График линейного уравнения с двумя переменными. Презентация к уроку по алгебре (7 класс) на тему: Линейное уравнение с двумя переменными и его график

График линейного уравнения с двумя переменными. Презентация к уроку по алгебре (7 класс) на тему: Линейное уравнение с двумя переменными и его график

Видеоурок «Уравнение с двумя переменными и его график» знакомит учеников с понятием уравнения с двумя переменными, его решением, дает представление о графике уравнения с двумя переменными, его построении. Задача видеоурока - наглядно представить учебный материал по данной теме, облегчая выполнение задач учителя на уроке и давая возможность ему более эффективно использовать время урока.

Возможности видеоурока больше, чем любого другого наглядного пособия. Возможность использовать анимационные эффекты, заменить учителя в демонстрации построения графиков, чертежей, выполнение голосового сопровождения позволяет повысить эффективность урока, более рационально распределять время, удерживать внимание учеников на изучаемом материале.

Видеоурок начинается с представления темы. Ученикам представляются примеры уравнений с двумя переменными: 3х+4у=16, х 2 =9-у 2 , ху-8=0. Далее дается представление о решениях уравнения с двумя переменными. Демонстрируется подстановка значений переменных х=4 и у=1, которые превращают уравнение 3х+4у=16 в справедливое равенство. После объяснения сути решения уравнения, вводится понятие решения уравнения, которое в данном случае представляет собой пару чисел (4;1), в котором на первом месте представлено значение переменной х, а на втором - значение переменной у. Далее для запоминания учениками на экран выведено определение, что такое решение уравнения, которым называется пара значений для переменных, обращающая уравнение в верное равенство.

Уточняется особенность уравнения, имеющего две переменные - в большинстве случаев они имеют бесконечное множество решений. Вводится понятие равносильных уравнений, представляющих собой уравнения, имеющие одинаковое множество решений. Отмечается одинаковый способ определения степени целого уравнения, имеющего две переменные, и целого уравнения, имеющего одну переменную. Также уточняется, что уравнение, содержащее две переменные, у которого в левой части - многочлен, а в правой - 0, имеет степень, равной степени данного многочлена. Способом определения степени уравнения остается замена его равносильным уравнением таким образом, чтобы в левой части уравнения остался многочлен стандартного вида, а в левой - нуль. Приведен пример такой замены: отмечается, что уравнения (х 2 -у) 2 =х 4 -1 и -2х 2 у+у 2 +1=0 равносильны. После приведения уравнения к виду, когда в левой части остается многочлен стандартного вида, можно установить, что данное уравнение - третьей степени.

Далее рассматриваются особенности графика уравнения, имеющего две переменные. В представленном определении графиком некоторого уравнения, имеющего две переменные, является множество точек на координатной плоскости, подставив координаты которых, можно получить верное равенство. Ученикам напоминается вид графиков, уже изученных ранее и представляющих собой график уравнения с двумя переменными. Это прямая, представляющая собой график линейного уравнения ax+by=c, где a≠0 и b≠0, а также парабола - график уравнения у=х 2 , гипербола - график ух=15.

Ученикам демонстрируется построение графика функции x 2 +y 2 =r 2 , где r - произвольное положительное число. Окружность, являющаяся графиком данного уравнения, представлена на экране. Доказывается, что любая точка окружности будет удовлетворять данному уравнению. Для этого отмечаем произвольную точку В(х;у). Длина опущенного на ось абсцисс перпендикуляра равна модулю ординаты данной точки, а отрезок, проведенный из данной точки в начало координат - радиусу. Длина отрезка от начала координат до точки пересечения перпендикуляра с осью абсцисс равна модулю абсциссы. Из полученного прямоугольного треугольника АОВ имеем равенство: АО 2 +АВ 2 =ВО 2 , то есть |x| 2 +|y| 2 =r 2 . Это равенство также справедливо без знака модуля.

Чтобы убедиться, что уравнение верно в любом положении В(х;у) на окружности, предлагается рассмотреть точку В, которая лежит в точке пересечения окружности с осью абсцисс. Отмечается, что в этом случае одна координата точкиу равняется радиусу, а вторая - нуль. Уравнение x 2 +y 2 =r 2 превращается в 0 2 +r 2 =r 2 , поэтому равенство также справедливо. При этом для всех точек, которые не лежат в области определения, их координаты не удовлетворяют уравнению окружности x 2 +y 2 =r 2 . Примеры таких точек отмечены на координатной плоскости. Общий вывод из рассмотренного построения следует, что уравнение окружности в записи х 2 +у 2 =r 2 верно для случаев, когда точки А(х;у) принадлежат области определения φ, О(0;0) - центр окружности, а r - радиус.

Далее рассматривается, как уравнение окружности зависит от положения ее центра. Отмечается, что при переносе центра на |а| единиц вправо или влево параллельно х, а также на |b| единиц вверх или вниз, параллельно у, получается окружность того же радиуса, только с центром в точке с новыми координатами О(a;b). Уравнением такой окружности будет (x-a) 2 +(y-b) 2 =r 2 .

Видеоурок «Уравнение с двумя переменными и его график» может быть использован как наглядное пособие на уроке алгебры по данной теме или заменить объяснение учителя по теме. Также данный материал может быть полезен при дистанционном обучении, поможет освоить тему ученикам самостоятельно.

Нам часто встречались уравнения вида ах + b = 0, где а, b - числа, х - переменная. Например, bх - 8 = 0, х + 4 = О, - 7х - 11 = 0 и т. д. Числа а, Ь (коэффициенты уравнения) могут быть любыми, исключает лишь случай, когда а = 0.

Уравнение ах + b = 0, где а , называют линейным уравнением с одной переменной х (или линейным уравнением с одним неизвестным х). Решить его, т. е. выразить х через а и b, мы с вами умеем:

Ранее мы отмечали, что довольно часто математической моделью реальной ситуации служит линейное уравнение с одной переменной или уравнение, которое после преобразований сводится к линейному. А теперь рассмотрим такую реальную ситуацию.

Из городов A и В, расстояние между которыми 500 км, навстречу друг другу вышли два поезда, каждый со своей постоянной скоростью. Известно, что первый поезд вышел на 2 ч раньше второго. Через 3 ч после выхода второго поезда они встретились. Чему равны скорости поездов?

Составим математическую модель задачи. Пусть х км/ч - скорость первого поезда, у км/ч - скорость второго поезда. Первый был в пути 5 ч и, значит, прошел путь bх км. Второй поезд был в пути 3 ч, т.е. прошел путь Зу км.

Их встреча произошла в пункте С. На рисунке 31 представлена геометрическая модель ситуации. На алгебраическом языке ее можно описать так:

5х + Зу = 500


или
5х + Зу - 500 = 0.

Эту математическую модель называют линейным уравнением с двумя переменными х, у.
Вообще,

ах + by + с = 0,

где а, b, с - числа, причем , - линейное уравнение с двумя переменными х и у (или с двумя неизвестными х и у).

Вернемся к уравнению 5х + Зу = 500. Замечаем, что если х = 40, у = 100, то 5 40 + 3 100 = 500 - верное равенство. Значит, ответ на вопрос задачи может быть таким: скорость первого поезда 40 км/ч, скорость второго поезда 100 км/ч. Пару чисел х = 40, у = 100 называют решением уравнения 5х + Зу = 500. Говорят также, что эта пара значений (х; у) удовлетворяет уравнению 5х + Зу = 500.

К сожалению, это решение не единственно (мы ведь все любим определенность, однозначность). В самом деле, возможен и такой вариант: х = 64, у = 60; действительно, 5 64 + 3 60 = 500 - верное равенство. И такой: х = 70, у = 50 (поскольку 5 70 + 3 50 = 500 - верное равенство).

А вот, скажем, пара чисел х = 80, у = 60 решением уравнения не является, поскольку при этих значениях верного равенства не получается:

Вообще, решением уравнения ах + by + с = 0 называют всякую пару чисел (х; у), которая удовлетворяет этому уравнению, т. е. обращает равенство с переменными ах + by + с = 0 в верное числовое равенство. Таких решений бесконечно много.

Замечание. Вернемся еще раз к уравнению 5х + Зу = 500, полученному в рассмотренной выше задаче. Среди бесконечного множества его решений имеются, например, и такие: х = 100, у = 0 (в самом деле, 5 100 + 3 0 = 500 - верное числовое равенство); х = 118, у = - 30 (так как 5 118 + 3 (-30) = 500 - верное числовое равенство). Однако, являясь решениями уравнения , эти пары не могут служить решениями данной задачи, ведь скорость поезда не может быть равной нулю (тогда он не едет, а стоит на месте); тем более скорость поезда не может быть отрицательной (тогда он едет не навстречу другому поезду, как сказано в условии задачи, а в противоположную сторону).

Пример 1. Изобразить решения линейного уравнения с двумя переменными х + у - 3 = 0 точками в координатной плоскости хОу.

Решение. Подберем несколько решений заданного уравнения, т. е. несколько пар чисел, которые удовлетворяют уравнению: (3; 0), (2; 1), (1; 2) (0; 3), (- 2; 5).

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

    Нарисуйте числовую линию. Поскольку для изображения неравенства с одной переменной достаточно одной оси, нет необходимости рисовать прямоугольную систему координат. Вместо этого просто проведите прямую линию.

    Изобразите неравенство. Это довольно просто, так как имеется всего лишь одна координата. Предположим, необходимо изобразить неравенство x <1. Для начала следует найти на оси число 1.

    • Если неравенство задается знаком > или < (“больше” или “меньше”), обведите заданное число пустым кружком.
    • Если неравенство задается знаком ≥ {\displaystyle \geq } (“больше или равно”) или ≤ {\displaystyle \leq } (“меньше или равно”), закрасьте кружок вокруг точки.
  1. Проведите линию. Проведите линию из только что отмеченной точки на числовой оси. Если переменная больше данного числа, отложите линию вправо. Если переменная меньше, проведите линию влево. На конце линии поставьте стрелку, чтобы показать, что она не является конечным отрезком и продолжается дальше.

    Проверьте ответ. Подставьте вместо переменной x какое-либо число и отметьте его положение на числовой оси. Если это число лежит на проведенной вами линии, график верен.

График линейного неравенства

    Используйте формулу прямой линии. Подобная формула использовалась выше для обычных линейных уравнений, однако в данном случае вместо знака ‘=’ следует поставить знак неравенства. Это может быть один из следующих знаков: <, >, ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } .

    • Уравнение прямой линии имеет вид y=mx+b , где m соответствует наклону, а b - пересечению с осью y.
    • Знак неравенства означает, что данное выражение имеет множество решений.
  1. Изобразите неравенство. Найдите точку пересечения прямой с осью y и ее наклон, после чего отметьте соответствующие координаты. В качестве примера рассмотрим неравенство y >1/2x +1. В этом случае прямая будет пересекать ось y при x =1, а ее наклон составит ½, то есть при движении вправо на 2 единицы мы будем подниматься вверх на 1 единицу.

    Проведите линию. Перед этим посмотрите на знак неравенства. Если это < или >, следует провести пунктирную линию. Если в неравенстве стоит знак ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } , линия должна быть сплошной.

    Заштрихуйте график. Так как неравенство имеет множество решений, на графике следует показать все возможные решения. Это означает, что следует заштриховать область над линией или под ней.

График квадратного уравнения

    Посмотрите на формулу. В квадратном уравнении хотя бы одна переменная возводится в квадрат. Обычно квадратное уравнение записывается в следующем виде: y=ax 2 +bx+c .

    • При построении графика квадратного уравнения у вас получится парабола, то есть кривая в виде латинской буквы ‘U’.
    • Для построения параболы необходимо знать координаты хотя бы трех точек, в том числе вершины параболы (ее центральной точки).
  1. Определите a, b и c. Например, в уравнении y=x 2 +2x+1 a =1, b =2 и c =1. Каждый параметр представляет собой число, которое стоит перед переменной в соответствующей степени. Например, если перед x не стоит никакого числа, значит b =1, поскольку соответствующее слагаемое можно записать в виде 1x .

    Найдите вершину параболы. Чтобы найти среднюю точку параболы, используйте выражение -b /2a . Для нашего примера получаем -2/2(1), то есть -1.

    Составьте таблицу. Итак, мы знаем, что координата x вершины равна -1. Однако это лишь одна координата. Чтобы найти соответствующую ей координату y , а также две другие точки параболы, необходимо составить таблицу.

    Постройте таблицу из трех строк и двух столбцов.

    • Запишите координату x вершины параболы в центральной ячейке левого столбца.
    • Выберите еще две координаты x на одинаковом расстоянии слева и справа (в отрицательную и положительную стороны вдоль горизонтальной оси). Например, можно отступить от вершины на 2 единицы влево и вправо, то есть записать в соответствующих ячейках -3 и 1.
    • Можно выбрать любые целые числа, которые отстоят от вершины на равном расстоянии.
    • Если вы хотите построить более точный график, вместо трех можно взять пять точек. В этом случае следует делать то же самое, только таблица будет состоять не из трех, а из пяти строк.
  2. Используйте уравнение и таблицу, чтобы найти неизвестные координаты y . Берите по одной координате x из таблицы, подставляйте ее в заданное уравнение и находите соответствующую координату y.

    • В нашем случае мы подставляем в уравнение y =x 2 +2x +1 вместо x -3. В результате находим y = -3 2 +2(-3)+1, то есть y =4.
    • Записываем найденную координату y в ячейке возле соответствующей ей координаты x.
    • Найдите таким образом все три (или пять, если вы используете больше точек) координаты y .
  3. Нанесите на график точки. Итак, у вас получилось по крайней мере три точки с известными координатами, которые можно отметить на графике. Соедините их кривой в форме параболы. Готово!

График квадратного неравенства

    Постройте график параболы. В квадратном неравенстве используется формула, аналогичная квадратному уравнению, однако вместо знака ‘=’ стоит знак неравенства. Например, квадратное неравенство может выглядеть следующим образом: y x 2 +bx +c. Используйте шаги из предыдущего метода “График квадратного уравнения” и найдите три точки параболы.

Цели.

Образовательная:

1. Знать определение графика уравнения с двумя переменными;

2. Знать, что является графиком линейного уравнения с двумя переменными;

3. Уметь строить график линейного уравнения с двумя переменными.

Развивающая: учить анализировать, сравнивать, обобщать определять и объяснять понятия, т.е. умение мыслить.

Воспитательная: развивать нравственные отношения у школьников с окружающим миром (качество честности, трудолюбие).

Оборудование:

рабочая карта;

кроссворд;

карта-таблица;

карточки для дополнительного уровневого задания;

таблица “Уравнения с двумя переменными и их графики”;

таблица “Расположение графиков линейного уравнения с двумя переменными относительно осей координат”.

Ход урока

1. Запись домашней работы: (учитель проговаривает)

п.41, повторить п.п.15-16.

№1046, №1049, для желающих № 1152 - график с параметром.

2. Проверка домашнего задания. (До урока на перемене)

Выразить одну переменную через другую (а, б)

№1034(б), №1140 (а)

На доске “Проверь себя” (До урока на перемене учащиеся проверяют домашнее задание, сверяя с решением на доске.) – решение уравнений, критерии оценок.

(Выразить одну переменную через другую (а, б))

а) 6х - у = 12;

б) 10х + 7у = 0;

у = (7 - 6х) / 2;

у = 3,5 – 3х;

Точки: (0; 3,5), (1; 0,5), (2;-2,5).

ах – 2у = 1, х=5, у = 7, а = ?

Критерий:

Все решено правильно и самостоятельно - “5”;

Все решено правильно, но с помощью - “4”;

Решено с помощью и с ошибкой - “3”.

№ 1140 - оценивается по тем же критериям, только “5” и “4”.

После записи домашней работы предлагаю выставить оценки согласно критериям каждому за свою домашнюю работу (самооценка) в рабочую карту (предварительно подписав карт). Рабочая карта отражена на рисунке 4.

3. Совместная постановка цели урока.

Читаем тему урока на доске.

Ребята, как вы думаете, что должны знать и чему научиться на этом уроке?

А что бы этого достичь, нужно анализировать, сравнивать, объяснять понятия. Работая в классе, необходимо с уважением относиться к окружающим и быть предельно честным.

Для успешной работы повторим теоретический материал, разгадывая кроссворд. Кроссворды находятся в каждой группе (на работу 3 минуты).

Рисунок 1. Кроссворд.

Вопросы к кроссворду:

1. Что является графиком линейной функции?

2. Один из способов задания функции.

3. Пара чисел, изображающаяся в координатной плоскости.

4. Независимая переменная.

5. Множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции.

6. Зависимость между переменными, при которой каждому значению независимой переменной соответствует единственной значение зависимой переменной.

7. Какими называются уравнения с двумя переменными имеющие одни и те же решения, или не имеющие решений?

Чья группа угадает быстрее, получает жетон. Всего дается три жетона, т.е. первым трем группам.

Для тех, кто закончил работу, на доске задание (устно):

1. Назвать коэффициенты в уравнениях;

2. Выразить у через х из уравнений:

у = 3,5 - 2,5х.

2х – у = 11;

3. Как назвать эти равенства:

|х| + |у| = 10.

Внимание на доску, проверим кроссворд. (Ответы на кроссворд и критерий оценки работы на доске:)

2. Формула.

4. Аргумент.

5. График.

6. Функция.

7. Равносильными.

Критерий: Быстро и правильно - два “+”, отметить на жетоне номер группы;

Правильно - один “+”.

Поднимите руку, кто получил два “+”, один “+”. Кто не угадал, повторить определения.

Переходим к проверке (решению) устного упражнения:

1. Проговариваем коэффициенты;

2. Выражаем у через х из уравнений;

3. Называем эти равенства - уравнениями с двумя переменными.

Что является решением уравнения с двумя переменными? (Пара значений переменных - х и у )

Сколько решений имеет уравнение с двумя переменными? (Много)

Как изображается пара значений переменных на координатной плоскости? (Точкой)

Сколько таких точек можно изобразить? (Много)

Что является координатами каждой из этих точек? (Абсцисса - значение х , ордината - значение у )

Что образуют все эти точки на координатной плоскости? (График)

Так что называется графиком уравнения с двумя переменными? (Множество всех точек координатной плоскости, координаты которых являются решениями этого уравнения)

Откройте учебник, п.41 и найдите это определение. Прочитаем его. Повторим. А теперь посмотрите на доску. (На доске таблица уравнений с двумя переменными и их графики – рисунок 2).

Рисунок 2. Уравнения с двумя переменными и их графики.

Что вы видите на таблице? (Уравнения с двумя переменными и их графики).

Есть ли среди них линейные уравнения с двумя переменными? (Нет)

Графики этих уравнение вы будите изучать в старших классах. А мы с вами должны узнать, что является графиком линейного уравнения с двумя переменными.

4. Изучение нового материала.

Открыли тетради, записали тему урока. Дайте определение линейной функции и запишем:

где х и у - переменные, k , b - некоторые числа.

Дайте определение линейного уравнения с двумя переменными и запишем:

ах + bу = с,

где х и у - переменные, а, b, с - некоторые числа.

Сравните, что общего в этих видах математической записи (входят две переменные х и у , числа).

Как по-другому называются числа? (Коэффициенты).

Чем отличаются? (Количеством чисел 2 и 3; в первом - выражена зависимость - функция, во втором - не выражена - уравнение).

А можно ли в линейном уравнении с двумя переменными выразить зависимость одной переменной от другой? (Да).

Давайте выразим зависимость переменной у от переменной х в линейном уравнении с двумя переменными:

где х и у - переменные, а, b, с - некоторые числа.

Выражаем в общем виде: bу = с - ах .

Что сейчас мы должны обязательно оговорить? (Что коэффициент при переменной у не равен нулю):

у = (с – ах) / b, при условии b 0 .

у = (с / b) – (а / b)х.

Запишем в стандартном виде:

у = – (а / b)х + (с / b).

Таким образом, мы получили вид линейной функции у = kx + b , только по-другому записаны числа.

Что является графиком линейной функции? (Прямая).

Что необходимо, что бы построить прямую? (Построить две точки).

А почему две точки? (Согласно аксиоме).

Так что же является графиком линейного уравнения с двумя переменными, если коэффициент при у не равен нулю (т.е. b 0 )? (Прямая).

Что является координатами каждой из точек? (Пара значений переменных х и у , которые являются решением данного уравнения).

Запишем уравнение 2х - у = 3 . Коэффициент при переменной у не равен нулю. Запишите одно решение (спрашиваю троих и записываю три решения).

Как проверить, что каждая пара значений переменных х и у , является решением этого уравнения? (Подставить в уравнение вместо переменных х и у их значения. Если равенство верное, значит, пара чисел является решением).

Как нашли это решение? (Х - произвольное значение, у - находим).

Какую фигуру будет изображать пара чисел, являющаяся решением линейного уравнения на координатной плоскости? (Точку).

Сколько пар решений нужно, чтобы построить график? (Две пары).

Мы рассмотрели с вами общий случай построения графика линейного уравнения с двумя переменными. Кроме общего случая существуют частные случаи построения графиков, когда хотя бы один из коэффициентов равен нулю.

Постановка проблемного вопроса.

А что же является графиком линейного уравнения с двумя переменными, если хотя бы один из коэффициентов равен нулю?

Для ответа на этот вопрос предлагается работа по группам. Возьмите карты-таблицы “Что является графиком уравнения ax + by = с , если хотя бы один из коэффициентов равен нулю?”. Подпишите их. Карта-таблица представлена на рисунке 3.

Смотрим таблицу. В первом столбце записаны уравнения. Второй столбец вы должны заполнить, записывая коэффициенты линейных уравнений. Потом записываете пары решений для каждого из уравнений. Затем в соответствии с координатной плоскостью строите графики. И в последнем столбце записываете, что является графиком. Таблица заполняется по строкам. (При этой работе вызываю по одному ученику для заполнения карты-таблицы на доске после некоторого времени, когда большинство заполнят).

Если группа заканчивает работу раньше других, то на доске задание, которое выполняется устно.

По окончании работы заслушиваю двух человек. Обобщаем, что же является графиком линейного уравнения, если хотя бы один из коэффициентов равен нулю? (Прямая).

Рисунок 3 . Карта-таблица “Что является графиком уравнения ax + by = с , если хотя бы один из коэффициентов равен нулю?”.

Внимание на доску! (На доске таблица с графиками линейных уравнений).

Какого случая у нас нет? (а 0, b 0, с = 0 ). Что является графиком? (Прямая пропорциональность).

А теперь найдите в тексте учебника п.41 определение графика линейного уравнения с двумя переменными и зачитайте его.

Повторим, что является графиком линейного уравнения с двумя переменными, в котором хотя бы один из коэффициентов не равен нулю? (Прямая).

А можно ли по виду линейного уравнения с двумя переменными определить, что является графиком данного уравнения? (Можно).

На доске записаны линейные уравнения с двумя переменными:

1) 4х - 3у = 5;

3) 0х + 0у = 0;

Назвать уравнения, графиком которых является прямая, плоскость, нет графика. (Прямая - 1, 2, 5; плоскость - 3; нет графика - 4, 6).

И еще раз, что же является графиком линейного уравнения с двумя переменными, если хотя бы один из коэффициентов отличен от нуля.

А сейчас за работу с картой-таблицей консультант проставит каждому оценки в рабочую карту. Критерий оценки - как для домашнего задания. Поднимите руку, кто справился на “5”, кто на “4”.

5. Закрепление материала.

Самостоятельная работа на доске (проверка у консультанта, консультант проверяет у группы).

Постройте график уравнения:

а) 2х - у = 6 ;

б) х + 6у = 0 ;

в) 1,2х = - 4,8 ;

г) 1,5у = 6 .

Критерий оценки (на доске):

правильно решены все - “5”;

правильно решены 4-5 - “4”;

правильно решены 3 - “3”.

Поднимите руку, кто справился на “5”, кто на “4”, кто на “3”.

Тому, кто закончит раньше, даются уровневые карточки.

6. Рефлексия.

На рабочей карте (рисунок 4) имеются незаконченные предложения. Пожалуйста, закончите их.

На уроке мне было легко при...

На уроке я испытывал(а) трудности при...

Рисунок 4 . Рабочая карта.

Рабочие карты сдать консультанту для итоговой оценки. Консультанты сдадут мне.

Урок окончен! До свидания!