LM338 регулируемый стабилизатор напряжения и тока. Распиновка, datasheet. Схема, описание

LM338 регулируемый стабилизатор напряжения и тока. Распиновка, datasheet. Схема, описание

Стабилизатор напряжения LM338, производства Texas Instruments, является универсальной интегральной микросхемой, которая может быть подключена многочисленными способами для получения высококачественных цепей питания.

Технические характеристики стабилизатора LM338 :

  • Обеспечения выходного напряжения от 1,2 до 32 В.
  • Ток нагрузки до 5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

Интегральная микросхема LM338 выпускается в двух вариантах корпусов - это в металлическом корпусе TO-3 и в пластиковом TO-220:

Распиновка выводов стабилизатора LM338


Основные технические характеристики LM338


Калькулятор для LM338

Расчет параметров стабилизатора LM338 идентичен расчету LM317. Онлайн калькулятор находиться .

Примеры применения стабилизатора LM338 (схемы включения)

Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM338.

Простой регулируемый блок питания на LM338

Данная схема - типовое подключение обвязки LM338. Схема блока питания обеспечивает регулируемое выходное напряжение от 1,25 до максимума подаваемого входного напряжения, которое не должно быть более 35 вольт.


Переменный резистор R1 используется для плавного регулирования выходного напряжения.

Простой 5 амперный регулируемый блок питания

Эта схема создает выходное напряжение, которое может быть равно напряжению на входе, но ток хорошо изменяется и не может превышать 5 ампер. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи.


Регулируемый блок питания на 15 ампер

Как уже было сказано ранее микросхема LM338 в одиночку может осилить только 5А максимум, однако, если необходимо получить больший выходной ток, в районе 15 ампер, то схема подключения может быть модифицирована следующим образом:


В данном случае используются три LM338 для обеспечения высокой токовой нагрузки с возможностью регулирования выходного напряжения.

Переменный резистор R8 предназначен для плавной регулировки выходного напряжения

Источник питания с цифровым управлением

В предыдущей схеме источника питания, для осуществления регулировки напряжения использовался переменный резистор. Ниже приведенная схема позволяет посредством цифрового сигнала подаваемого на базы транзисторов получать необходимые уровни выходного напряжения.

Величина каждого сопротивления в цепи коллектора транзисторов подобрана в соответствии с необходимым выходным напряжением.

Схема контроллера освещения

Кроме питания, микросхема LM338 также может быть использована в качестве светового контроллера. Схема показывает очень простую конструкцию, где фототранзистор заменяет резистор, который используется в качестве компонента для регулировки выходного напряжения.


Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM338. Ее свет падает на фототранзистор. Когда освещенность возрастает сопротивление фоторезистора падает и выходное напряжение уменьшается, а это в свою очередь уменьшает яркость лампы, поддерживая ее на стабильном уровне.

Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов. Резистором RS можно задать необходимый ток зарядки для конкретного аккумулятора.



Путем подбора сопротивления R2 можно скорректировать необходимое выходное напряжение в соответствии с типом аккумулятора.

Схема плавного включения (мягкий старт) блока питания

Некоторые чувствительные электронные схемы требуют плавного включения электропитания. Добавление в схему конденсатора С2 дает возможность плавного повышения выходного напряжения до установленного максимального уровня.


LM338 также может быть настроен для поддержания температуры обогревателя на определенном уровне.


Здесь в схему добавлен еще один важный элемент - датчик температуры LM334. Он используется как датчик, который подключен между adj LM338 и землей. Если тепло от источника возрастает выше заданного порога, сопротивление датчика понижается, соответственно, и выходное напряжение LM338 уменьшается, впоследствии уменьшая напряжение на нагревательном элементе.

(729,7 Kb, скачано: 2 510)

Стабилизатор напряжения на микросхеме LX8384-00CP, 3-10/1,25-7 вольт 5 ампер

Этот низковольтный стабилизатор напряжения построен на интегральной микросхеме LX8384-00CP фирмы LinFinity Microelectronics, представляющей собой сильноточный линейный стабилизатор напряжения положительной полярности с регулируемым выходным напряжением и малым напряжением насыщения. Стабилизаторы напряжения, построенные с применением этой микросхемы, в первую очередь предназначены для питания цифровых устройств, устройств на микропроцессорах, но могут быть использованы и для других целей.

Максимальный ток нагрузки для микросхем серии LX8384 может достигать 5 А, а максимальная рассеиваемая мощность (с теплоотводом) составляет около 15 Вт.

Схема стабилизатора представлена на рис.1.


Напряжение поступает на вход интегральной микросхемы через самовосстанавливающийся предохранитель FU1. Диод VD1 защищает стабилизатор от подачи напряжения в неправильной полярности. При переполюсовке напряжения питания самовосстанавливающийся предохранитель переходит в состояние высокого сопротивления, обратное напряжение на входе DA1 ограничивается до безопасной величины, равной прямому падению напряжения на диоде VD1. Конденсаторы С1...С13 - фильтр питания DA1.

Большая суммарная емкость этих конденсаторов необходима для получения высоких эксплуатационных показателей, которые способны обеспечить LX8384. Если стабилизатор будет подключен к выходу мостового выпрямителя, то суммарную емкость конденсаторов желательно увеличить до 10000 мкФ.

Выходное напряжение стабилизатора регулируют с помощью переменного резистора R3. Диапазон регулировки составляет от 1,25 до 7 В. Подбором резистора R1 устанавливают верхнюю границу регулировки выходного напряжения (7 В). Конденсаторы С14...С20 - блокировочные по цепи выходного напряжения.

Светодиод НL1 сигнализирует о наличии выходного напряжения питания величиной более 2 В. Диод VD2 защищает интегральный стабилизатор от повреждения обратным напряжением, например, когда при коротком замыкании в первичной цепи напряжение на входе стабилизатора становится меньше выходного. Переменный резистор R3 - СПЗ-96-1.

Для точной подстройки выходного напряжения последовательно с этим резистором можно включить переменный резистор сопротивлением 47...100 Ом. Провода, идущие к переменному резистору, должны быть минимальной длины. Оксидные конденсаторы в схеме применены обычные, алюминиевые. Использование нескольких конденсаторов вызвано необходимостью снижения габаритов и себестоимости конструкции.

При желании на месте С7...С12 можно установить один конденсатор емкостью 6800 мкФ, а на месте С15.С17 - конденсатор на 3300 мкФ. Все неполярные конденсаторы - керамические, для поверхностного монтажа, емкостью 0,47...4,7 мкФ. Конденсаторы С1.С6, С18...С20 припаивают с обратной стороны платы к выводам оксидных конденсаторов. Конденсаторы С13, С14 припаивают маломощным паяльником непосредственно к выводам микросхемы вблизи корпуса. "Минусовые" выводы этих двух конденсаторов соединяют с общим проводом отдельными проводами.

Диоды КД226А можно заменить любыми из серий КД226, КД202, КД411, 1N5401, 1N5407.

Сверхъяркий светодиод L-1503SGT зеленого цвета можно заменить любым аналогичным. Самовосстанавливающийся предохранитель можно заменить на LP30-400 или аналогичный на 4 А. Этот предохранитель выбран на меньший номинальный ток, чем способен отдавать в нагрузку интегральный стабилизатор LX8383. Сделано это как для повышения надежности устройства при разных режимах эксплуатации, так и по той причине, что при токе 5 А предохранитель срабатывает не сразу, а через несколько десятков секунд, что позволяет кратковременно эксплуатировать стабилизатор с током нагрузки более 4 А.

Вид на монтаж устройства показан на рис.2.

Стабилизатор смонтирован навесным монтажом на плате размерами 95x45 мм. Сильноточные цепи выполнены проводом с сечением по меди 0,75 мм2. Микросхема стабилизатора прикреплена к дюралюминиевому теплоотводу размерами 110x100x2 мм, в качестве которого использована половина теллоотвода для тиристоров. КУ221 из старого телевизора. УПИМЦТ. С таким теплоотводом микросхема способна рассеивать мощность до 7 Вт (в просторном корпусе).

При большей рассеиваемой мощности необходим более эффективный теплоотвод или принудительный обдув.

При монтаже микросхемы следует учитывать, что ее теплоотводящий фланец электрически связан с выходом стабилизатора (выводом 2). Микросхему LX8384-00CP подключают к плате стабилизатора проводами минимально возможной длины. ВместоLX8384-00CP можно применить микросхемы LX8384A-00CP, LX8384B-00CP, LX8384-00IP. выполненные в корпусе. ТО-220, или одну из микросхем в корпусе. ТО-263, которые в обозначении вместо суффиксов СР, IP содержат суффиксы CDD, IDD. Следует заметить, что в серии LX8384 кроме стабилизаторов с регулируемым выходным напряжением есть стабилизаторы с фиксированным выходным напряжением, например, LX8384-15 на выходное напряжение 1,5 В/5 А и LX8384-33 на выходное напряжение 3,3 В/5А.

Структура этих микросхем показана на рис.3.


Стабилизаторы на микросхемах серии LX8384 выгодно применять при малой разнице между входным и выходным напряжением, когда применение импульсных стабилизаторов затруднено или малоэффективно. Напряжение насыщения микросхем этих серий не более 1,3. 1,5 В при токе нагрузки 5 А.

Рекомендованное производителем максимальное входное напряжение не должно превышать 10 В, однако были успешно проведены испытания работоспособности этих микросхем при входном напряжении 12 В, выходном 7 В и токе нагрузки 3 А, а также при выходном напряжении 5 В и токе нагрузки 2 А.

При этом система охлаждения обеспечивала температуру корпуса ИМС не выше 50°С. Возможность питания этих микросхем входным напряжением 12 В при эффективном охлаждении расширяет область применения построенных на их основе стабилизаторов.

Разница между входным и выходным напряжением не должна быть более 10 В.

Стабилизаторы напряжения на микросхемах серии LX8384 могут найти применение для питания различных цифровых и аналоговых устройств, для стабилизации напряжения в мощных светодиодных светильниках с аккумуляторным питанием, для питания стабильным напряжением сверхминиатюрных электропаяльников для пайки SMD-компонентов и т.п.

Сложно представить навороченный тюнинг современных автомашин без светодиодного оформления. Отдельным доработкам нужно приложить немало усилий, к примеру, монтаж светодиодных лент в фары. И часто случается неприятный казус, если светодиоды вдруг сгорают или выходят из строя. Обычно, причина заключается в том, что схема подключения не оснащена стабилизатором.

Если в сети автомашины имеются светодиодная техника до 300 мА, то для увеличения их срока службы требуется установка ограничителя тока (резистора). При нестабильном напряжении в сети автомашины рекомендовано применять стабилизатор.

Итак, для обеспечения электрооборудования автомобиля качественным напряжением нужно использовать автономный стабилизатор. Даже такие модные сегодня элементы тюнинга, как светодиоды, лучше запитывать через стабилизатор 12 вольт.

Стабилизатор напряжения 12 вольт: как он работает?

Сегодня у нас есть некоторые замечательные электронные микросхемы, специально разработанные для применения регулирования напряжения. Такими микросхемами обеспечивается качественная стабилизация. Проектируются они на базе автопереключения секций применяемого трансформатора с помощью электронных ключей (тиристоров, симисторов и реле). Аппараты обладают быстродействием, широким диапазоном входных параметров и высоким КПД.

Имеется вариант - применить в качестве стабилизирующего ограничителя тока микросхему LM317. Принципиальная схема ниже показывает довольно простую конфигурацию, где СК 317 используется в стандартном режиме регулятора напряжения.

В предлагаемом устройстве включена микросхема , которая ограничивает его от таких возможных опасностей, как перегрузка по току, перепады напряжения и короткие замыкания, обеспечивая идеальные условия для создания комфортного интерьера в автомобиле. Схема настроена на поддерживание 12 вольт на выходе. В системе предусмотрена тепловая защита (изоляция из слюды) и защита от короткого замыкания (пожарная опасность).

Упрощенный вариант стабилизатора напряжения 12 вольт

С использованием микросхемы LM196 и минимумом компонентов, как приведено ниже, конфигурация стабилизатора будет чрезвычайно простой.

где Р3 = 240 Ом, Д1, Д2 = 15 А, ІС1 = LM196.

Резисторами ограничивается ток на светодиоды, дабы они не сгорели. Мощность их должна быть не менее 0,05 Вт, поскольку при работе она находится в зависимости от разницы значений входного и выходного напряжения.

Однако два рассмотренных варианта имеют один довольно существенный недостаток – собранные по ним устройства греются. Потому что это линейные регуляторы. Импульсный же аппарат отличается от тех, что описаны выше, наряду с другими своими функциями тем, что практически не греется (лишь в случае, если очень перегрузить).

Импульсные стабилизаторы напряжения

Устройства в себе включают все что нужно. Исходя из их качеств, в большинстве случаев их и ставят для светодиодов.

Стабилизация осуществляется благодаря чередованию импульсов и пауз. Импульсные устройства обладают лучшим КПД по сравнению с линейными. Иными словами, они способны преобразовывать входное напряжение по параметрам, заданным заранее. Регулировка этих параметров легко выполняется благодаря различным вариантам электрических схем. Импульсные устройства бывают повышающие, понижающие либо инвертирующие.

Сеть автомашины довольно уязвима для всяких помех, скачков напряжения. Для защиты электросети в автомашинах применяют импульсный стабилизатор напряжения 12 вольт.

Благодаря ему нестабильное напряжение входной сети питает сеть стабильными 12 вольтами и током, около 0,3-0,4 ампера. Штатные электрические узлы автомашины, как правило, надежно защищены при установке.

Преимущества применения стабилизаторов

Стабилизаторы имеют ряд достоинств, среди которых:

  • cглаживание небольших скачков и колебаний сети;
  • защита электроприёмников внутренней сети от недонапряжения или перенапряжения;
  • надёжная защита чувствительной электронной системы от неполадок из-за сетевых перепадов;
  • исключение такого эффекта, как мерцание лампочек. И как следствие, существенное увеличение срока их службы.

Заключение

Электрическая система любого транспортного средства, вероятно, более изменчива, чем электрика в нашем доме, просто потому, что она создается из источника под названием автомобильный генератор. Выходные параметры последнего претерпевают существенные изменения в зависимости от скорости транспортного средства.

Это означает, что резкие изменения скорости или частое применение тормоза, генерируют изменение энергетических параметров на выходе генератора. Поскольку в настоящее время интерьеры нашего автомобиля или другого транспортного средства сильно наполнены сложными электронными устройствами, то нестабильные условия могут привести к нежелательным последствиям в работе этой техники, а именно повлиять на их производительность и срок службы.

Остаётся один выход: установить в автоматический стабилизатор напряжения или стабилизатор тока. Но что из них выбрать для установки?

  1. Если электроприёмник устанавливается в автомашину с нестабильным напряжением – без стабилизатора напряжения не обойтись.
  2. Если изделие рассчитано на 300 мА и выше – ставится стабилизатор тока.

Надеемся, что типовые решения для стабилизатора в автомашине, описанные в этой статье, помогут избавить вас от всех тревог и волнений.