Стабилизатор напряжения lm317 калькулятор. Интегральный стабилизатор напряжения LM317. Описание и применение. Назначение выводов микросхемы

Стабилизатор напряжения lm317 калькулятор. Интегральный стабилизатор напряжения LM317. Описание и применение. Назначение выводов микросхемы

Довольно часто возникает необходимость в простом стабилизаторе напряжения. В данной статье приводится описание и примеры применения недорогого (цены на LM317) интегрального стабилизатора напряжения LM317 .

Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля. Наиболее распространены схемы с регулировкой напряжения.

Минимальный требуемый ток нагрузки, так что регулировка напряжения может работать только правильно, составляет максимум 10 мА или 5 мА. Это предложение противоречит «минимальному» и «максимальному», поэтому несколько слов. Это означает, что необходим минимальный ток, но этот минимальный ток имеет максимальное значение через рассеяние образца, и с этим следует рассчитывать из наихудших соображений. В листе данных также имеется типичное значение, которое составляет 5 мА или 5 мА. Ток, протекающий через управляющий вход, составляет не более 100 мкА для обоих регуляторов напряжения.

На практике, с участием LM317 можно построить стабилизатор напряжения на произвольное выходное напряжение, находящееся в диапазоне 3…38 вольт.

Технические характеристики:

  • Напряжение на выходе стабилизатора: 1,2… 37 вольт.
  • Ток выдерживающей нагрузки до 1,5 ампер.
  • Точность стабилизации 0,1%.
  • Имеется внутренняя защита от случайного короткого замыкания.
  • Отличная защита интегрального стабилизатора от возможного перегрева.



Мощность рассеяния и входное напряжение стабилизатора LM317

Напряжение на входе стабилизатора не должно превышать 40 вольт, а так же есть еще одно условие – минимальное входное напряжение должно превышать желаемое выходное на 2 вольта.

Диаграмму «Регулировка-Ток». Возникает вопрос, потребляет ли старший брат больше своей энергии, чем? Это быстро отвечает, потому что несвязанная нагрузка не может существовать, как мы уже знаем. Для работы требуется не менее 5 мА. Этот ток течет во вход и от выхода, в цепь контроллера есть только ветвь около 5 мА, а затем снова. Только очень малая часть максимум 1 мА вытекает из цепи на регулировочном соединении.

Значить как сделать самый простой стабилизатор тока?

Из 5% -ной резистора резистор с 220 Ом также подходит для примерно 5 мА. Тогда вы должны знать, что в качестве источника тока этот минимальный ток 5 мА не должен быть недокус, если уделить особое внимание хорошей воспроизводимости. Если вы хотите сделать это очень точно, вы можете пойти ниже этих минимальных токов, но следуйте схеме «Минимальный рабочий ток», как уже упоминалось.

Микросхема LM317 в корпусе ТО-220 способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. Если не применять качественный теплоотвод, то это значение будет ниже. Мощность, выделяемая микросхемой в процессе ее работы, можно определить приблизительно путем умножения силы тока на выходе и разности входного и выходного потенциала.

Обратите внимание на примечания к применению в листах данных, которые всегда могут быть предложениями для ваших собственных разработок. Свойства, описанные в этой главе, кратко обобщены на рисунке 10. Речь идет о специальной схеме зарядки для небольшого радиоприемника с солнечными батареями для зарядки никель-кадмиевой батареи, если радио не может заряжаться солнечным светом. Один для ограничения тока, другой для ограничения напряжения. Ниже зарядного напряжения аккумуляторной батареи зарядка осуществляется с постоянным током.

В области зарядного напряжения зарядный ток уменьшается до небольшого значения, которое служит для зарядки заряда. Поскольку эта схема отличается от других, она также подходит для других применений, она является частью этой мини-схемы электроники. Часто для этой цели используется диод. Этот диодный метод часто бывает достаточно, когда зарядный ток относительно низок относительно емкости аккумулятора. Обычно рекомендуется использовать максимальный зарядный ток, значение которого соответствует одной десятой емкости аккумулятора.


Максимально допустимое рассеивание мощности без теплоотвода равно приблизительно 1,5 Вт при температуре окружающего воздуха не более 30 градусов Цельсия. При обеспечении хорошего отвода тепла от корпуса LM317 (не более 60 гр.) рассеиваемая мощность может составлять 20 ватт.

Этот простой заряд постоянного тока не подходит для быстрого заряда! Проблема заключается в нагревании батареи. Это затрудняет определение напряжения зарядки, в частности. потому что поток диода недостаточно стабилен. Гораздо лучшая схема зарядки с чистым обратным током зарядки в диапазоне зарядного напряжения показывает следующую главу в смысле более универсального применения на практическом примере в качестве функциональной схемы, в соответствии с которой значения тока и напряжения могут регулироваться в соответствии с их собственными требованиями.

При размещении микросхемы на радиаторе необходимо изолировать корпус микросхемы от радиатора, например слюдяной прокладкой. Так же для эффективного отвода тепла желательно использовать теплопроводную пасту.

Подбор сопротивления для стабилизатора LM317

Для точной работы микросхемы суммарная величина сопротивлений R1…R3 должна создавать ток приблизительно 8 мА при требуемом выходном напряжении (Vo), то есть:

Это радио часто используется летом в открытом бассейне. Это всегда сопровождает меня в сумке для купания. Он работает не менее 30 лет. Это не то же самое, что и внутреннее напряжение батареи. Если батарея достигла полного уровня заряда при подключении разъема, происходит зарядный ток приблизительно от 1 до 2 мА.

Краткое описание lm317

Это будет более низким пиковым значением напряжения пульсации. Конечно, зарядная схема все еще работает, когда напряжение пульсации немного больше, а управление током и напряжением не на 100% правильное. Лэддерауэр просто немного дольше. Долгое время оставалось неясным. Для радиоприемника нет принципиальной схемы.

R1 + R2 + R3 = Vo / 0,008

Данное значение следует воспринимать как идеальное. В процессе подбора сопротивлений допускается небольшое отклонение (8…10 мА).

Величина сопротивления переменного R2 напрямую связана с диапазоном напряжения на выходе. Обычно его сопротивление должно быть примерно 10…15 % от суммарного сопротивления оставшихся резисторов (R1 и R2) либо же можно подобрать его сопротивление экспериментально.

Конечно, чтобы проверить, активна ли схема зарядки. Чтобы убедиться в том, насколько хорошо заряжен аккумулятор, достаточно вытащить вилку на солнечном радио. Однако не имеет значения, если аккумулятор заряжен дольше, чем это необходимо, поскольку зарядный ток настолько низок, что батарея не потребляет значительную мощность и, следовательно, не вызывает значительного повышения температуры. Однако его светимость не увеличивается линейно с более высоким током.

В левой колонке есть много фотографий радиостанций с древних времен. Джерард говорит и пишет по-немецки. Заряжайте аккумулятор с постоянным током, что нужно соблюдать?: В предыдущей главе читается указание на то, что простой заряд постоянного тока не подходит для быстрой зарядки. Если вы обратили внимание на то, что постоянный ток зарядки не является или только немного меньше одной десятой от значения емкости аккумулятора, и обеспечивается, что при определенном напряжении зарядки аккумулятора зарядный ток уменьшается до такой степени, что это одно и то же Сохраняя зарядное состояние батареи, ничего не может произойти.

Расположение резисторов на плате может быть произвольным, но желательно для лучше стабильности располагать подальше от радиатора микросхемы LM317.

Стабилизация и защита схемы

Емкость С2 и диод D1 не обязательны. Диод обеспечивает защиту стабилизатора LM317 от возможного обратного напряжения, появляющегося в конструкциях различных электронных устройств.

К принципиальной схеме: Если вы хотите отрегулировать ток зарядки с помощью регулятора напряжения для определения тока зарядного тока, вам необходимо переключить диод между выходом зарядного устройства и аккумулятором из-за его напряжения на входе, которое незначительно изменяется при изменении тока, проблема.

Эта схема расширяет изображение. В следующей схеме на рисунке 13 зарядный ток должен составлять 100 мА. Это тот случай, когда ток коллектора меньше 7 А с коэффициентом усиления тока 20 и менее 1 А с коэффициентом усиления тока 10. Поскольку напряжение насыщения составляет около 200-250 мВ. Мы остаемся с нашим приложением при токе 100 мА, а так как напряжение насыщения составляет около 60 мВ при усилении тока на 20, оно составляет от 80 до 85 мВ. Это относительно не зависит от текущего коэффициента усиления 10 или 20.

Емкость С2 не только слегка уменьшает отклик микросхемы LM317 на изменения напряжения, но и снижает влияние электрических наводок, при размещении платы стабилизатора вблизи мест имеющих мощное электромагнитное излучение.

Как было уже сказано выше, ограничение максимально возможного тока нагрузки для LM317 составляет 1,5 ампера. Имеются разновидности стабилизаторов схожие по работе со стабилизатором LM317, но рассчитаны на более больший ток нагрузки. К примеру, стабилизатор LM350 выдерживает ток до 3 ампер, а LM338 до 5 ампер.

Разница в этом дифференциальном напряжении выше при более высоком токе коллектора, но дифференциальные различия в сравнении двух интенсивностей тока остаются примерно одинаковыми. Однако это не применяется, если ток коллектора находится в диапазоне от 1 А и выше. Мы выбираем здесь 5 мА, и это имеет эффективное преимущество при включении и выключении схемы. И наоборот, то же самое в процессе выключения. Это не должно быть так точно. Подробнее об этой теме с изображением. Пример измерения: этот пример в разделе 1 предназначен для облегчения понимания.

Для облегчения расчета параметров стабилизатора существует специальный калькулятор:


(скачено: 4 697)

(скачено: 1 553)

Интегральный, регулируемый LM317 как никогда подходит для проектирования несложных регулируемых источников и , для электронной аппаратуры, с различными выходными характеристиками, как с регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.

Здесь можно увидеть простой источник шума. Вторую схему в желтом поле. Второй транзистор усиливает шумовое напряжение. Это создает ток, округленный до 11 мА. Ток, равный 3 мА, остается для базового тока Т2 Т2. Показания тока и напряжения не так точны, поскольку пороговое напряжение базового излучателя слабо зависит от базового тока, а также от температуры. Режим зарядки аккумулятора отключен.

Эта процедура может быть усовершенствована с использованием компаратора. Это будет явно преувеличено. Источником постоянного тока является электронная схема, которая с определенными ограничениями является идеальным источником тока. Источник постоянного тока подает постоянный ток в цепь независимо от приложенного напряжения, т.е. изменения нагрузки или напряжения на нагрузке не будут влиять на ток через нагрузку. Поэтому он имеет бесконечно высокое дифференциальное внутреннее сопротивление и низкое статическое внутреннее сопротивление.

Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.

Технические характеристики стабилизатора LM317:

  • Обеспечения выходного напряжения от 1,2 до 37 В.
  • Ток нагрузки до 1,5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

Назначение выводов микросхемы:


Источник постоянного тока с биполярным транзистором

Существуют источники постоянного тока как источник постоянного тока или источник переменного тока. Источники постоянного тока могут быть реализованы различными способами. В этой статье представлены некоторые типичные варианты схем. Основной принцип постоянного источника тока с биполярным транзистором показан на рис. Это следящий эмиттер, управляемый опорным напряжением.

Источник постоянного тока с двумя диодами

Источник опорного напряжения используется на рисе. 01 будет, конечно, быть заменен в практической конструкции схемы по полупроводниковым компонентам. На фиг. 22 используются два кремниевых диода, соединенных последовательно в прямом направлении.

Источник постоянного тока с диодом и резистором

Источник постоянного тока двух транзисторов. Источник постоянного тока с полевым транзистором. Источник постоянного тока с операционным усилителем. Простые источники постоянного тока с транзистором могут быть значительно улучшены, если базовый эмиттерный путь транзистора интегрирован в обратную связь операционного усилителя.




Источник постоянного тока с интегральной схемой

Таким образом, операционный усилитель действует как усилитель ошибки. Принцип схемы - принцип неинвертирующего усилителя с постоянным напряжением на входе. Постоянное напряжение генерируется здесь с помощью диода Зенера. Постоянные токи требуются во многих технических приложениях. Для таких применений полупроводниковая промышленность разработала ряд более или менее специализированных интегральных схем. Схемы драйверов, показанные здесь, можно разделить на две группы на основе требуемого тока: линейные контроллеры и переключающие регуляторы.

Онлайн калькулятор LM317

Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора.

Если низкие токи могут использоваться линейными цепями. Преимущество такого типа управления заключается в том, что схемы просты, и никакие меры подавления помех не должны быть затронуты. Недостатком является то, что тепловыделение вызвано неоптимальной эффективностью.






Энергия сохраняется как магнитное поле в индукторе. Магнитное поле в дросселе разрушается и индуцирует напряжение. Таким образом, цепь является источником постоянного тока.


Возможны два подхода. Цель состоит в том, чтобы контролировать до 3А в наносекундном диапазоне. Вам не нужно отключать ток, но переключайте транзистор с нагрузки на фиктивный резистор. Таким образом, контроллер всегда работает, только ток переключается нагрузкой. Поэтому регулятор выглядит как постоянный ток.

Калькулятор для расчета стабилизатора тока на LM317 смотрите .

Примеры применения стабилизатора LM317 (схемы включения)

Стабилизатор тока

Данный стабилизатор тока можно применить в схемах различных зарядных устройств для аккумуляторных батарей или регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.