнее чем промоделировать БИСину на миллион транзисторов. Хороший вопрос, нельзя и все - просто нет подходящего софта, а данные для расчета моделей трансформаторов все равно придется снимать вручную.

    Из известного науке и практике лучше всего для наших целей подойдет аналоговый компьютер, который придется построить самому - Макетная Плата. И ничего с ним не сравнится. Во-первых, никакое моделирование не учтет множество критических для ПН параметров, особенно выходящих за границы реальных проводов и компонентов (теплообменные процессы, ЭМ излучение). Ведь многие из этих факторов определяются расположением компонентов и трасс на плате - их нельзя учесть, не построив ее. То же сопротивление и индуктивность провода от ключа до обмотки - критический компонент любого БП. А, во-вторых, модели внутри традиционного САПРа не предназначены для корректной отработки импульсов большой амплитуды, и нередко просто не сходятся к решению.

    Роль моделирования в цикле проектирования. Стоит тогда вообще с моделированием связываться? Стоит, только всегда надо помнить (и знать, конечно) ограничения САПРовских моделей. Вот как рекомендуется ими пользоваться

  • Используйте компьютер для ввода схемы, трассировки платы и т.п. До начала испытания в железе возможно завершить 90% этих работ
  • Определите параметры силового трансформатора и петли управления
  • Смоделируйте формы напряжений и токов в критических точках схемы. Исходя из этих напряжений и токов - определите требования к компонентам по максимальным режимам. Прежде всего - трансформатор, емкости фильтра, силовые ключи.
  • Повторите моделирование для выбранных приборов
  • Соберите и запустите макет по технологии, приближенной к промышленной плате
  • Обнаружив непредвиденное поведение в схеме - вернитесь к моделированию и попытайтесь восстановить увиденное в модели. Не надо особой точности - главное, уловить физическую суть процесса.

    Публикация: www.klausmobile.narod.ru, www.cxem.net

    Смотрите другие статьи раздела .
  • Для преобразования напряжения одного уровня в напряжение другого уровня часто применяют импульсные преобразователи напряжения с использованием индуктивных накопителей энергии . Такие преобразователи отличаются высоким КПД, иногда достигающим 95%, и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.

    В соответствии с этим известно три типа схем преобразователей: понижающие (рис. 4.1), повышающие (рис. 4.2) и инвертирующие (рис. 4.3).

    Общими для всех этих видов преобразователей являются пять элементов: источник питания, ключевой коммутирующий элемент, индуктивный накопитель энергии (катушка индуктивности, дроссель), блокировочный диод и конденсатор фильтра, включенный параллельно сопротивлению нагрузки.

    Включение этих пяти элементов в различных сочетаниях позволяет реализовать любой из трех типов импульсных преобразователей.

    Регулирование уровня выходного напряжения преобразователя осуществляется изменением ширины импульсов, управляющих работой ключевого коммутирующего элемента и, соответственно, запасаемой в индуктивном накопителе энергии.

    Стабилизация выходного напряжения реализуется путем использования обратной связи: при изменении выходного напряжения происходит автоматическое изменение ширины импульсов.

    Понижающий преобразователь (рис. 4.1) содержит последовательно включенную цепочку из коммутирующего элемента S1, индуктивного накопителя энергии L1, сопротивления нагрузки Rн и включенного параллельно ему конденсатора фильтра С1 . Блокировочный диод VD1 подключен между точкой соединения ключа S1 с накопителем энергии L1 и общим проводом.

    Рис. 4.1. Принцип действия понижающего преобразователя напряжения

    Рис. 4.2. Принцип действия повышающего преобразователя напряжения

    При открытом ключе диод закрыт, энергия от источника питания накапливается в индуктивном накопителе энергии. После того, как ключ S1 будет закрыт (разомкнут), запасенная индуктивным накопителем L1 энергия через диод VD1 передастся в сопротивление нагрузки R н. Конденсатор С1 сглаживает пульсации напряжения.

    Повышающий импульсный преобразователь напряжения (рис. 4.2) выполнен на тех же основных элементах, но имеет иное их сочетание: к источнику питания подключена последовательная цепочка из индуктивного накопителя энергии L1, диода VD1 и сопротивления нагрузки с параллельно подключенным конденсатором фильтра С1 . Коммутирующий элемент S1 включен между точкой соединения накопителя энергии L1 с диодом VD1 и общей шиной.

    При открытом ключе ток от источника питания протекает через катушку индуктивности, в которой запасается энергия. Диод VD1 при этом закрыт, цепь нагрузки отключена от источника питания, ключа и накопителя энергии. Напряжение на сопротивлении нагрузки поддерживается благодаря запасенной на конденсаторе фильтра энергии. При размыкании ключа ЭДС самоиндукции суммируется с напряжением питания, запасенная энергия передается в нагрузку через открытый диод VD1. Полученное таким способом выходное напряжение превышает напряжение питания.


    Рис. 4.3. Импульсное преобразование напряжения с инвертированием

    Инвертирующий преобразователь импульсного типа содержит все то же сочетание основных элементов, но снова в ином их соединении (рис. 4.3): к источнику питания подключена последовательная цепочка из коммутирующего элемента S1, диода VD1 и сопротивления нагрузки R н с конденсатором фильтра С1. Индуктивный накопитель энергии L1 включен между точкой соединения коммутирующего элемента S1 с диодом VD1 и общей шиной.

    Работает преобразователь так: при замыкании ключа энергия запасается в индуктивном накопителе. Диод VD1 закрыт и не пропускает ток от источника питания в нагрузку. При отключении ключа ЭДС самоиндукции накопителя энергии оказывается приложенной к выпрямителю, содержащему диод VD1, сопротивление нагрузки R н и конденсатор фильтра С1. Поскольку диод выпрямителя пропускает в нагрузку только импульсы отрицательного напряжения, на выходе устройства формируется напряжение отрицательного знака (инверсное, противоположное по знаку напряжению питания).

    Для стабилизации выходного напряжения импульсных стабилизаторов любого типа могут быть использованы обычные «линейные» стабилизаторы, но они имеют низкий КПД. В этой связи гораздо логичнее для стабилизации выходного напряжения импульсных преобразователей использовать импульсные же стабилизаторы напряжения, тем более, что осуществить такую стабилизацию совсем несложно.

    Импульсные стабилизаторы напряжения, в свою очередь, подразделяются на стабилизаторы с широтно-импульсной модуляцией и на стабилизаторы с частотно-импульсной модуляцией . В первых из них изменяется длительность управляющих импульсов при неизменной частоте их следования. Во вторых, напротив, изменяется частота управляющих импульсов при их неизменной длительности. Встречаются импульснью стабилизаторы и со смешанным регулированием.

    Ниже будут рассмотрены радиолюбительские примеры эволюционного развития импульсных преобразователей и стабилизаторов напряжения.

    Задающий генератор (рис. 4.4) импульсных преобразователей с нестабилизированным выходным напряжением (рис. 4.5, 4.6) на микросхеме КР1006ВИ1 (NE 555) работает на частоте 65 кГц. Выходные прямоугольные импульсы генератора через RC-цепочки подаются на транзисторные ключевые элементы, включенные параллельно.

    Катушка индуктивности L1 выполнена на ферритовом кольце с внешним диаметром 10 мм и магнитной проницаемостью 2000. Ее индуктивность равна 0,6 мГн. Коэффициент полезного действия преобразователя достигает 82%. Амплитуда пульсаций на выходе не превышает 42 мВ и зависит от величины емкости


    Рис. 4.4. Схема задающего генератора для импульсных преобразователей напряжения


    Рис. 4.5. Схема силовой части повышающего импульсного преобразователя напряжения +5/12 В


    Рис. 4.6. Схема инвертирующего импульсного преобразователя напряжения +5/-12 В

    конденсаторов на выходе устройства. Максимальный ток нагрузки устройств (рис. 4.5, 4.6) составляет 140 мА.

    В выпрямителе преобразователя (рис. 4.5, 4.6) использовано параллельное соединение слаботочных высокочастотных диодов, включенных последовательно с выравнивающими резисторами R1 - R3. Вся эта сборка может быть заменена одним современным диодом, рассчитанным на ток более 200 мА при частоте до 100 кГц и обратном напряжении не менее 30 В (например, КД204, КД226). В качестве VT1 и VT2 возможно использование транзисторов типа КТ81х: структуры n-р-n - КТ815, КТ817 (рис. 4.5) и р-n-р - КТ814, КТ816 (рис. 4.6) и другие. Для повышения надежности работы преобразователя рекомендуется включить параллельно переходу эмиттер - коллектор транзистoра диод типа КД204, КД226 таким образом, чтобы для постоянного тока он был закрыт.

    ГОУ СПО Кировский Авиационный техникум

    ДОКЛАД

    по электропитанию СВТ

    «Однотактные импульсные преобразователи»

    Студента группы ВП-34

    Беляева П.Ю.

    1 Введение. Некоторые понятия. 3
    2 Первичные ИИП 5
    2.1 Прямоходовые и обратноходовые преобразователи 5
    8
    10
    2.4 Мостовой преобразователь 11
    3 Вторичные ИИП 13
    4 Импульсные преобразователи 15
    15
    4.2 Импульсный однотактный преобразователь постоянного напряжения. Конвертор 16
    5 Заключение 19
    5.1 Электромагнитные и радиопомехи, создаваемые ИИП. 19
    5.2 Интегральные микросхемы для ИИП. 19
    5.3 Режим повторных включений ИИП. 20
    5.4 ИИП с поддержкой питания 21
    6 Литература 22

    1 Введение. Некоторые определения

    Импульсные (ключевые) источники питания - ИИП (SMPS) - это современные источники питания с высоким КПД. Традиционные линейные источники питания с последовательным регулирующим элементом сохраняют постоянное выходное напряжение при изменении входного напряжения или тока нагрузки благодаря изменению своего сопротивления. Линейный регулятор (стабилизатор) поэтому может быть очень неэффективным. Импульсный источник питания, однако, использует высокочастотный ключ (транзистор) с переменными величинами включенного-выключенного состояний, чтобы стабилизировать выходное напряжение. Пульсации выходного напряжения, вызванные ключевым режимом, отфильтрованы LC фильтром.

    ИИП могут понижать напряжение питания, так же, как и линейные. В отличие от линейного регулятора(стабилизатора), однако, ИИП может также увеличивать напряжение питания и инвертировать выходное напряжение. Типовые схемы применения даются ниже.

    Типовое применение для понижающего импульсного (ключевого) регулятора:

    Формирование напряжения 5 В для питания цепей ТТЛ от 12 В батареи (особенно если 12 В батарея ограниченной емкости, поскольку ключевые стабилизаторы гораздо более эффективны чем линейные стабилизаторы).

    Типовое применение для повышающего импульсного регулятора:

    Формирование 25 В от напряжения 5 В для питания программируемого ПЗУ.

    Типовое применение для инвертирующего импульсного регулятора:

    Формирование двуполярного напряжения от однополярного для питания операционных усилителей.

    Формирование отрицательного смещения для микросхем динамического ОЗУ.

    Термин импульсный регулятор используется для описания схемы, которая преобразует постоянное напряжение в выходной сигнал также постоянного напряжения той же самой или противоположной полярности более низкого или более высокого напряжения. Импульсные регуляторы используют дроссели и не обеспечивают гальванической развязки между входом и выходом.

    Термин импульсный преобразователь используется для описания схемы, которая преобразует постоянное напряжение в один или несколько выходных сигналов также постоянного напряжения более низкого или более высокого напряжения. Импульсные преобразователи используют трансформатор и обеспечивают гальваническую развязку (изоляцию) между входом и выходами, а также между выходами.

    Термин импульсный источник питания - ИИП (SMPS) используется для описания импульсных регуляторов и преобразователей.

    Рисунок 1.

    Дополнительная обмотка трансформатора прямоходового преобразователя гарантирует, что к моменту включения ключа магнитное поле сердечника трансформатора нулевое. При отсутствии дополнительной обмотки после нескольких периодов переключения сердечник трансформатора войдет в насыщение, ток первичной обмотки чрезмерно увеличится, таким образом ключ (то есть транзистор) выйдет из строя.

    Временные диаграммы напряжений и токов для прямоходового преобразователя показаны на рисунке 2.

    Намагничивающий ток

    Рисунок 2.

    Выходное напряжение прямоходового преобразователя равно среднему значению напряжения на входе LC фильтра и равно:

    V out = V in x (n2/n1) x (T on x f)

    где:

    T on - время включенного состояния ключа
    f - частота переключения

    Обратноходовый (flyback) преобразователь

    Рисунок 3.

    Выходное напряжение для обратноходового преобразователя (трапецеидальная форма электрического тока) может быть рассчитано следующим образом:

    V out =V in x (n2/n1) x (T on x f) x (1/(1-(T on x f)))

    где:
    n2 - число витков вторичной обмотки T1
    n1 - число витков первичной обмотки T1
    T on - время включенного состояния ключа Q1

    Cхема управления контролирует V out и управляет скважностью (временем включенного состояния ключа Q1).

    Если V in увеличивается, схема управления уменьшит скважность, чтобы сохранить постоянное выходное напряжение. Аналогично, если ток нагрузки уменьшится и V out увеличится, схема управления будет действовать таким же образом. Наоборот, уменьшение V in или увеличение тока нагрузки увеличит скважность.

    Заметим, что выходное напряжение меняется, когда изменяется коэффициент заполнения, T on x f. Однако зависимость между выходным напряжением и коэффициентом заполнения - не линейна, как имела место в прямоходовом преобразователе, это - гиперболическая функция.

    Ток в обратноходовом преобразователе может иметь или трапецеидальную, или пилообразную форму. Трапецеидальная форма тока будет в том случае, если ключевой транзистор включается до того, как ток во вторичной обмотке спадет до нуля. Если пилообразный ток во вторичной обмотке успевает достичь нуля, то появляется "мертвое время", когда нет никакого тока ни в вторичной обмотке, ни в первичной.


    Рисунок 4.

    2.2 Двухтактный (Push Pull) преобразователь

    Рисунок 5.

    Двухтактный преобразователь относится к числу прямоходовых. Как показано на рисунке 5, когда ключ Q1 включен, ток течет через верхнюю половину первичной обмотки T1 и магнитное поле в сердечнике T1 растет. Растущее магнитное поле в T1 индуцирует напряжение во вторичной обмотке T1 такой полярности, что диод D2 смещен в прямом, а D1 - в обратном направлении. D2 проводит и заряжает выходнй конденсатор C2 через дроссель L1. L1 и C2 составляют схему фильтра. Когда ключ Q1 выключается, магнитное поле в трансформаторе T1 спадает, и после времени паузы (зависящего от скважности ШИМ), Q2 включается, ток течет через нижнюю половину первичной обмотки T1 и магнитное поле в сердечнике T1 растет в противоположном направлении. Растущее магнитное поле в T1 индуцирует напряжение во вторичной обмотке T1 такой полярности, что диод D1 смещен в прямом, а D2 - в обратном направлении. D1 проводит и заряжает выходной конденсатор C2 через дроссель L1. После окончания мертвого времени включается ключ Q1 и процесс повторяется.

    Имеются два важных соображения, касающиеся двухтактного преобразователя:

    1. Оба транзистора не должны проводить одновременно, поскольку это было бы эквивалентно короткому замыканию источника питания. Это означает, что время включенного состояния каждого ключа не должно превышать половину периода, иначе наложатся проводящие состояния ключей.
    2. Магнитный режим обеих половин первичной обмотки (вольт-секундные площадки) должен быть строго одинаков, иначе трансформатор может войти в насыщение, и это вызвало бы выход из строя ключей Q1 и Q2.

    Эти критерии должны удовлетворяться схемой управления и драйвером.

    Выходное напряжение V out равно среднему значению напряжения на входе LC фильтра:

    V out = V in x (n2/n1) x f x (T on, q1 + T on, q2)

    где:
    V out - среднее выходное напряжение - В
    V in - Напряжение питания - В
    n2 - число витков вторичной обмотки
    n1 - половина общего числа витков первичной обмотки
    f - частота переключения - Гц
    T on, q1 - время включенного состояния ключа Q1 - с
    T on, q2 - время включенного состояния ключа Q2 - с

    Cхема управления контролирует V out и управляет включенным состоянием ключей Q1 и Q2.

    Если V in увеличивается, схема управления уменьшит скважность, чтобы сохранить постоянное выходное напряжение. Аналогично, если ток нагрузки уменьшится и V out увеличится, схема управления будет действовать таким же образом. Наоборот, уменьшение V in или увеличение тока нагрузки увеличит скважность. Временные диаграммы на рисунке 6 показывают токи двухтактного преобразователя.

    Рисунок 6.

    2.3 Полумостовой преобразователь

    Рисунок 7.

    Полумостовой преобразователь подобен двухтактному преобразователю, только не требуется делать отвод от середины первичной обмотки. Изменение направления магнитного поля достигается изменением направление тока первичной обмотки. Этот тип преобразователя применяется в преобразователях большой мощности.

    Для полумостового преобразователя выходное напряжение V out равно среднему значению напряжения на входе LC фильтра.

    V out = (V in /2) x (n2/n1) x f x (T on,q1 + T on,q2)

    где:


    f - рабочая частота - Гц

    Заметим, что T on,q1 должно быть равно T on,q2 и что Q1 и Q2 никогда не должны проводить одновременно.

    Схема управления полумостового преобразователя подобна схеме управления двухтактного преобразователя.

    2.4 Мостовой преобразователь

    Рисунок 8.

    Мостовой преобразователь подобен двухтактному преобразователю, только не требуется делать отвод от середины первичной обмотки. Изменение направления магнитного поля достигается изменением направление тока первичной обмотки. Этот тип преобразователя применяется в преобразователях большой мощности.

    Для мостового преобразователя выходное напряжение V out равно среднему значению напряжения на входе LC фильтра.

    V out = V in x (n2/n1) x f x (T on,q1 + T on,q2)

    где:
    V out - выходное напряжение - В
    V in - входное напряжение - В
    n2 - 0.5 x количество витков вторичной обмотки
    n1 - количество витков первичной обмотки
    f - рабочая частота - Гц
    T on,q1 - время включенного состояния ключа Q1 - с
    T on,q2 - время включенного состояния ключа Q2 - с

    Диагональные пары транзисторов поочередно проводят, таким образом достигая изменения направления тока в первичной обмотке трансформатора. Это можно пояснить следующим образом - когда включены ключи Q1 и Q4, ток будет течь "вниз" через первичную обмотку трансформатора (втекать в начало обмотки), а когда включены ключи Q2 и Q3, ток будет течь "вверх".

    Схема управления контролирует Vout и управляет скважностью импульсов управления ключей Q1, Q2, Q3 и Q4.

    Схема управления работает так же, как и для двухтактного и полумостового преобразователя, за исключением того, что надо управлять четырьмя транзисторами, а не двумя.

    3 Вторичные ИИП

    Импульсный источник питания, который дает низкое напряжение, изолированный от первичного источника, часто называется вторичным ИИП. Типичная блок-схема такого источника питания показана на рисунке 9.


    Рисунок 9.

    Фильтр, показанный в левой части блок-схемы, необходим для предотвращения попадания в сет помех из источника питания. Он также помогает предохранять цепи ИИП от импульсов напряжения (или скачки напряжения) в сети переменного тока.

    Типовая силовая часть такой схемы показана на рисунке 10.


    Рисунок 10.

    Конденсатор при питании от сети переменного тока 220 В заряжается до напряжения приблизительно 310 В (340 В для 240 В). Резистор R1 - низкоомный (номинал от 2 до 4 Ом), который предохраняет схему от бросков тока при заряде конденсатора C1 во время подачи питания. Q1 - высоковольтный МОП-транзистор, который используется в качестве быстродействующего ключа, переключающего импульс питающего тока в ферритовом высокочастотном трансформаторе T1. Частота переключения обычно лежит в диапазоне от 25 до 250 кГц. Элементы R2 и C2 составляют защитную цепь (snubber), которая уменьшает выбросы напряжения и шумы переключателя. Стабилизация достигается благодаря контролю за выходным напряжением в точке "FB" и регулирования ширины входных импульсов драйвера ключа Q1. Предохранитель FS2 необходим для защиты от короткого замыкания и перегрузки. FS2 иногда заменяется датчиком тока, который запирает при перегрузке драйвер ключа Q1.

    4 Импульсные преобразователи

    В регулируемом линейном источнике питания силовой трансформатор промышленной частоты используется для изоляции, а затем выпрямитель и линейный регулятор используются для формирования выходного напряжения.

    В управляемом ИИП изоляция и регулирование объединены в единое целое, имеющее высокий КПД. В ИИП используется маленький высокочастотный трансформатор, обычно работающий в диапазоне частот от 25 до 250 кГц (хотя в маломощных ИИП до 1 МГц).

    Трансформаторы и дроссели, используемые для ИИП, имеют ферритовые сердечники в противоположность листовым железным сердечникам их более низкочастотных двойников. Трансформаторы ИИП вообще имеют меньшее количество витков в обмотках чем трансформаторы промышленной частоты.

    4.1 Однотактный преобразователь напряжения

    Однотактный преобразователь напряжения содержит трансформатор, первичная обмотка которого состоит из двух частей с числом витков w1 и w2, первый транзистор, соединенный с блоком управления, и второй транзистор, шунтированный обратным диодом. Между эмиттерами транзисторов включен конденсатор. Коллекторы первого и второго транзисторов соединены с крайними выводами обмоток трансформатора. Кроме того, коллектор первого транзистора через резистор, шунтированный последовательной RC-цепью, образующие токозадающую цепь, соединен с входом управления второго транзистора.

    В качестве первого и второго транзисторов в данном преобразователе могут быть использованы любые другие ключевые элементы, например, МОП транзисторы и т.д.

    Однотактный преобразователь постоянного напряжения работает следующим образом.

    При поступлении отпирающего сигнала на базу транзистора последний открывается, к обмотке трансформатора прикладывается входное напряжение. При этом к управляющему переходу транзистора прикладывается запирающее напряжение, практически равное напряжению конденсатора, и он запирается. Через второй транзистор протекает сумма токов намагничивания сердечника трансформатора и нагрузки. По окончании управляющего импульса транзистор запирается, ток намагничивания замыкается через диод, конденсатор и обмотку. К управляющему электроду второго транзистора прикладывается отпирающее напряжение, равное разности коллекторного напряжения первого транзистора и напряжения конденсатора. Второй транзистор отпирается, обеспечивая протекание тока намагничивания в обратном направлении.

    Благодаря конденсатору ток намагничивания протекает непрерывно в течение всего периода следования импульсов с блока управления и среднее значение этого тока равно нулю. Это приводит к тому, что размагничивающее напряжение прикладывается к обмотке в течение всего времени запертого состояния первого транзистора, а перемагничивание сердечника трансформатора осуществляется по полному циклу с малой амплитудой тока намагничивания.

    Таким образом, в предложенном устройстве уменьшены потери мощности на резисторе, включенном в управляющей цепи дополнительного ключа, за счет снижения напряжения на нем.

    4.2 Импульсный однотактный преобразователь постоянного напряжения . Конвертор.

    Импульсные преобразователи постоянного напряжения (ИППН) регулируют выходное напряжение (напряжение на нагрузке) путём изменения времени подачи напряжения Uo на нагрузку Zн. Чаще всего применяют широтно-импульсный (ШИР) и частотно-импульсный (ЧИР) способы регулирования. Принцип действия ИППН основан на ключевом режиме транзистора или тиристора, которые периодически прерывают цепь подачи напряжения U0 в нагрузку (Рисунок 11). При широтно-импульсном способе выходное напряжение регулируют изменением длительности выходных импульсов tи (рисунок 12) при неизменном периоде их следования Т. Тогда среднее значение выходного напряжения преобразователя будет определяться по формуле Uн.ср=(tи/T)*Uо. Следовательно, выходное напряжение регулируют от нуля (при tи=0) до Uо(tи=T).

    Рисунок 11.

    Рисунок 12.

    На рисунке 13 изображена схема широко распространённого ИППН . Такой преобразователь называют однотактным. В качестве ключа служит тиристор. Между нагрузкой Z н и тиристором включен сглаживающий LC-фильтр.


    Рисунок 13.

    Диод Д, выполняющий функции обратного диода, необходим для создания электрической цепи для тока нагрузки при выключенном тиристоре.

    Однотактные ИППН работают при мощности 100 кВт. Если требуется большая мощность, прибегают к многотактным ИППН.

    Во всех ИППН отпирание проводниковых ключей производится путём принудительной подачи на тиристор (транзистор) коммутирующих импульсов, запирание же тиристоров осуществляется напряжением периодически перезаряжаемого конденсатора. Естественно, что коммутационный блок в ИППН имеет некоторое отличие от подобных блоков в автономных инверторах.

    Отметим, что регулирование постоянного напряжения на нагрузке при питании от сети переменного тока можно осуществить с помощью ИППН. Небольшое падение напряжения на открытом полупроводниковом ключе и очень малый ток при его запертом состоянии определяют высокий КПД импульсных преобразователей постоянного напряжения. В этом отношении неуправляемый выпрямитель, работающий в паре с ИППН, успешно конкурирует с управляемым выпрямителем.

    Преимущество импульсных преобразователей постоянного напряжения по сравнению с конверторами с самовозбуждением является то, что в ИППН в качестве ключей применяют тиристоры, которые в настоящее время выпускаются на напряжения до нескольких киловольт. Это позволяет создать конверторы большой мощности (свыше 100 кВт) с высоким КПД, меньшими габаритами и массой. Конверторы получили широкое применение в установках, в которых первичным источником электропитания являются контактная сеть, аккумуляторы, солнечные и атомные батарейки, термоэлектрические генераторы.

    5 Заключение

    5.1 Электромагнитные и радиопомехи, создаваемые ИИП

    Известно, что импульсные источники питания создают электромагнитные и радиопомехи. НЧ фильтры в подводящих проводах жизненно важны для уменьшения наводок по цепям питания. Экран Фарадея между обмотками трансформатора и вокруг чувствительных компонентов вместе с правильным расположением в блоке цепей, компенсирующим поля, также уменьшают электромагнитные и радиопомехи. Проблема сглаживания тока пилообразной формы требует применения фильтрового конденсатора. Индуктивность и сопротивление (последовательно включенные) стандартных электролитических конденсаторов влияют на пульсации и напряжения шума в выходных сигналах. Линейные источники питания не имеют себе равных в маломощных и очень малошумящих с низкими пульсациями в выходных сигналах источниках.

    5.2 Интегральные микросхемы для ИИП

    Mullard:

    TDA2640

    TDA2581

    SGS:

    L4960

    Диапазон входного напряжения - 9 - 50 В постоянного тока

    Регулируемое выходное напряжение - от 5 до 40 В

    Максимальный выходной ток - 2.5 А

    Максимальная выходная мощность - 100 Вт

    Встроенная схема плавного включения

    Стабильность внутреннего опорного источника - +\- 4 %

    Требует очень небольшого числа навесных компонентов

    Коэффициент заполнения - 0 - 1

    Высокий КПД - выше 90 %

    Встроенная тепловая защита от перегрузки: микросхема выключается, когда температура pn-перехода достигает 150 град. C.

    Встроенный ограничитель тока для защиты от короткого замыкания

    L4962 (16-выводной DIP корпус. Выходной ток до 1.5 А)

    L4964 (специальный 15- выводной корпус. Выходной ток до 4 А)

    Texas Instruments:

    TL494

    TL497

    TL497 имеет генератор с фиксированным временем включенного состояния, но с переменной выходной частотой. Это дает минимальное количество навесных элементов. Время включенного состояния определяется значением емкости конденсатора, подключенного между выводом 3 и землей.

    Рисунок 14.

    5.3 Режим повторных включений ИИП

    В импульсных источниках питания такой режим часто используется для ограничения выходного тока. Если ИИП перегружен, схема выключается. После некоторого интервала времени он включается, если перегрузка все еще существует, он немедленно выключается. На некоторых конструкциях, если это случается несколько раз, питание отключается, пока не будет сброшена блокировка схемы.

    5.4 ИИП с поддержкой питания

    Некоторые "более автономные" ИИП разработаны так, чтобы сохранить устойчивое выходное напряжение более чем несколько периодов при отключении входного питания. Это может быть достигнуто установкой входного конденсатора большой емкости, такой, что его напряжение не будет существенно падать в течение перерывов подачи энергии. Период времени, в течение которого ИИП поддерживает выходное напряжение, когда отсутствует входное, часто называют "временем поддержки питания".

    6 Литература

    1. INTERNET:

    SGS Power Supply Application manual

    Motorola Power MOSFET Transistor Databook

    Unitrode Semiconductor Databook

    Unitrode Applications Handbook

    Transformer Core Selection for SMPS, Mullard

    Soft Ferrites - Properties and Applications, E.C. Snelling

    Switchmode - A Designer"s Guide, Motorola

    SMPS Technology and Components, Siemens

    Texas Instruments Linear Circuits Databook

    Analogue Electronics Handbook, T.H. Collins

    Smith, K.L. Ph.D. (University of Kent), "D.C. Supplies from A.C. Sources", Electronics & Wireless World, September 1984.

    Иванов В.С., Панфилов Д.И. Компоненты силовой электроники фирмы MOTOROLA. - М.: ДОДЭКА, 1998

    Силовые полупроводниковые приборы International Rectifier. Пер. п/р В.В.Токарева. - Воронеж, 1995

    Микросхемы для импульсных источников питания и их применение. Изд. 2-е. - М.: ДОДЭКА, 2000

    Поликарпов А.Г., Сергиенко Е.Ф. Однотактные преобразователи напряжения в устройствах электропитания РЭА. - М.: Радио и связь, 1989

    Поликарпов А.Г., Сергиенко Е.Ф. Импульсные регуляторы и преобразователи постоянного напряжения. - М.: Изд-во МЭИ, 1998

    Для питания различной электронной аппаратуры весьма широко используются DC/DC преобразователи. Применяются они в устройствах вычислительной техники, устройствах связи, различных схемах управления и автоматики и др.

    Трансформаторные блоки питания

    В традиционных трансформаторных блоках питания напряжение питающей сети с помощью трансформатора преобразуется, чаще всего понижается, до нужного значения. Пониженное напряжение выпрямляется диодным мостом и сглаживается конденсаторным фильтром. В случае необходимости после выпрямителя ставится полупроводниковый стабилизатор.

    Трансформаторные блоки питания, как правило, оснащаются линейными стабилизаторами. Достоинств у таких стабилизаторов не менее двух: это маленькая стоимость и незначительное количество деталей в обвязке. Но эти достоинства съедает низкий КПД, поскольку значительная часть входного напряжения используется на нагрев регулирующего транзистора, что совершенно неприемлемо для питания переносных электронных устройств.

    DC/DC преобразователи

    Если питание аппаратуры осуществляется от гальванических элементов или аккумуляторов, то преобразование напряжения до нужного уровня возможно лишь с помощью DC/DC преобразователей.

    Идея достаточно проста: постоянное напряжение преобразуется в переменное, как правило, с частотой несколько десятков и даже сотен килогерц, повышается (понижается), а затем выпрямляется и подается в нагрузку. Такие преобразователи часто называются импульсными.

    В качестве примера можно привести повышающий преобразователь из 1,5В до 5В, как раз выходное напряжение компьютерного USB. Подобный преобразователь небольшой мощности продается на Алиэкспресс - http://ali.pub/m5isn .

    Рис. 1. Преобразователь 1,5В/5В

    Импульсные преобразователи хороши тем, что имеют высокий КПД, в пределах 60..90%. Еще одно достоинство импульсных преобразователей широкий диапазон входных напряжений: входное напряжение может быть ниже выходного или намного выше. Вообще DC/DC конвертеры можно разделить на несколько групп.

    Классификация конвертеров

    Понижающие, по английской терминологии step-down или buck

    Выходное напряжение этих преобразователей, как правило, ниже входного: без особых потерь на нагрев регулирующего транзистора можно получить напряжение всего несколько вольт при входном напряжении 12…50В. Выходной ток таких преобразователей зависит от потребности нагрузки, что в свою очередь определяет схемотехнику преобразователя.

    Еще одно англоязычное название понижающего преобразователя chopper. Один из вариантов перевода этого слова - прерыватель. В технической литературе понижающий конвертер иногда так и называют «чоппер». Пока просто запомним этот термин.

    Повышающие, по английской терминологии step-up или boost

    Выходное напряжение этих преобразователей выше входного. Например, при входном напряжении 5В на выходе можно получить напряжение до 30В, причем, возможно его плавное регулирование и стабилизация. Достаточно часто повышающие преобразователи называют бустерами.

    Универсальные преобразователи - SEPIC

    Выходное напряжение этих преобразователей удерживается на заданном уровне при входном напряжении как выше входного, так и ниже. Рекомендуется в случаях, когда входное напряжение может изменяться в значительных пределах. Например, в автомобиле напряжение аккумулятора может изменяться в пределах 9…14В, а требуется получить стабильное напряжение 12В.

    Инвертирующие преобразователи - inverting converter

    Основной функцией этих преобразователей является получение на выходе напряжения обратной полярности относительно источника питания. Очень удобно в тех случаях, когда требуется двухполярное питание, например .

    Все упомянутые преобразователи могут быть стабилизированными или нестабилизированными, выходное напряжение может быть гальванически связано с входным или иметь гальваническую развязку напряжений. Все зависит от конкретного устройства, в котором будет использоваться преобразователь.

    Чтобы перейти к дальнейшему рассказу о DC/DC конвертерах следует хотя бы в общих чертах разобраться с теорией.

    Понижающий конвертер чоппер - конвертер типа buck

    Его функциональная схема показана на рисунке ниже. Стрелками на проводах показаны направления токов.


    Рис.2. Функциональная схема чопперного стабилизатора

    Входное напряжение Uin подается на входной фильтр - конденсатор Cin. В качестве ключевого элемента используется транзистор VT, он осуществляет высокочастотную коммутацию тока. Это может быть транзистор структуры MOSFET, IGBT либо обычный биполярный транзистор. Кроме указанных деталей в схеме содержится разрядный диод VD и выходной фильтр - LCout, с которого напряжение поступает в нагрузку Rн.

    Нетрудно видеть, что нагрузка включена последовательно с элементами VT и L. Поэтому схема является последовательной. Как же происходит понижение напряжения?

    Широтно-импульсная модуляция - ШИМ

    Схема управления вырабатывает прямоугольные импульсы с постоянной частотой или постоянным периодом, что в сущности одно и то же. Эти импульсы показаны на рисунке 3.


    Рис.3. Импульсы управления

    Здесь tи время импульса, транзистор открыт, tп - время паузы, - транзистор закрыт. Соотношение tи/T называется коэффициентом заполнения duty cycle, обозначается буквой D и выражается в %% или просто в числах. Например, при D равном 50% получается, что D=0,5.

    Таким образом D может изменяться от 0 до 1. При значении D=1 ключевой транзистор находится в состоянии полной проводимости, а при D=0 в состоянии отсечки, попросту говоря, закрыт. Нетрудно догадаться, что при D=50% выходное напряжение будет равно половине входного.

    Совершенно очевидно, что регулирование выходного напряжения происходит за счет изменения ширины управляющего импульса tи, по сути дела изменением коэффициента D. Такой принцип регулирования называется (PWM). Практически во всех импульсных блоках питания именно с помощью ШИМ производится стабилизация выходного напряжения.

    На схемах, показанных на рисунках 2 и 6 ШИМ «спрятана» в прямоугольниках с надписью «Схема управления», которая выполняет некоторые дополнительные функции. Например, это может быть плавный запуск выходного напряжения, дистанционное включение или защита преобразователя от короткого замыкания.

    Вообще конвертеры получили столь широкое применение, что фирмы производители электронных компонентов наладили выпуск ШИМ контроллеров на все случаи жизни. Ассортимент настолько велик, что просто для того чтобы их перечислить понадобится целая книга. Поэтому собирать конвертеры на дискретных элементах, или как часто говорят на «рассыпухе», никому не приходит в голову.

    Более того готовые конвертеры небольшой мощности можно купить на Алиэкспрес или Ebay за незначительную цену. При этом для установки в любительскую конструкцию достаточно припаять к плате провода на вход и выход, и выставить требуемое выходное напряжение.

    Но вернемся к нашему рисунку 3. В данном случае коэффициент D определяет, сколько времени будет открыт (фаза 1) или закрыт (фаза 2) . Для этих двух фаз можно представить схему двумя рисунками. На рисунках НЕ ПОКАЗАНЫ те элементы, которые в данной фазе не используются.


    Рис.4. Фаза 1

    При открытом транзисторе ток от источника питания (гальванический элемент, аккумулятор, выпрямитель) проходит через индуктивный дроссель L, нагрузку Rн, и заряжающийся конденсатор Cout. При этом через нагрузку протекает ток, конденсатор Cout и дроссель L накапливают энергию. Ток iL ПОСТЕПЕННО ВОЗРАСТАЕТ, сказывается влияние индуктивности дросселя. Эта фаза называется накачкой.

    После того, как напряжение на нагрузке достигнет заданного значения (определяется настройкой устройства управления), транзистор VT закрывается и устройство переходит ко второй фазе - фазе разряда. Закрытый транзистор на рисунке не показан вовсе, как будто его и нет. Но это означает лишь то, что транзистор закрыт.


    Рис.5. Фаза 2

    При закрытом транзисторе VT пополнения энергии в дросселе не происходит, поскольку источник питания отключен. Индуктивность L стремится воспрепятствовать изменению величины и направления тока (самоиндукция) протекающего через обмотку дросселя.

    Поэтому ток мгновенно прекратиться не может и замыкается через цепь «диод-нагрузка». Из-за этого диод VD получил название разрядный. Как правило, это быстродействующий диод Шоттки. По истечении периода управления фаза 2 схема переключается на фазу 1, процесс повторяется снова. Максимальное напряжение на выходе рассмотренной схемы может быть равным входному, и никак не более. Чтобы получить выходное напряжение больше, чем входное, применяются повышающие преобразователи.

    Пока только следует напомнить собственно о величине индуктивности, которая определяет два режима работы чоппера. При недостаточной индуктивности преобразователь будет работать в режиме разрывных токов, что совершенно недопустимо для источников питания.

    Если же индуктивность достаточно большая, то работа происходит в режиме неразрывных токов, что позволяет с помощью выходных фильтров получить постоянное напряжение с приемлемым уровнем пульсаций. В режиме неразрывных токов работают и повышающие преобразователи, о которых будет рассказано ниже.

    Для некоторого повышения КПД разрядный диод VD заменяется транзистором MOSFET, который в нужный момент открывается схемой управления. Такие преобразователи называются синхронными. Их применение оправдано, если мощность преобразователя достаточно велика.

    Повышающие step-up или boost преобразователи

    Повышающие преобразователи применяются в основном при низковольтном питании, например, от двух-трех батареек, а некоторые узлы конструкции требуют напряжения 12…15В с малым потреблением тока. Достаточно часто повышающий преобразователь кратко и понятно называют словом «бустер».


    Рис.6. Функциональная схема повышающего преобразователя

    Входное напряжение Uin подается на входной фильтр Cin и поступает на последовательно соединенные L и коммутирующий транзистор VT. В точку соединения катушки и стока транзистора подключен диод VD. К другому выводу диода подключены нагрузка Rн и шунтирующий конденсатор Cout.

    Транзистор VT управляется схемой управления, которая вырабатывает сигнал управления стабильной частоты с регулируемым коэффициентом заполнения D, так же, как было рассказано чуть выше при описании чопперной схемы (Рис.3). Диод VD в нужные моменты времени блокирует нагрузку от ключевого транзистора.

    Когда открыт ключевой транзистор правый по схеме вывод катушки L соединяется с отрицательным полюсом источника питания Uin. Нарастающий ток (сказывается влияние индуктивности) от источника питания протекает через катушку и открытый транзистор, в катушке накапливается энергия.

    В это время диод VD блокирует нагрузку и выходной конденсатор от ключевой схемы, тем самым предотвращая разряд выходного конденсатора через открытый транзистор. Нагрузка в этот момент питается энергией накопленной в конденсаторе Cout. Естественно, что напряжение на выходном конденсаторе падает.

    Как только напряжение на выходе станет несколько ниже заданного, (определяется настройками схемы управления), ключевой транзистор VT закрывается, и энергия, запасенная в дросселе, через диод VD подзаряжает конденсатор Cout, который подпитывает нагрузку. При этом ЭДС самоиндукции катушки L складывается с входным напряжением и передается в нагрузку, следовательно, напряжение на выходе получается больше входного напряжения.

    По достижении выходным напряжением установленного уровня стабилизации схема управления открывает транзистор VT, и процесс повторяется с фазы накопления энергии.

    Универсальные преобразователи - SEPIC (single-ended primary-inductor converter или преобразователь с несимметрично нагруженной первичной индуктивностью).

    Подобные преобразователи применяются в основном, когда нагрузка имеет незначительную мощность, а входное напряжение изменяется относительно выходного в большую или меньшую сторону.


    Рис.7. Функциональная схема преобразователя SEPIC

    Очень похожа на схему повышающего преобразователя, показанного на рисунке 6, но имеет дополнительные элементы: конденсатор C1 и катушку L2. Именно эти элементы и обеспечивают работу преобразователя в режиме понижения напряжения.

    Преобразователи SEPIC применяются в тех случаях, когда входное напряжение изменяется в широких пределах. В качестве примера можно привести 4V-35V to 1.23V-32V Boost Buck Voltage Step Up/Down Converter Regulator. Именно под таким названием в китайских магазинах продается преобразователь, схема которого показана на рисунке 8 (для увеличения нажмите на рисунок).


    Рис.8. Принципиальная схема преобразователя SEPIC

    На рисунке 9 показан внешний вид платы с обозначением основных элементов.


    Рис.9. Внешний вид преобразователя SEPIC

    На рисунке показаны основные детали в соответствии с рисунком 7. Следует обратить внимание на наличие двух катушек L1 L2. По этому признаку можно определить, что это именно преобразователь SEPIC.

    Входное напряжение платы может быть в пределах 4…35В. При этом выходное напряжение может настраиваться в пределах 1,23…32В. Рабочая частота преобразователя 500КГц.При незначительных размерах 50 x 25 x 12мм плата обеспечивает мощность до 25 Вт. Максимальный выходной ток до 3А.

    Но тут следует сделать замечание. Если выходное напряжение установить на уровне 10В, то выходной ток не может быть выше 2,5А (25Вт). При выходном напряжении 5В и максимальном токе 3А мощность составит всего 15Вт. Здесь главное не перестараться: либо не превысить максимально допустимую мощность, либо не выйди за пределы допустимого тока.

    Чтобы подключить к бортовой электросистеме автомобиля бытовые устройства требуется инвертор, который сможет повысить напряжение с 12 В до 220 В. На полках магазинов они имеются в достаточном количестве, но не радует их цена. Для тех, кто немного знаком с электротехникой есть возможность собрать преобразователь напряжения 12 220 вольт своими руками. Две простые схемы мы разберем.

    Преобразователи и их типы

    Есть три типа преобразователей 12-220 В. Первый — из 12 В получают 220 В. Такие инверторы популярный у автомобилистов: через них можно подключать стандартные устройства — телевизоры, пылесосы и т.д. Обратное преобразование — из 220 В в 12 — требуется нечасто, обычно в помещениях с тяжелыми условиями эксплуатации (повышенная влажность) для обеспечения электробезопасности. Например, в парилках, бассейнах или ванных. Чтобы не рисковать, стандартное напряжение в 220 В понижают до 12, используя соответствующее оборудование.

    Третий вариант — это, скорее, стабилизатор на базе двух преобразователей. Сначала стандартные 220 В преобразуются в 12 В, затем обратно в 220 В. Такое двойное преобразование позволяет иметь на выходе идеальную синусоиду. Такие устройства необходимы для нормальной работы большинства бытовой техники с электронным управлением. Во всяком случае, при установке настоятельно советуют запитать его именно через такой преобразователь — его электроника очень чувствительная к качеству питания, а замена платы управления стоит примерно как половина котла.

    Импульсный преобразователь 12-220В на 300 Вт

    Эта схема проста, детали доступны, большинство из них можно извлечь из блока питания для компьютера или купить в любом радиотехническом магазине. Достоинство схемы — простота реализации, недостаток — неидеальная синусоида на выходе и частота выше стандартных 50 Гц. То есть, к данному преобразователю нельзя подключать устройства, требовательные к электропитанию. К выходу напрямую можно подключать не особ чувствительные приборы — лампы накаливания, утюг, паяльник, зарядку от телефона и т.п.

    Представленная схема в нормальном режиме выдает 1,5 А или тянет нагрузку 300 Вт, по максимуму — 2,5 А, но в таком режиме будут ощутимо греться транзисторы.


    Построена схема на популярном ШИМ-контроллере TLT494. Полевые транзисторы Q1 Q2 надо размещать на радиаторах, желательно — раздельных. При установке на одном радиаторе, под транзисторы уложить изолирующую прокладку. Вместо указанных на схеме IRFZ244 можно использовать близкие по характеристикам IRFZ46 или RFZ48.

    Частота в данном преобразователе 12 В в 220 В задается резистором R1 и конденсатором C2. Номиналы могут немного отличаться от указанных на схеме. Если у вас есть старый нерабочий беспербойник для компьютера, а в нем — рабочий выходной трансформатор, в схему можно поставить его. Если трансформатор нерабочий, из него извлечь ферритовое кольцо и намотать обмотки медным проводом диаметром 0,6 мм. Сначала мотается первичная обмотка — 10 витков с выводом от середины, затем, поверх — 80 витков вторичной.

    Как уже говорили, такой преобразователь напряжения 12-220 В может работать только с нагрузкой, нечувствительной к качеству питания. Чтобы была возможность подключать более требовательные устройства, на выходе устанавливают выпрямитель, на выходе которого напряжение близко к нормальному (схема ниже).


    В схеме указаны высокочастотные диоды типа HER307, но их можно заменить на серии FR207 или FR107. Емкости желательно подобрать указанной величины.

    Инвертор на микросхеме

    Этот преобразователь напряжения 12 220 В собирается на основе специализированной микросхемы КР1211ЕУ1. Это генератор импульсов, которые снимаются с выходов 6 и 4. Импульсы противофазные, между ними небольшой временной промежуток — для исключения одновременного открытия обоих ключей. Питается микросхема напряжением 9,5 В, который задается параметрическим стабилизатором на стабилитроне Д814В.

    Также в схеме присутствуют два полевых транзистора повышенной мощности — IRL2505 (VT1 и VT2). Они имеют очень низкое сопротивление открытого выходного канала — около 0,008 Ом, что сравнимо с сопротивлением механического ключа. Допустимый постоянный ток — до 104 А, импульсный — до 360 А. Подобные характеристики реально позволяют получить 220 В при нагрузке до 400 Вт. Устанавливать транзисторы необходимо на радиаторы (при мощности до 200 Вт можно и без них).


    Частота импульсов зависит от параметров резистора R1 и конденсатора C1, на выходе установлен конденсатор C6 для подавления высокочастотных выбросов.

    Трансформатор лучше брать готовый. В схеме он включается наоборот — низковольтная вторичная обмотка служит как первичная, а напряжение снимается с высоковольтной вторичной.

    Возможные замены в элементной базе:

    • Указанный в схеме стабилитрон Д814В можно заменить любым, выдающим 8-10 V. Например, КС 182, КС 191, КС 210.
    • Если нет конденсаторов C4 и C5 типа К50-35 на 1000 мкФ, можно взять четыре 5000 мкФ или 4700 мкФ и включить их параллельно,
    • Вместо импортного конденсатора C3 220m можно поставить отечественный любого типа на 100-500 мкФ и напряжение не ниже 10 В.
    • Трансформатор — любой с мощностью от 10 W до 1000 W, но его мощность должна быть минимум в два раза выше планируемой нагрузки.

    При монтаже цепей подключения трансформатора, транзисторов и подключения к источнику 12 В надо использовать провода большого сечения — ток тут может достигать высоких значений (при мощности в 400 Вт до 40 А).

    Инвертор с чистым синусом а выходе

    Схемы денных преобразователей сложны даже для опытных радиолюбителей, так что сделать их своими руками совсем непросто. Пример самой простой схемы ниже.


    В данном случае проще собрать подобный преобразователь из готовых плат. Как — смотрите в видео.

    В следующем ролике рассказано как собирать преобразователь на 220 вольт с чистым синусом. Только входное напряжение не 12 В, а 24 В.

    А в этом видео как раз рассказано, как можно менять входное напряжение, но получать на выходе требуемые 220 В.