Блок питания жк дисплея функциональная схема. Телевизоры на ЖК (LCD) панелях. Схема, описание

Блок питания жк дисплея функциональная схема. Телевизоры на ЖК (LCD) панелях. Схема, описание

Мечта о "плоских" телевизорах и мониторах, имеющих очень небольшой размер в глубину, возникла, не одно десятилетие назад. Но только в последние годы она воплотилась в реальность: появились серийные модели на плоских отображающих панелях.

Электронно-лучевые трубки (кинескопы), служащие основой любого телевизора, существуют уже многие десятилетия и постоянно совершенствуются. Однако они имеют и недостатки: наличие высокого напряжения, большие объемные габариты (особенно а глубину при больших размерах изображения) и др. Поэтому разработчики всегда стремились к новым идеям при создании отображающих устройств. Одна из них - использование жидкокристаллического вещества в качестве клапана для пропускания световых потоков. Окончательно эта идея воплотилась в виде ЖК дисплеев (панелей) - LCD (Liquid Crystal Display). Быстрый рост их производства за рубежом привел к появлению как большого числа моделей "плоских" телевизоров, так и компьютерных мониторов.

Рассмотрим принцип работы и варианты конструкции таких дисплеев . В общем известно, что ЖК вещество (материал) модулирует внешний световой поток под действием электрического поля или тока. Конкретная работа ЖК дисплеев основана на использовании эффекта вращения плоскости поляризации светового потока слоем нематического ЖК вещества (так называемого твист-эффекта).

Конструкция ЖК панели показана на рис. 1.

Панель содержит две плоскопараллельные подложки из прозрачного материала (обычно стекла толщиной около 1 мм), расположенные одна относительно другой с фиксированным зазором, в который введен ЖК материал. На внутренних сторонах подложек нанесены электроды адресации в виде определенного рисунка. В качестве прозрачного проводящего слоя электродов используют пленку оксида индия.

Слои ориентирующих покрытий, нанесенные на электроды адресации, предназначены для задания определенной ориентации ЖК молекул в рабочем материале. Зазор между подложками задают калиброванные шарообразные или цилиндрические распорные элементы (спейсеры), диаметр которых может быть в пределах 3...25 мкм. После сборки (склеивания) панель герметизируют по всему периметру, причем слой герметика также имеет спейсеры. На внешние стороны подложек наклеены поляроиды с определенной ориентацией плоскости поляризации.

Принцип работы ЖК ячейки (пиксела) панели с использованием твист-эффекта иллюстрирует рис. 2.


Молекулы ЖК материала обладают дипольным моментом. В результате взаимодействия электрических полей диполей образуется спиралеаидная структура из молекул ЖК вещества. Слои ориентирующих покрытий на верхней и нижней подложках совместно с дипольной структурой ЖК материала в отсутствие электрического поля обеспечивают поворот плоскости поляризации светового потока на 90°. Ориентированный так слой нематического ЖК вещества обладает свойством поляризации проходящего через него светового потока. Плоскости поляризации верхнего и нижнего поляризационных фильтров повернуты один относительно другого на 90°.

Как видно на рис. 2,а, световой поток сначала проходит через верхний поляризационный фильтр. При этом его половина, не имеющая азимутальной поляризации, теряется. Остальная часть уже поляризованного света, проходя через слои ЖК материала, поворачивает плоскость поляризации на 90°. В результате ориентация плоскости поляризации светового потока будет совпадать с плоскостью поляризации нижнего фильтра и поток будет проходить через него практически без потерь.

Если ЖК вещество поместить в электрическое поле, подав на электроды адресации напряжение так, как показано на рис. 2,6, спиралевидная молекулярная структура в нем разрушается. Проходящий через ЖК материал световой поток уже не изменяет плоскость поляризации и почти полностью поглощается нижним поляризационным фильтром. Следовательно, ЖК вещество имеет два оптических состояния: прозрачное и непрозрачное. Отношение коэффициентов пропускания в обоих состояниях определяет контрастность изображения.

Для обеспечения управления оптическим состоянием ячеек-пикселов (элементов изображения) панели требуется сформировать такие напряжения на электродах адресации, чтобы состояние каждого пиксела изменялось без изменения состояния других. Исходя из этого топология электродов адресации ЖК панели представляет собой матрицу, образованную системой строчных и столбцовых электродов, расположенных конструктивно на двух параллельных прозрачных подложках. Элементы (пикселы) телевизионного изображения в ЖК панели образуются на пересечении строчных и столбцовых электродов. Для реализации управления большим числом элементов изображения (а в телевизорах это практически всегда так) применяют мультиплексирование сигналов.

Несколько вариантов топологии матриц, используемых в ЖК панелях, представлено на рис. 3.

Вариант на рис. 3,а - самый простой и наиболее популярный. Вариант на рис. 3,6 позволяет получить более широкий шаг выводов для подачи столбцовых управляющих сигналов. Варианты на рис. 3,в иг - разновидности архитектуры Dual Scan (или Dauble Scan), при которой обеспечивается уменьшение числа мультиплексируемых строк, что позволяет еще больше увеличить контрастность изображения. Фактически в этих случаях формируются два отдельных экранных поля, зазор между которыми незаметен. Адресация сигналов для обоих полей происходит одновременно.

Различают два способа адресации в ЖК панелях: пассивный и активный. При пассивной адресации используют временное мультиплексирование строк без применения каких-нибудь ключевых элементов. Недостатками такого способа можно назвать низкий коэффициент мультиплексирования при малой контрастности, сильное проявление кросс-эффекта и сложная система формирования управляющих сигналов.

При активной адресации для каждого пиксела на пересечении строки и столбца создают ключевой элемент по схеме, изображенной на рис. 4.

Такие элементы позволяют использовать более низкий коэффициент мультиплексирования. Контрастность изображения при этом получается значительно выше. Однако ЖК панели с активной адресацией гораздо дороже панелей с пассивной адресацией, что удорожает и построенные на них аппараты. Активными ключевыми элементами чаще всего служат тонкопленочные полевые транзисторы TFT (Thin Film Transistor). На рис. 5,а показан вариант топологии, а на рис. 5,б - принципиальная схема ключевого элемента активной адресации на таком транзисторе.


Цветные фильтры размещают на внутренней стороне ближней к зрителю подложки ЖК панели. Материалами для изготовления фильтров служат тонкие пленки различных красителей. Их наносят по различным технологиям: осаждением из растворов или из газовых сред, печатным способом и др. Варианты топологии цветных фильтров иллюстрирует рис. 6 (R - для красного цвета, G - зеленого, В - синего).


Число строк ЖК панелей определяет коэффициент мультиплексирования. Чаще всего применяют низкомультиплексированные панели со значениями коэффициента 1:2, 1:3 и 1:4. В зависимости от этого в конкретных устройствах управления создается несколько уровней постоянного напряжения, из которых формируются напряжения управления строками и столбцами необходимой формы.

На рис. 7 изображены диаграммы напряжений адресации в ЖК панелях с коэффициентом мультиплексирования 1:3. На нем ВР0-ВР2 обозначают сигналы строчных выходов; Sn-Sn+2 - сигналы столбцовых выходов; UDD - напряжение питания контроллера управления панелью; Ulcd - напряжение смещения, питающее выходные формирователи сигналов; Uoбp, равное Udd - Ulcd. - образцовое напряжение; Тк - период кадровой развертки.

Для создания светового потока в ЖК панелях применяют устройство задней подсветки, которое содержит источник излучения, светораспределители (световоды) и один или два отражателя. Источником излучения служат лампы накаливания, светодиоды, электролюминесцентные панели, чаще всего, люминесцентные лампы.

На рис. 8 представлены типовые конструкции устройств задней подсветки с фронтальным (рис. 8,а) и торцевым (рис. 8,6) расположением люминесцентной лампы.


Использование ЖК панелей рассмотрим на примере одной из популярных моделей LC-20C2E фирмы SHARP. Фирма начала изготовление "плоских" телевизоров одной из первых - еще в 1996, 1997гг., возглавив до этого список разработчиков и изготовителей ЖК панелей. Сейчас список моделей на этих панелях у фирмы SHARP превышает десяток, а размер экрана по диагонали уже перешагнул 40 дюймов (около 92 см).

TFT ЖК панель (LCD) описываемой модели имеет размер экрана по диагонали 20 дюймов и характеризуется значительным углом обозрения (160° как по горизонтали, так и по вертикали). Модель обладает существенно более низким по сравнению с обычными телевизорами энергопотреблением (не более 45 Вт).

Телевизор рассчитан на прием сигналов в радиочастотных стандартах В/G/L/D/K/l/M/N и по системам цветности PAL/SECAM/NTSC. Селектор каналов (тюнер) телевизора позволяет настроить и запомнить 197 телевизионных каналов, в том числе и в интервалах кабельного телевидения (CATV). Усилитель 3Ч телевизора обеспечивает мощность по 2,5 Вт в двух каналах воспроизведения звука.

Усовершенствованная матричная ЖК панель имеет разрешение 921x600 пикселей. Яркость свечения экрана - не хуже 430 кд/м2. Срок службы используемых для подсветки LCD люминесцентных ламп - 60000 ч.

Телевизор питается от источника постоянного напряжения 13 В Пр и пользовании специального сетевого адаптера, входящего в комплект поставки, телевизор может питаться и от сети переменного напряжения 110...240 В частотой 50/60 Гц. Габариты телевизора (ширина, высота, глубина) - 476,6x556,4x229,4 мм. Масса аппарата - 8 кг.

Для обеспечения комфортности просмотра плоскость экрана телевизора можно наклонить относительно перпендикулярной к подставке плоскости на 5° вперед или на 10° назад, а также повернуть на 40° вправо или влево относительно среднего положения. Внешний вид телевизора показан на рис. 9.

Схема соединений плат и устройств телевизора представлена на рис. 10.

В каждом соединительном разъеме указаны число контактов и условно способ их соединения с контактами разъема другого блока: "1 в 1" или "вперекрест". В основном контакты соединены первым способом контакт 1 - с контактом 1,2 - с контактом 2 и т. д. Лишь разъемы МТ и МА между платой тюнера и основной платой соединены "вперекрест". Например, контакты разъемов МТ распаяны так: контакт 1 - к контакту 20, контакт 2 -к контакту 19 и т. д. То же относится и к разъемам МА, только в них - 30 контактов. Это необходимо помнить при изучении принципиальных схем блоков и ремонте Телевизор, кроме ЖК панели, на рисунке не показанной, и двух динамических головок, содержит семь плат: тюнера (Tuner PWB), основной (Main PWB) и видео (Video PWB), звуковой выходной (S-Out PWB), переключателей (Switch PWB) и двух инверторов (Inverter A PWB и Inverter В PWB), а также устройство задней подсветки (Back Light) ЖК панели. Через разъемы LS и LG на ЖК панель с основной платы поступают исходные управляющие (Source) и стробирующие (или сканирующие) сигналы (Gate).

На плате тюнера находится непосредственно сам тюнер, а также расположены микроконтроллер управления с телетекстом и устройством OSD (On Screen Display - отображение на экране служебной или дополнительной информации), микросхемы ПЗУ, программируемого ЗУ и сброса микроконтроллера, переключатели аналоговых сигналов R, G, В (как внешних, так и сформированных микроконтроллером), стабилизаторы напряжений 5; 9 и 10,1 В, а также разъемы для подачи внешних видеосигналов и сигналов звука, в том числе разъем SCART.

На основной плате размещено большинство устройств телевизора, в том числе процессор обработки мультимедийных сигналов звука (в нем же находится канал обработки сигналов ПЧ звука), буферный усилитель, предварительный усилитель сигналов 3Ч, синхроселектор, переключатель выбора режимов TV/AV. Кроме того, она содержит микроконтроллер управления (отличающийся от установленного на плате тюнера), микросхемы ЭПЗУ и сброса микроконтроллера, видеопроцессор с АЦП, контроллер ЖК панели с устройством внешней памяти (FIFO), аналоговый мультиплексор, детектор ошибок ламп подсветки, устройства градуировки образцовых напряжений и общего управления панелью, ЦАП и импульсный источник питания, формирующий все необходимые для работы узлов телевизора напряжения: 3,3; 5; 8; - 8; 14; 28 и 31 В.

Небольшая видеоплата включает в себя элементы согласования входного гнезда J5001 (через него подают внешний полный видеосигнал AV3) и специального гнезда SC5001 (предназначено для подачи внешнего сигнала S-VHS, т. е. отдельно компонентов яркости Y и цветности С) с последующими цепями телевизора.

Звуковая выходная плата содержит усилитель мощности сигналов ЗЧ, стабилизатор напряжения питания усилителя, каскады блокировки звука, а также детекторы ошибок люминесцентных ламп подсветки.

На плате переключателей расположены кнопки клавиатуры управления, приемник ИК излучения системы ДУ гнездо подключения головных телефонов и ключ переключения напряжения дежурного режима.

Платы инверторов А и В необходимы для преобразования постоянного напряжения 13 В, подаваемого извне через разъем J3702 платы тюнера, в переменные напряжения 200...300 В частотой 400 Гц, которые через разъемы Р6751 и Р6551 поступают на люминесцентные лампы устройства задней подсветки ЖК панели.

Конкретная конструкция ЖК панели (TFT LCD) рассматриваемой модели телевизора изображена на рис. 11.


Она выполнена в виде так называемого "бутерброда". На экранирующей плате помещены одна за другой две отражающие пластины, входящие в состав устройства задней подсветки Устройство включает в себя также шесть люминесцентных ламп (на рисунке показаны только две из них). В качестве светораспределителя служа световоды имеющие дифракционную структуру призматического сечения О назначении спейсеров уже было сказано в первой статье цикла Далее расположены диффузионная и призматическая пластины

Цель применения всех перечисленных приспособлений - максимально использовать световой поток и обеспечить равномерное его распределение в рабочей зоне подсветки.

Пластина цветного фильтра о которой также раньше было рассказано находится непосредственно за панелью Сама ЖК панель имеет контакт ные разъемы для подачи исходных управляющих сигналов (LSD Source) и стробирующих (сканирующих) сигналов (LSD Gate). На рисунке показаны фрагменты ленточных кабелей, по которым направляются эти сигналы.

Весь рассмотренный "бутерброд" стянут восемью винтами два из них изображены на рисунке).

Структурная схема платы тюнера показана на рис. 12.


(нажмите для увеличения)

Схема остальных узлов телевизора "Sharp - LC-20C2E представлена на рис. 13.


(нажмите для увеличения)

Принципиальная схема платы тюнера представлена на рис. 14.


(нажмите для увеличения)

Радиочастотный сигнал RF поступает непосредственно на антенный вход самого тюнера (см. рис. 12), находящегося на плате тюнера. На его выходах формируются следующие сигналы: SSIF - сигнал ПЧ звука, который через контакт SIF разъема SC902/SC901 проходит на основную плату (см. рис. 13), а именно - на процессор обработки мультимедийных сигналов звука IC901 (1X3371 СЕ); CCVS (см. рис. 12) - полный цветовой телевизионный видеосигнал, который через контакт TV V того же разъема приходит на микросхему коммутатора видеосигналов (см. рис. 13) основной платы IC402 (NJM2235M); AUDIO MONO (см. рис. 12) - монофонический сигнал 3Ч, который через контакт MONOS того же разъема подан также на микросхему IC901 основной платы (см. рис. 13).

Кроме того, сигнал CCVS (см. рис. 12) через змиттерные повторители (на транзисторах Q33, Q13, Q14) поступает на контакт VIDEO OUTPUT разъема для подключения внешних устройств SC903 (SCART).

На плате тюнера находятся также два гнезда J902, J903, необходимых для подключения левого (L) и правого (R) внешних громкоговорителей. На эти гнезда через усилительные каскады (на транзисторах Q8, Q9, Q11, Q12) проходят сигналы SOUND L/R с соответствующих контактов (SC2 OUT L/R) разъема SC902/SC901, на который они поступают с микросхемы IC901 основной платы (см. рис. 13).

Через соответствующие контакты (см. рис. 12) разъема SC903 (SCART) на телевизор подают сигналы 34 AV SOUND L/R и изображения AV PICTURE. Эти сигналы через контакты SC2 IN L/R и V2 IN разъема SC902/SC901 приходят на основную плату (см. рис. 13), причем звуковые сигналы - на процессор IC901, а видеосигналы - на видеопроцессор IC801 (VPC3230D).

С основной платы на плату тюнера через контакты разъема SC901/SC902 поступают звуковые сигналы SC1 OUT L/R и видеосигналы V2 OUT. Причем первые - со звукового процессора IC901 через буферный усилитель IC902 (NJM4560M), а вторые - с видеопроцессора IC801 (выход VO). И те, и другие сигналы в конечном итоге попадают на выходные контакты соединителя SCART (AV SOUND OUT IVR и AV PICTURE OUT) для записи на видеомагнитофон (см. рис. 12).

Сформированные процессором обработки сигналов звука IC901 (см. рис. 13) сигналы 3Ч проступают на предварительный усилитель на микросхеме IC304 (BH3543F+), а с него через контакты разъема Р2003/Р4004 - на находящееся на плате переключателей гнездо подключения головных телефонов J4001. Принципиальная схема платы переключателей представлена на рис. 15.


(нажмите для увеличения)

Процессор обработки сигналов звука IC901 формирует также звуковые сигналы левого и правого каналов DACM L/R (см. рис. 13 в предыдущей части), которые сначала проходят ФНЧ на микросхеме IC903 (NJM4560M), а затем переключатель каналов IC303 (NJM2283F). Переключатель управляется командой L/R, подаваемой с микроконтроллера управления основной платы IC2001 (IX3565CE).

Сигналы 3Ч левого и правого каналов через контакты разъема Р3301/Р3302 попадают на звуковую выходную плату, принципиальная схема которой показана на рис. 16. Они приходят на входы усилителя мощности 3Ч на микросхеме IC3305 (L44635A+). Усиленные сигналы через контакты разъемов Р304 и Р305 поступают на динамические головки левого L и правого R каналов. Микросхема питается от источника PA VCC (см. рис. 13) напряжением 13 В. Как уже указано, оно сначала проходит с платы тюнера на основную плату, а затем на звуковую выходную плату через контакты разъема Р3301/Р3302.


(нажмите для увеличения)

Как уже было перечислено в предыдущих частях цикла, на плате тюнера (см. рис. 12) расположен микроконтроллер управления 19 (ST92R195), совмещенный с устройствами OSD, телетекста и выделения из сигнала необходимой информации. С микроконтроллером непосредственно связаны микросхемы ЭППЗУ (EEPROM) 13 (TMS27C2001 - 10), статического ОЗУ (SRAM) I6 (W24257 - AS - 35), ЗУ 12 (24C32) и сброса (RESET) И (TS831 - 4IDT).

На выходах микроконтроллера формируются сигналы основных цветов R, G, В (VPC - TEXT на принципиальной схеме), соответствующие выбранному режиму его работы: либо сигналы телетекста, либо сигналы OSD (номера программ, настройки на программы, регулировки параметров и т. п.). Эти сигналы поступают на входы выполненного на микросхеме 14 (ТЕА5114А) переключателя аналоговых сигналов R, G, В. На его другие входы приходят сигналы основных цветов R, G, В с другого подобного переключателя на микросхеме ИЗ. На нее поданы сигналы R, G, В через контакты внешнего соединителя SC903 (SCART). Переключателями управляет микроконтроллер по цепям FB.OSD (переключатель I4) и RGB CONT (переключатель I13). В результате на выходах переключателя I4 появляются сигналы основных цветов, которые через контакты разъема SC802/SC801 (см. рис. 13) проходят на микросхему видеопроцессора и АЦП IC801 основной платы.

Принципиальная схема основной платы состоит из шести частей. Три из них представлены на рис. 17.1 - 17.3.


(нажмите для увеличения)


(нажмите для увеличения)


(нажмите для увеличения)

Микроконтроллер управления платы тюнера I9 (см. рис. 12 в предыдущих частях) формирует также строчные Н и кадровые V синхронизирующие импульсы, поступающие через контакты разъема SC802/SC801 сначала (см. рис. 13 в предыдущих частях) на видеопроцессор IC801 и контроллер управления ЖК панелью IС 1201 (IX3378CE), а с последнего - на микроконтроллер управления основной платы IC2001. Между микроконтроллерами платы тюнера и основной платы происходит обмен информацией посредством показанных на рис. 12 и 13 синхронизирующих и управляющих сигналов SUB CLK, SUB IN, SUB OUT, M/S IN, M/S OUT, H (HSY) и V (VSY).

На плате тюнера (см. рис. 12) находятся также входное гнездо J3702 для подключения источника постоянного напряжения 13 В и окружающие его предохранители. Это напряжение через контакты разъема Р904/Р901 подано на основную плату, а через контакты разъемов Р702/Р6555 и Р703/Р6755 - на платы инверторов В и А соответственно.

На видеопроцессор IC801 (см. рис. 13) поступают следующие аналоговые видеосигналы: AV1 - с коммутатора видеосигналов TV/AV (с микросхемы IC402 по команде с микроконтроллера управления IC2001); AV2 - с разъема SCART платы тюнера; AV3 - через контакт разъема Р903/Р5001, на который приходит внешний видеосигнал V3 IN с одного из гнезд разъема J5001 видеоплаты, и сигнал цветности V1 SC - через контакт того же разъема Р903/Р5001, на который с гнезда разъема SC5001 видеоплаты проходит сигнал цветности SC (S-VHS). Принципиальная схема видеоплаты изображена на рис. 18.


Через контакты разъема Р903/Р5001 (см. рис. 13) поданы также звуковые сигналы V3 IN L и V3 IN R (с двух других гнезд разъема J5001 видеоплаты), которые поступают на процессор обработки сигналов звука IC901. Сигнал яркости V1 SY (S-VHS) с гнезда разъема SC5001 видеоплаты попадает на коммутатор видеосигналов TV/AV (микросхема IC402).

Микросхема IC801 преобразует приходящие на нее аналоговые видеосигналы в цифровые: восьмибитовые сигналы яркости VPYO-VPY7 и цветности UVO-UV7, а также строчные HSY, кадровые VSY и другие (LLC1, LLC2, FIELD) сигналы синхронизации и управления. С выхода микросхемы IC801 аналоговый полный видеосигнал VO, помимо разъема SC901/SC902, приходит на синхроселектор на микросхеме IC401 (BA7046F). Выделенные ей синхроимпульсы CSYNC проходят на микроконтроллер управления IC2001, а импульсы HD - на аналоговый переключатель, выполненный на микросхеме IC2007 (TC4W53U). На последний поданы и синхронизирующие импульсы HSYc видеопроцессора IC801. В зависимости от состояния этого переключателя, управляемого сигналом HSYNC SW, поступающим с микроконтроллера управления 19 платы тюнеpa, на его выходе формируется сигнал OSD HD высокого или низкого уровня. Он попадает на тот же микроконтроллер 19 платы тюнера и управляет в нем работой устройств OSD и телетекста.

На микроконтроллер управления основной платы IC2001 с платы переключателей через контакты разъема Р4004/Р2003 проходят управляющие сигналы с клавиатуры передней панели SW4002-SW4004, SW4006-SW4008 и приемника ИК излучения RMC4002 (см. рис. 15 в предыдущих частях).

С микроконтроллером управления IC2001 (см. рис. 13) связаны микросхемы ЭППЗУ (EEPROM) IC2004 (BR24C08F) и сброса (RESET) IC2002 (PST529DM).

Сформированные видеопроцессором IC801 цифровые сигналы яркости, цветности и синхронизации поступают на большую (160 выводов) микросхему-контроллер IC1201 (IX3378CE), которой в основном и формируются цифровые сигналы управления ЖК панелью: R0- R5 - красного, GO-G5 - зеленого, ВО В5 - синего цвета и СК - синхронизации. Все они проходят на панель через контакты разъема SC1201 (LCD Source). Совместно с контроллером IC1201 работают микросхемы внешней памяти (FIFO) IC1202 (PD485505) и аналогового мультиплексора 1С 1205 (TC4052BF) Мультиплексированные сигналы GCK приходят на ЖК панель через контакт разъема SC1202 (LCD Gate).

Образцовое напряжение REV с контроллера IC1201 подано на устройство градуировки образцовых напряжений ЖК панели, выполненное на микросхемах IC1102-IC1104 (NJM4565V), 1С 1106- IC1108 (NJM4580V) и IC1105, IC1110 (BU4053V). На выходе устройства формируется пять постоянных образцовых напряжении (V0 V16 V32 V48 V64) по ступающих на ЖК панель через контакты разъема SC1201 и используемых для формирования уровней напряжений строк и столбцов панели.

Микросхема ЦАП IC1101 (MB8346BV) создает десять постоянных уровней А01-А08, А010, А012, управляющих устройством градуировки образцовых напряжений, а сама микросхема IC1101, в свою очередь, управляется цифровыми сигналами DAC1 SC, MPDA и MPCLK, подаваемыми на нее с микроконтроллера IC2001. Последний формирует также сигнал CONTROL, управляющий контроллером ЖК панели IC1201.

На микросхеме 1С 1109 (NJM353M) выполнено устройство общего управления строками и столбцами ЖК панели. Оно создает управляющие сигналы VCOM, CS СОМ и CS СОМ1, подаваемые через контакты разъемов SC1201 и SC1202 на панель. Постоянное напряжение А011 на одном из выходов ЦАП IC1101 обеспечивает режим по постоянному току (BIAS) устройства общего управления ЖК панелью.

Для получения переменных напряжений питания люминесцентных ламп устройства задней подсветки в ЖК панели телевизор имеет две одинаковые платы инверторов А и В. На них собраны преобразователи постоянного напряжения в переменное по схеме, показанной на рис. 19 для инвертора А (обозначения элементов инвертора В отличаются только второй цифрой) Они представ ляют собой автогенераторы, работающие на частотах 30.. .65 кГц. Автогенераторы включают в себя по три (с параллельно соединенными первичными обмотками) импульсных трансформатора Т6751-Т6753 в инверторе А и Т6555- Т6557 в инверторе В (по числу используемых ламп) и по два высокочастотных транзистора Q6751, Q6752 на плате А и Q6551, Q6552 на плате В.


(нажмите для увеличения)

В момент подачи напряжения питания 13 В на повышающих (вторичных) обмотках всех трансформаторов появляются высоковольтные (свыше 1 кВ) импульсы, что обеспечивает начальную ионизацию разрядных промежутков ламп и лавинный пробой в них. После перехода автогенераторов в рабочий режим на вторичных обмотках трансформаторов создается переменное напряжение амплитудой не менее 300 В, которое поступает на так называемые "горячие" (LIGHT НОТ) выводы всех ламп через контакты LH1 -LH3 разъемов Р6751 и Р6551. "Холодные" (LIGHT COLD) выводы ламп (контакты LC1-LC3) подключены к звуковой плате (см. рис. 16 в предыдущем номере). На ней имеются детекторы ошибок ламп, выполненные на сборках полевых транзисторов Q3600-G3602. Упрощенная схема подключения трех люминесцентных ламп HL1- HL3 к инвертору А и цепей на звуковой выходной плате изображена на рис. 20. Сигнал ошибки L ERR через контакт разъема Р3302/Р3301 (см. рис. 13) попадает на микроконтроллер управления IC2001, что обеспечивает кратковременный перевод телевизора в дежурный режим STBY. После пяти циклов включения/выключения ламп, если ошибка не устранилась, телевизор выключается.

Постоянное (DC) напряжение питания 13 В через контакты разъема Р904/Р901 (см. рис. 12 и 13) с платы тюнера проходит на основную плату, где находится источник питания - преобразователь постоянного напряжения в другие постоянные (DC/DC преобразователь), выполненный на ключевом полевом транзисторе Q702 (К2503), импульсном трансформаторе Т701 и микросхеме ШИМ-контроллера IC702 (NJM2377M)

Источник питания формирует хорошо стабилизированные напряжения 3,3 В - микросхемой-стабилизатором IC752 (BA033FP), 5 В - микросхемой-стабилизатором IC751 (AN8005M) и транзисторами Q751, Q753, 31 В - транзистором Q204 с ОУ микросхемы IC201, 28 В - транзисторами Q201, Q202 со вторым ОУ микросхемы IC201 и 8 В - сдвоенными транзисторами разной структуры Q203, а также стабилизированные только за счет обратной связи на ШИМ-контроллер IC702 напряжения 5 и -8 В. Для выключения источника питания в дежурном режиме на DC/DC преобразователь приходит команда STBYc микроконтроллера управления IC2001.

Управление большинством устройств телевизора обеспечивается микроконтроллером управления IC2001 по цифровой шине I2С (сигналы данных SDA и синхронизации SCL).

Остальные три части принципиальной схемы основной платы представлены на рис. 21.


(нажмите для увеличения)


(нажмите для увеличения)


(нажмите для увеличения)

В телевизоре "Sharp - LC-20C2E" возможны три способа вхождения в режим регулировки микроконтроллера основной платы. Для их пояснения на рис. 22 и 23 изображены вид панели управления телевизора, расположенной под ЖК дисплеем, и вид ПДУ соответственно, а также указано назначение кнопок и других элементов.


В первом способе включают питание телевизора и нажимают на кнопку М ПДУ.

Во втором способе предусмотрено сначала одновременное нажатие на кнопки MENU и TV/VIDEO на панели управления телевизора и включение питания, а затем - одновременное нажатие на кнопки уменьшения громкости (-) и номера канала (CHv).

Третий способ связан с соединением вывода 81 или 82 микроконтроллера управления IC2001 основной платы (контрольные точки ТР2001 или ТР2002 соответственно) с общим проводом и дальнейшим включением питания аппарата. В этом случае будет инициализирована память, т. е. такой способ применим при замене микросхем IC2004 или IC2001 в процессе ремонта.

После вхождения в режим, перемещая курсор вверх или вниз кнопками Δ и Δ ПДУ, выбирают необходимый параметр регулировки:

  • напряжение питания +B5V (5,00+0,05 В);
  • установка модели (С2Е);
  • установка размера экрана по диагонали (20 дюймов);
  • регулировка общего режима (напряжения смещения COM BIAS) ЖК панели (до получения наилучшей контрастности);
  • установка уровня черного в каналах сигналов R и В (до получения оптимального баланса белого).

В каждом случае, нажимая на кнопки VOLUME+ и VOLUME- на ПДУ, устанавливают необходимое значение.

Для вхождения в режим регулировки микроконтроллера платы тюнера сначала нажимают на кнопку MENU на панели управления телевизора. Затем, нажимая на кнопку Δ ПДУ, добиваются изображения, показанного на рис. 24, и в течение 1 с нажимают на кнопку М ПДУ. Далее, перемещая курсор вверх или вниз кнопками Д и V ПДУ, выбирают необходимый параметр регулировки.

  • установка размера по горизонтали;
  • установка значений параметров видеотракта (задержка сигнала яркости, контрастность, насыщенность, цветовой тон, задержка АРУ) в соответствии с указанными в таблице.


Значения устанавливают теми же кнопками VOLUME+ и VOLUME- на ПДУ.

При ремонте таких телевизоров необходимо соблюдать не меньшую осторожность, чем при ремонте обычных телевизоров. Весьма желательно работать в антистатическом браслете и на электропроводящем коврике, так как все панели "боятся" электростатических зарядов.

Прежде чем приступить к ремонту, необходимо убедиться в правильности установки параметров так, как это описано выше. Для ориентирования при ремонте на рис. 25 представлено размещение плат и других устройств в телевизоре, а также расположение разъемов. Широкими черными стрелками на нем показаны направления поиска разъемов для облегчения снятия и установки плат.

Рассмотрим возможные неисправности телевизора на конкретных примерах.

1. Нет изображения и звука.

Прежде всего проверяют целостность предохранителей F2-F4 на плате тюнера (см. рис. 14). Если какой-нибудь из них (или несколько) имеет обрыв, то проверяют цепи нагрузки на отсутствие короткого замыкания. При его обнаружении прежде всего проверяют исправность трансформатора T701 источника питания и транзисторов Q702, Q751, Q753 и ключевого элемента Q752 основной платы (см. рис. 21, часть 6).

Если короткого замыкания нет, проверяют наличие постоянных напряжений на выходах выпрямителей и стабилизаторов источника питания. При отсутствии всех напряжений питания проверяют исправность микросхемы IC702, транзисторов Q702, Q703, а также отсутствие обрыва предохранителей FB701, FB708, FB709 и первичных обмоток трансформатора Т701.

При отсутствии какого-нибудь одного питающего напряжения проверяют исправность соответствующего выпрямителя во вторичных цепях трансформатора Т701 и стабилизатора напряжения.

2. Нет изображения.

Проверяют наличие цифровых видеосигналов на соответствующих выводах микросхем IC801 (см. рис. 17, часть 3) и IC1201 (см. рис. 21, часть 4) основной платы. Если обнаружено их отсутствие на выходах той или иной микросхемы, то прежде, чем их заменять (это делают в самую последнюю очередь), проверяют режим микросхемы по постоянному току. Он не должен отличаться от указанного на принципиальной схеме более чем на ±10 %. Лишь после этого принимают решение о замене микросхемы или какого-нибудь из окружающих ее элементов.

Если же на выходах микросхемы IC1201 присутствуют необходимые видеосигналы и они поступают на ЖК панель, то вначале проверяют поступление сигналов и напряжений на микросхему IC1205, а затем - исправность ее самой, а также поступление мультиплексированных сигналов на панель.

Проверяют также поступление образцового напряжения REF с микросхемы IC1201 (см. рис. 21, часть 4) на устройство градуированных напряжений (см. рис. 21, часть 5), исправность входящих в него микросхем IC1102- IC1108, IC1110 и наличие градуированных напряжений на контактах разъемов панели (см. рис. 21, часть 4).

В заключение обследования делают вывод о неисправности самой панели.

3. Нет изображения при подаче сигнала на антенный вход.

Сначала проверяют наличие напряжений 5, 9, 12 и 31 В на соответствующих контактах разъемов тюнера (см. рис. 14). Необходимо иметь в виду, что если напряжения 5,12 и 31 В поступают с источника питания, находящегося на основной плате, то напряжение 9 В стабилизируется микросхемой 15 платы тюнера, которая может выйти из строя. Проверяют также другие стабилизаторы - микросхемы НО, И1 и транзисторы Q18 и Q28, находящиеся на плате тюнера.

Затем проверяют наличие видеосигнала CCVS на выходе тюнера. Его отсутствие указывает на неисправность тюнера. Если сигнал имеется, необходимо проследить (цепь TV V), поступает ли он на вход (вывод 3) микросхемы IC402 (см. рис. 17, части 1 и 3) и на ее выход (вывод 7). Если на выходе микросхемы сигнала нет, то либо микросхема неисправна, либо на ее управляющие входы (выводы 2 и 4) не приходят соответствующие сигналы команд (TV/AV и AV/IR) с микроконтроллера управления IC2001 (см. рис. 17, части 2 и 3).

Если сигнал на выходе микросхемы IC402 есть, проверяют исправность транзистора Q420 основной платы (см. рис. 17, часть 3) и поступление сигнала на вывод 73 микросхемы IC801. Если сигнал имеется, то микросхема вышла из строя.

4. Нет изображения при подаче сигнала на один из видеовходов.

При такой неисправности возможны три случая.

Если нет изображения при подаче сигнала S-VHS (первый случай) на гнездо SC5001 видеоплаты (см. рис. 18), проверяют прохождение сигнала яркости V1 SY - V1 V через видеоплату, контакты разъема Р5001/Р903, микросхему IC402 (выводы 1 и 7) и транзистор Q420 основной платы (см. рис. 17, части 1 и 3) на вывод 73 микросхемы IC801 при соответствующих командах с микроконтроллера управления IC2001 (см. выше). Как и в предыдущей неисправности, если сигнал имеется, микросхема дефектна.

Возможно отсутствие изображения при подаче видеосигнала на контакт 20 разъема SCART (второй случай). Проверяют прохождение сигнала V2 V через плату тюнера (см. рис. 14), контакты разъемов SC902/SC901, транзистор Q421 основной платы (см. рис. 17, часть 3) на вывод 74 микросхемы IC801. Если сигнал приходит, микросхема неисправна.

И наконец, если нет изображения при подаче видеосигнала на гнездо J5001 (третий случай) видеоплаты (см. рис. 18), проверяют прохождение сигнала V3 IN - SY OUT через видеоплату, контакты разъема Р5001/Р903 (см. рис. 17, часть 1), транзистор Q820 основной платы (см. рис. 17, часть 3) на вывод 75 микросхемы IC801. Если сигнал присутствует, микросхема также неисправна.

5. Нет звука в динамических головках.

Проверяют наличие сигналов 34 на выходах (выводы 12 и 8) микросхемы IC3305 звуковой выходной платы (см. рис. 16) и их поступление через контакты разъемов Р304 и Р305 на динамические головки. Если сигналов нет, проверяют режим микросхемы по постоянному току и, прежде всего, наличие напряжения питания 13 В на ее выводе 7. Если режим соответствует указанному на схеме, проверяют поступление на микросхему входных сигналов 3Ч через контакты 8 и 9 разъемов Р3302/Р3301 с основной платы (см. рис. 21, часть 6). На ней проверяют исправность микросхем IC303, IC903 (см. рис. 17, часть 1) и окружающих их элементов а также поступление на них сиг налов DACM R и DACM L с процессора IC901 (выводы 27 и 28 соответственно).

И наконец, проверяют исправность самого процессора IC901, окружающих его элементов и поступление на его входы звуковых сигналов MONOS (на вывод 60) и SIF (на вывод 67) с платы тюнера (см. рис. 14). Может быть, конечно, неисправен и сам тюнер, если оба эти сигнала отсутствуют.

Дополнительно проверяют уровень напряжения блокировки на выводе 53 микросхемыIC2001 (см рис 17,часть2) который должен быть низким. В ином случае звук будет блокирован

6. Нет звука в головных телефонах.

Поиск причины неисправности начинают с проверки наличия звуковых сигналов на выводах 24 и 25 процессора IC901 на основной плате (см. рис. 17, часть 1). Если их нет, проверяют исправность процессора и окружающих его элементов.

Если сигналы присутствуют, сначала проверяют исправность ми кросхемы IC304 и окружающих ее элементов, а затем прохождение сигналов HR и HL (см. рис. 17, части 1 и 2) через контакты разъема Р2003/Р4004 на гнездо подключения головных телефонов J4001. Оно находится на плате переключателей (см. рис. 15).

7. Нет звуковых сигналов на линейном выходе.

Проверяют наличие сигналов 3Ч на выводах 36 и 37 процессора IC901 (см. рис. 17, часть 1). Если их нет, обследуют процессор и окружающие его элементы.

Если сигналы есть, проверяют исправность микросхемы IC902 и, если она и окружающие ее элементы исправны, дальнейшее прохождение сигналов V2R0, V2LO через контакты разъема SC901/SC902 на разъем SCART платы тюнера (см. рис. 14).

8. Нет баланса белого цвета.

В зависимости от цветового оттенка изображения проверяют размахи сигналов RO-R5 на контактах 18-23 разъема SC1201 (см. рис. 21, часть 4) ЖК панели, сигналов GO-G5 на контактах 25-30 и сигналов ВО-В5 на контактах 32-37. Если отсутствуют сигналы R или их размах значительно уменьшен, проверяют исправность резисторов в сборках R1202, R1203, если сигналы G - в сборках R1204, R1205, а если сигналы В - в сборках R1206, R1207.

В случае, когда все резисторы исправны, но каких-нибудь из названных сигналов нет или они малы, обращают внимание на режим контроллера IC1201 и затем принимают решение о его неисправности.

9. Не светятся лампы устройства задней подсветки.

Если не светятся все лампы, го, скорее всего, на контакты 2 разъемов R703/P6755 и R702/P6555 плат инверторов (см. рис. 14 платы тюнера) подана команда блокировки OFLO через разъемы SC902/SC901 с вывода 34 контроллера IC1201 (см. рис. 17, часть 1 и рис. 21, часть 4), останавливающая работу обоих преобразователей. В нормальном рабочем режиме на указанном выводе контроллера должен быть высокий уровень напряжения. Неисправным в этом случае может быть и ключевой элемент Q3603, расположенный на основной плате.

Но наиболее вероятна неисправность, при которой не светятся три лампы подсветки. В таком случае сначала проверяют целостность предохранителей F1 и F5 на плате тюнера (см. рис. 14), через которые проходит напряжение питания 13 В на платы инверторов. Если предохранители целы, проверяют работоспособность соответствующего преобразователя напряжения (см. рис. 19), т. е. исправность его элементов, в первую очередь - транзисторов и трансформаторов.

Если же не светится только одна лампа, то либо она неисправна, либо оборвана одна из обмоток соответствующего трансформатора в преобразователях.

Литература

  1. Самарин А. В. Жидкокристаллические дисплеи. Библиотека инженера. - М.: Солон-Р, 2002.
  2. Крылов Е. Подсветка LCD-дисплеев. - Компоненты и технологии, 2001, № 6, с. 18-20.

Смотрите другие статьи раздела .

Для российской силовой сети нет преград, она способна вывести из строя самый совершенный блок питания, использующий самую современную элементную базу. В этой статье Вы найдете принципиальные схемы источников питания мониторов Samsung, продававшихся на нашем рынке, описание принципов их работы, характерные дефекты и таблицу аналогов для замены неисправных компонентов.

Надежность работы монитора во многом зависит от качества работы его источника питания (ИП). в этой статье рассматривается схемотехника и методы ремонта ИП мониторов фирмы Samsung. Обычно в случае неисправности ИП полностью пропадает растр и изображение или на экране остается лишь узкая светящаяся горизонтальная полоса, часто пропадает анодное напряжение. В мониторах применяется импульсный ИП со стабилизацией выходных напряжений широтно-импульсным модулятором (ШИМ). Приступая к ремонту источника питания монитора, помните: для измерений в первичной цепи, гальванически связанной с силовой сетью, используйте трансформатор с разделенными обмотками и никогда не соединяйте общую точку первичной цепи с землей во вторичной.

В ИП мониторов на шасси CVL495*, рассчитанных на напряжение сети 108...132 В, 60 Гц, использовалась микросхема STR53041 на напряжение 198...264 В, 50 Гц - микросхема STR54041. Микросхема IC601 и трансформатор Т601 (обмотки 1-3 и 5-7) образуют блокинг-генератор. Сигнал положительной обратной связи поступает с обмотки 5-7 через элементы R607 и С611 на базу Q1. Стартовый ток протекает через R603 и R618. Транзистор Q601 обеспечивает защиту ключевого транзистора. Стабилизация выходных напряжений осуществляется напряжением с обмотки 5-6, которое после выпрямления диодом D609 и сглаживания конденсатором С612 поступает на делитель VR601, R2, R1. Напряжение с делителя сравнивается на транзисторе Q3 с напряжением на стабилитроне D1. При превышении заданного уровня транзистор Q3 открывается и, в свою очередь, открывает Q2, который шунтирует переход база-эмиттер ключевого транзистора. Длительность импульса тока через первичную обмотку 1-3 трансформатора уменьшается. Цепочка на элементах D605, С609 и R604 служит для демпфирования выбросов напряжения на Т601 в моменты переключения. Позистор РТН601 и петля L603 (D-coil) составляют схему размагничивания кинескопа.

Параметры ИП: напряжение питания 90...264 В, 50...60 Гц; мощность потребления 85 Вт. В качестве генератора ШИМ используется микросхема IC601 (КА3882). Ее выход управляет мощным полевым транзистором Q601 (SSH6N80), сток которого соединен с обмоткой 5-2 импульсного трансформатора Т601. На выходах выпрямителей во вторичной цепи формируется ряд напряжения 75, 53, 14,5, 12, -12, 7 В для питания схемы видеоусилителей, строчной развертки, кадровой развертки, накала кинескопа. Схема имеет защиту от превышения напряжения питания, перегрузки по току и короткого замыкания. Схема поддерживает режим сохранения энергии согласно стандарту VESA: потребление в режиме Stand-by составляет 55 Вт, в режиме Suspend 15 Вт, в режиме Off 5 Вт. Назначение выводов микросхемы КА3882:

  1. - компенсация частотной характеристики;
  2. - обратная связь (управление ШИМ);
  3. - сигнал с резистора ограничения тока;
  4. - подключение RC-цепи для установки частоты;
  5. - общий;
  6. - выход на управление ключевым транзистором;
  7. - питание;
  8. - выход внутреннего источника опорного напряжения.

Микросхема КА3882 состоит из генератора, усилителя ошибки, компаратора напряжения, использующего сигнал с резистора ограничения тока, пороговой схемы с гистерезисом, которая гарантирует стабильную работу в диапазоне напряжения питания 10...16 В, и выходного каскада для подключения мощного полевого транзистора. Работа схемы довольно проста. При появлении на входе ИП выпрямленного сетевого напряжения 300 в на выв. 7 IC601 через элементы R608, R609 протекает стартовый ток и включаются узлы микросхемы. Внутренний генератор начинает вырабатывать импульсы с частотой, определяемой цепочкой R607, С605, подключенной к выв. 4 IC601. С выв. 6 IC601 импульсы через резистор R610 и BD601 поступают на затвор ключевого транзистора Q601, обеспечивая импульсный ток в первичной обмотке 5-2 силового трансформатора Т601. Это приводит к появлению напряжения в обмотке 7-8 трансформатора, которое после выпрямления диодом D610 и сглаживания на емкости С613 поступает на выв. 7 IC601, обеспечивая ее питание в рабочем режиме. Важное свойство данной ИС: она не включается, если на выв. 7 напряжение меньше 10 В, и выключается, когда напряжение выше 16В (аварийный режим). Дополнительную защиту обеспечивает цепочка элементов D611, С614, R622, R620, ZD602 и триггерная схема Q602, Q603, которая останавливает работу микросхемы в случае перенапряжений. в случае коротких замыканий во вторичных цепях ИП, например при выходе из строя одного из выпрямительных диодов, пробоя электролитических конденсаторов или при неисправности в одном из блоков монитора, напряжения обмотки 7-8 не хватает для работы ИС, и она выключается до момента, пока конденсатор С613 не зарядится до напряжения ее включения (более 10 В). Далее ИС снова включается и немедленно выключается. Интервал между включениями составляет примерно 1...2 с, при этом слышны слабые щелчки из трансформатора ИП. Такой режим ИП обеспечивает надежную защиту ключевого транзистора от перегрузки по току напряжением, снимаемым с резистора R614. Выходные напряжения ИП стабилизируются через оптопару IC602 (CQY80NG). Эта часть схемы включает в себя также прецизионный источник опорного напряжения IC603 (TL431) и переменный резистор VR601 для установки номинальных напряжений. Изменение нагрузки во вторичной цепи управляет засветкой фототранзистора оптопары IC603, в результате происходит управление длительностью открытого состояния ключа. Защита ИП от коротких замыканий по шине питания горизонтальной развертки 53 в происходит следующим образом. При увеличении тока через резистор R624 открывается транзистор Q605, коллекторное напряжение которого через элементы R626, D628, R628 подается на выв. 10 компаратора IC402-3 (LM324), на рисунке не показанного. Положительное напряжение с выхода IC402-3 (точка F_S) открывает транзистор Q610, который выключает стабилизатор питания 12В IC605 (KA78R12) и, как следствие, горизонтальную развертку.

Схема размагничивания кинескопа состоит из самой петли размагничивания (D-coil), позистора PR601, реле RL601 и транзистора Q604. При каждом включении монитора, перезагрузке компьютера, а также при выборе этой функции из OSD-меню монитора напряжение 5 В с выв. 14 микропроцессора IC201 открывает транзистор Q604 и включает реле RL601, подключая через PR601 петлю размагничивания на время 3...4 с. Выводы Sync. 1 и Sync. 2 (один виток на магнитопроводе строчного трансформатора) используются для синхронизации работы ИП. в зависимости от входного синхросигнала, источник питания может переключаться в режимы сохранения энергии Stand-by, Suspend и Off-mode. Режим Power-ofF активизируется, когда на вход монитора не поступают синхроимпульсы H-Sync и V-Sync. Высокий уровень от микропроцессора IC201 открывает транзистор Q610, который отключает IC605 (выключается +12 В), а также открывает Q609 и закрывает Q608, Q607, из-за чего отключается напряжение +7 В для питания накала кинескопа. Потребляемая мощность монитора в этом случае не более 5 Вт.

Схема ИП шасси CGM7607L отличается только вторичными напряжениями. В качестве генератора ШИМ с мощным полевым транзистором на выходе используется микросхема IC601 (КА2Н0880), нагрузкой которой служит обмотка 2-5 импульсного трансформатора Т601. Ток стока микросхемы 8 А, напряжение 800 В, корпус TO-3 P-5L. На выходах выпрямителей во вторичной цепи формируется ряд напряжений: 80, 45, 12, -12,7 В для питания схем видеоусилителей, строчной развертки, кадровой развертки, накала кинескопа. Схема имеет тепловую защиту, защиту от превышения и понижения напряжения питания, перегрузки по току и короткого замыкания, а также функцию мягкого старта и возможность внешней синхронизации. Надо отметить, что в ИП шасси СКЕ 5507L/LM, СНА421 7L/27L, CHA5807L/5827L с размером экрана 15" применяется микросхема КА250680 той же серии. Ее параметры: 6 А, 800 В, корпус тот же. В моделях SyncMaster 550 (шасси DP1 5HS/HT), SyncMaster 750S (шасси DP17LS/LT), SyncMaster 550S (шасси DP15LS), Samtron 55E (шасси DP15LT) и SyncMaster 450S (шасси DP14LS/LT) используется микросхема DP104S, аналогичная по схеме КА2Н0880, но в корпусе ТО-220-5Р. Назначение выводов микросхемы КА2Н0880:

  1. - общий вывод, соединен с истоком;
  2. - вывод питания;
  3. - вывод сигнала управления выходным напряжением;
  4. - вывод управления мягким стартом и внешней синхронизации.

Стартовый ток микросхемы протекает через цепочку D606, R613. При достижении напряжением на выв. 3 этой микросхемы уровня 15 В она включается. Дальнейшее повышение напряжения питания до 25 в приводит к срабатыванию защиты и прекращению работы микросхемы. На выв. 4 подается напряжение рассогласования по выходному напряжению для стабилизации его номинального значения. Снижение питания ниже 7,5 В прекращает работу микросхемы. Для синхронизации на выв. 5 через цепочку С650, Т602, С612, С615, R610 подаются импульсы обратного хода строчной развертки монитора, в результате чего шумы переключения блока питания не попадают в видимую часть кадра. Трансформатор Т602 служит для гальванической развязки синхросигнала. Так же, как и в предыдущей схеме, источник питания может переключаться в режимы сохранения энергии Stand-by, Suspend и Off-mode в зависимости от входного синхросигнала. Режим Power-off активизируется, когда на вход монитора не поступают синхроимпульсы H-Sync и V-Sync. Высокий логический уровень от микропроцессора IC201 открывает транзистор Q604, который отключает IC605 (выключается напряжение +12 В), а также открывает Q607 и закрывает Q606 и Q605, из-за чего отключается напряжение +7 В для питания накала кинескопа. Для проверки режимов работы источника питания по постоянному току используйте табл. 1.

Таблица 1. Режимы компонентов источника питания шасси CGE 75O7

В качестве генератора ШИМ с мощным полевым транзистором на выходе используется микросхема IC601 (STR-F6526), нагрузкой которой служит обмотка 4-2 импульсного трансформатора Т601. Генератор использует заряд и разряд внешнего конденсатора С605. Стартовый ток протекает через резистор R604. На выходах выпрямителей во вторичной цепи формируются напряжения 185, 75, 15, 9, 6,3 В для питания схемы строчной развертки, видеоплаты и усилителя низкой частоты. Назначение выводов микросхемы STR-F6526:

  1. - токовый ограничитель/сигнал обратной связи;
  2. - исток мощного полевого транзистора;
  3. - сток мощного полевого транзистора;
  4. - питание;
  5. - общий.

Схема обладает защитой от превышения тока нагрузки и перенапряжений. При увеличении тока нагрузки или короткого замыкания во вторичных цепях понижается напряжение на первичных обмотках Т601, и на выводе 4 напряжение микросхемы становится менее 10 В, происходит остановка работы схемы. При повышении входного напряжения, когда напряжение на выводе 4 микросхемы IC601 достигает 22 В, она переходит в аварийный режим и все вторичные напряжения исчезают. Сигнал обратной связи по напряжению подается через оптрон IC602 (CQY80NG), а синхросигнал от узла строчной развертки - через трансформатор Т602, С606, R644, R645, D604 и выв. 1 IC601. Источник питания имеет дежурные режимы Stand-by, Suspend, Off mode. Если на вход монитора с компьютера не поступают горизонтальные (H-Sync) или вертикальные (V-Sync) синхроимпульсы, то транзистор Q608 открывается и выключает стабилизатор напряжения 12 В IC606 (KA78R12), и монитор переходит в режим Stand-by или Suspend с потреблением 15 Вт. Когда на вход монитора не поступают синхросигналы H-Sync, V-Sync и видеосигнал, ИП переходит в режим Off mode. Транзисторы Q607 и Q606 открываются, на выводе R микросхемы IC603 напряжение становится равным 2,54 В, происходит выключение ИП, монитор потребляет всего 5 Вт. Регулировкой WR601 подстраивается напряжение 195 В. Для проверки режимов работы источника питания по постоянному току используйте табл. 2.

Обозначение по схеме Режим работы источника питания, В
Power-Off On
Q602 Эмиттер 13,8 16
База 14,4 15,7
Коллектор 16,6 17 102
Q703 База 0,6 0,6
Коллектор 0 0
Q702 Эмиттер 0,6 1,12
База 0 0,56
Q607 База 0,7 0
Коллектор 0 90,8
Q606 Эмиттер 12,1 92,4
База 11,2 90,4
Коллектор 12 13,3
IC602 Вывод 1 12,1 10,1
Вывод 2 11,1 9,0
Вывод 4 5,7 - 6,58 12,96
Вывод 5 17 9,58
IC603 К 1,94 6,2
R 2,54 2,48
IC601 Вывод 1 0,44
Вывод 2 0
Вывод 3 300...310
Вывод 4 13,1

Таблица 2. Режимы компонентов источника питания шасси CGH 7609

В таблице 3 приводятся типовые неисправности и даны методы ремонта ИП для каждой модели монитора, а в таблице 4 даны аналоги для замены неисправных компонентов.

Проявление неисправности Возможная причина Способ отыскания неисправности
Шасси CVM4963T, CVM4967T, SC428VS, SC431VS
(Рис. 1)
Шасси CGB5607
(Рис. 2)
Шасси CGE7507
(Рис. 3)
Шасси CGH7609
(Рис. 4)
Перегорает сетевой предохранитель F601 Пробои в элементах источника питания Проверить F601 , L601 , L603, РТН601, CN602, D601 D604, С608, Q601, Q602, IC601 (выв 3 и 4) и их пайки Проверить петлю размагничивания кинескопа Проверить F601, L602, CN603, PR601, D601 D604, С602, ТН601 и их пайки Проверить заменой микросхему IC601 и транзистор Q601 Проверить петлю размагничивания кинескопа Проверить F601, L601, D601 D604, SW603, ТН601, R601, С606, IC601 (между выводами 1 и 2, предварительно отпаяв дроссель BD601) и их пайки Проверить петлю размагничивания, CN602, PR601 Проверить FH601, SW602, LF601, LF602, ТН601, D601, С607, R609, IC601 (между выв 2 и 3, предварительно отпаяв дроссель BD608) и их пайки Проверить петлю размагничивания, CN604, РТН601
Монитор не включается, F601 не перегорает Обрыв в цепи питания Проверить омметром R602 (сопротивление должно быть 3,3 Ом) Проверить омметром ТН601 (в холодном состоянии сопротивление должно быть приблизительно 8 Ом) Проверить омметром ТН601 (в холодном состоянии сопротивление должно быть приблизительно 8 Ом) и R600(1,5 Ом) Проверить омметром ТН601 (в холодном состоянии сопротивление должно быть приблизительно 8 Ом) и R609(0,13 Ом)
Нет запуска схемы Проверить на обрыв компоненты R603, R618, R607, R610, С611, D606, D607, D609 Номиналы резисторов проверить Проверить на обрыв R608, R609, R607, С613, D610, D607, С609, IC602 Номиналы резисторов проверить Проверить исправность элементов и их номиналы D606, R613, С616, R611, D605 Проверить их пайки Проверить исправность элементов и их номиналы R604, D650, D611, Q602, D607, D608, D605, D627, L601 Проверить их пайки
Неисправны вторичные выпрямители источника питания Проверить омметром на отсутствие пробоя D610 D613, С614, С618, Q621, С626 Проверить омметром на отсутствие пробоя D615 D618, D621, D622 Проверить напряжение на выводе R микросхемы IC603 (2,5 В) Проверить омметром на отсутствие пробоя D611, D612, D615 D620, Q605, IC605, IC404 Проверить напряжение на выводе R микросхемы IC603 (2,5 В) Проверить омметром на отсутствие пробоя D655, D616, D617, D636, D621 D623, R668, D640, D630, Q613, IC606, IC603
Неисправность видеоусилителя Проверить омметром сопротивление между выводом 6 микросхемы IC102 и общей точкой Проверить исправность элементов IC102, IC601, IC602, D605, D609, С616 Проверить омметром сопротивление между каждым выводом микросхемы IC107 (VPS10) и общей точкой Проверить исправность элементов IC107, IC106, D655, D616, D617, Q602, D607, D650
После замены транзистора Q601 и микросхемы IC601 снова сгорает Q601 Обрыв резистора Проверить номинал резистора R613 (1 кОм)
Нет растра Отсутствие вторичных напряжений Проверить вторичные напряжения питания 135, 87, 12, 20, 6,3В Проверить заменой элементы IC602 и IC301 Проверить вторичные напряжения питания 75, 53, 14,5, 13, 12, -12, 7,5 В Проверить заменой элементы IC605, IC606, Q607 Q610, Q605 Проверить вторичные напряжения питания 80, 45, 12, 9, 5, 13, -12 В Проверить элементы IC404, IC605, Q605 и IC301 Проверить вторичные напряжения питания 195, 90, 20, 14, 12,5 В Проверить элементы IC606, IC607, Q613, Q608

Таблица 3. Неисправности источников питания мониторов Samsung

Неисправный элемент Возможная замена
1N4937 BY201, BYT52J, BYX92/600
1N5399 BY255, BY227, BYW55, BYW56
1R5NU41 31DF6, UF5408
2N3904 ВС174, ВС182, ВС190, ВС546
2SA1667 2SA1304, 2SA1306, 2SA1606, 2SB1338
31DF6 UF5408
КА3882 UC3842, SC3842
KSA733 2SA733, ВС212, ВС257, ВС307
KSB772 2SB772, BD786, MJE250 254
KSC1008 2SC1008, ВС140, ВС141, ВС300, ВС301
KSC2690 2SC2690A, 2SC3117, 2SD669
KSC945 2SC945, ВС174, ВС182, ВС190
MPSA92 BF493, BF421, BFP25, 2SB1074
RG10V1 RGP15M, BYT52M
RG24 RGP30M, BY299, BYW96E
RG2A BY299, BY298, BY297, RGP30A
RG4A UF5408, BYV87/600R
RGP02-12 RGP10M, RGP15M,
SS6N80 2SK1120, 2SK1203, 2SK1204
UF5402 31DF6, UF5404

Таблица 4. Аналоги для замены неисправных компонентов

Внимание! Проверку элементов и их замену проводить только в отключенном от сети ИП!

Генадий Яблононин
Журнал "Ремонт электронной техники"


ЖК мониторы практически вытеснили мониторы на основе ЭЛТ. Несмотря на значительные преимущества первых, такие как энергопотребление, качество изображения, габариты и т.д., у ЖК мониторов есть и недостатки.

Один из них - достаточно сложный ремонт, который в сервисных центрах выполняется на уровне замены плат, модулей. Но что делать, если необходимого для замены модуля нет в наличии (в продаже)? В этом материале автор описывает схемотехнику блока питания IP-35155A, который используется во многих современных ЖК мониторах SAMSUNG. Надеемся, что материал поможет провести диагностику этого узла, определить дефектные элементы и восстановить работоспособность блока питания и монитора в целом.

Плата блока питания с обозначением IP-35155A по спецификации SAMSUNG используется во многих современных 17-, 19- и 20-дюймовых моделях ЖК мониторов SAMSUNG, например в моделях "Samsung SyncMaster 731BF/932B/ 940BF/943BX/961GW/204B". Внешний вид электромонтажной платы IP-35155A приведен на рис. 1.

Рис. 1. Внешний вид электромонтажной платы IP-35155A

Функционально эту плату можно разделить на два узла: источник питания, от которого питаются плата графического контроллера (скалера) и ЖК панель, и DC/AC-конвертор (далее - инвертор) питания электролюминесцентных ламп подсветки (CCFL-ламп). Рассмотрим схемотехнику этих узлов более подробно.

Источник питания

Источник питания (см. принципиальную схему на рис. 2) вырабатывает постоянные стабилизированные напряжения 15 и 5,1 В для питания узлов монитора. Основа этого источника - ШИМ контроллер IC101 типа FSDM0465R фирмы Fairchild Semiconductor. Микросхема выполнена по технологии энергосберегающей технологии FPSTM и включает в себя полевой транзистор, выполненный по технологии SenseFET, и ШИМ контроллер с управлением по току, что позволяет снизить потребление в режиме ожидания и электромагнитное излучение (ЭМИ), а также сократить число внешних элементов. Особенности этой микросхемы:

  • встроенный мощный полевой транзистор SenseFET, стойкий к лавинному пробою;
  • экономичный режим "вспышки" (Burst Mode), обеспечивающий потребление 1 Вт при напряжении питания АС 240 В и мощности нагрузки 0,5 Вт;
  • прецизионный генератор рабочей частоты 66 кГц;
  • улучшенное ограничение пикового значения тока через SenseFET;
  • схемы защиты OVP (Over Voltage Protection), OLP (Over Load Protection) и TSD (Termal Shutdown) с рестартом;
  • потребляемый рабочий ток 2,5 мА.


Рис. 2. Принципиальная схема источника питания

Назначение выводов микросхемы FSDM0465R приведено в табл. 1.

Таблица 1. Назначение выводов микросхемы FSDM0465R

Номер вывода

Обозначение

Назначение

1

Сток мощного транзистора SenseFET. Подключается через обмотку импульсного трансформатора к выходу сетевого выпрямителя

Напряжение питания микросхемы 12 В

Напряжение обратной связи. Инверсный вход ШИМ компаратора. В стандартном включении сюда подключается коллектор транзистора оптрона цепи обратной связи и фильтрующий конденсатор (вторым выводом к "земле"). Если уровень на выводе превышает 6 В, срабатывает схема OLP и ШИМ выключается

Не используется

Напряжение питания схемы старта - источника тока, которым заряжается внешний конденсатор, подключенный к выводу VCC . При достижении на нем уровня 12 В внутренний источник тока выключается

Архитектура микросхемы приведена на рис. 3. Напряжение питания микросхемы составляет 11...18 В (уровень OVP=20 В), она работает на фиксированной частоте 66 кГ ц. После запуска от сетевого выпрямителя через цепь R04-R06, подключенную к выв. 4, микросхема питается от обмотки 1-2 импульсного трансформатора Т101 и выпрямителя D103 C107. Цепь обратной связи по напряжению из элементов IC102, PC101, контролирующая вторичное напряжение 5,1 В, формирует напряжение обратной связи на входе компаратора (выв. 4). При увеличении напряжения на управляющем выводе IC102 ток через светодиод оптрона PC101 растет, что приводит к уменьшению управляющего напряжения на выв. 4 IC101 и к уменьшению рабочего цикла схемы. И наоборот, уменьшение напряжения на управляющем выводе IC102 приводит к увеличению рабочего цикла. В результате происходит стабилизация вторичных напряжений 15 и 5,1 В.


Рис. 3. Архитектура микросхемы FSDM0465R

Пиковое значение тока через транзистор SenseFET ограничено на заданном уровне и контролируется по выв. 4. При напряжении на этом выводе более 2,5 В напряжение на входе внутреннего компаратора фиксируется, таким образом, рабочий цикл схемы не изменяется.

Узел гашения переднего фронта сигнала (LEB) в составе микросхемы блокирует ШИМ в момент времени, когда SenseFET полностью открыт и возможны импульсные выбросы в сигнале, что привело бы к нарушению цикла обратной связи.

Схема защиты от перегрузки OLP имеет задержку на включение для того, чтобы отличить переходные процессы в схеме от перегрузки в выходных цепях. В момент перегрузки напряжение на выходе источника уменьшается, что приводит в возрастанию напряжения на выв. 4 IC101. На уровне 2,5 В срабатывает схема ограничения пикового значения через силовой ключ (см. выше) и вход внутреннего компаратора отключается от выв. 4. В этот момент конденсатор C01 заряжается током 3,5 мА от внутреннего источника IC101. При достижении уровня 6 В (при С01=39 нФ время задержки равно 35...40 мс) срабатывает компаратор схемы OLP и ШИМ блокируется до момента снятия перегрузки.

Режим энергосбережения Burst Mode включается, когда энергопотребление в нагрузке уменьшается до уровня 0,5 Вт. При этом напряжение на входе обратной связи микросхемы (выв. 4) уменьшается до уровня 0,5 В. В этот момент ШИМ выключается до момента, когда напряжение превысит уровень 0,5 В. После включения ШИМ и достижения напряжения на выв. 4 уровня 0,7 В и отсутствии номинальной нагрузки на источник процесс повторяется.

Выводы питания (выв. 3) и обратной связи (выв. 4) микросхемы IC101 защищены диодами Зенера ZD101(102) (1 Вт, 47 В, 5,5 мА).

Основные параметры встроенного силового транзистора SenseFET:

V D =650 В, I DM =9 А, I D =2,2 A, R DS =2 Ом при V GS =10 В и I D =2,5 А.

Диагностика неисправностей источника питания

Если монитор не включается и индикатор на передней панели не светится, скорее всего, это связано с неисправностью ИП. Для того чтобы в этом убедиться, измеряют напряжение 15 В на выходе источника - контакте 2 разъема CN2. Если напряжение равно нулю, отключают ТВ от сети и проверяют омметром сетевой предохранитель F101. Если он перегорел, проводят осмотр элементов платы на наличие обгоревших корпусов, разъемов, вздутия корпусов электролитических конденсаторов. Подозрительные элементы выпаивают и проверяют омметром исправность.

Как правило, причиной перегорания F101 служат следующие элементы: SenseFET-транзистор в составе IC101 (выв. 2 - исток, выв. 1 - сток), диодный мост D101, конденсаторы сетевого фильтра С102-С105, элементы демпфера D102, C106. Все эти элементы проверяют вначале визуально (обгорание, вздутие корпуса), а затем омметром на короткое замыкание, неисправные заменяют. Электролитические конденсаторы желательно проверить измерителем ESR (эквивалентное последовательное сопротивление) на отсутствие утечки.

Если сетевой предохранитель исправен, проверяют на обрыв цепь от сетевого разъема до входа диодного моста, и от выхода моста до выв. 1 IC101. При отсутствии обрыва в цепи подают питание на ИП и контролируют сигнал на выв. 1 - импульсы фиксированной частоты размахом не менее 300 В.

Если импульсов нет, проверяют цепь запуска микросхемы (резисторы R04-R06 на обрыв), цепь питания в рабочем режиме (обмотку 1-2 Т101, D103, R07, C107, ZD102). Если импульсы на выв. 1 IC101 появляются и сразу же пропадают проверяют вторичные цепи источника на отсутствие короткого замыкания (см. описание защиты OLP), исправность элементов в цепи обратной связи. По наличию и уровню напряжения на выв. 4 можно судить о режиме работы источника (см. описание).

Для ускорения процесса диагностики источника, в первую очередь, проверяют все электролитические конденсаторы измерителем ESR и силовые диоды в первичной и вторичной цепях. Затем отключают выход источника от нагрузки - отстыковывают разъем CN2 и подают на источник питание. Он должен работать в энергосберегающем режиме Burst Mode (см. описание). Если этого не происходит проверяют элементы в цепи обратной связи, внешние элементы IC101 и сам контроллер.

Если источник работает в режиме Burst Mode, подключают его к нагрузке и проверяют работоспособность в этом режиме. При наличии перегрузки во вторичных цепях (контролируют напряжение на конденсаторе С01, см. описание) определяют причину и устраняют.

Контроллер FSDM0465R выпускается в двух исполнениях корпуса: DIP6 и TO-220F-6L. На схеме (рис. 2) приведена цоколевка микросхемы в DIP-исполнении (цифрами в кружках), а в исполнении TO-220F-6L (цифры указаны на корпусе). Микросхему FSDM0465R можно заменить на следующие типы: FSDM0565RB (60 Вт), FSDM07652RB (70 Вт), FSDM12652RB (90 Вт). Они отличаются более высокой выходной мощностью источника, который можно изготовить на их основе (указана в скобках для питающей сети 85...265 В).

Инвертор питания CCFL-ламп подсветки

Принципиальная схема этого узла приведена на рис. 4. Он выполнен по схеме несимметричного по-лумостового преобразователя. Нагрузкой полумоста на полевых транзисторах различной проводимости в составе сборки U301 служит первичная обмотка импульсного трансформатора T303. Транзисторы управляются драйвером U201 типа SEM2005 фирмы SAMSUNG. Этот драйвер формирует противофазные сигналы для управления МОП транзисторами.


Рис. 4. Принципиальная электрическая схема инвертора питания CCFL-ламп подсветки в 15-дюймовой модели

Назначение выводов микросхемы SEM2005 приведено в табл. 2, а ее архитектура представлена на рис. 5. Микросхема включается сигналом ON-OFF с контакта 9 CN2 (рис. 2), формируемым микроконтроллером монитора. Напряжение более 2 В на выв. 11 - включение микросхемы, а менее 1 В - выключение. Диапазон питающих напряжений микросхемы - 7,5...24 В (выв. 10). Выходные сигналы на выв. 8 и 9 размахом 10...11 В появляются при условии V STD >0,3 В и V OLP


Рис. 5. Архитектура микросхемы SEM2005

Таблица 2. Назначение выводов микросхемы SEM2005

Номер вывода

Обозначение

Вход/выхо д ( I / O )

Назначение

Конденсатор таймера выключения ШИМ

Вход схемы защиты от превышения напряжения

Вход схемы защиты от обрыва CCFL-ламп

Инверсный вход усилителя сигнала ошибки

Выход усилителя сигнала ошибки

Сигнальная "земля"

Силовая "земля"

Выход управления транзистором N-MOSFET

Выход управления транзистором P-MOSFET

Напряжение питания

Вход включения/выключения микросхемы

Внешний конденсатор генератора рабочей частоты

Внешний конденсатор НЧ генератора управления яркостью

Вход сигнала управления яркостью

Внешний резистор генератора рабочей частоты

Выход опорного напряжения 5 В/10 мА

Каждая из вторичных обмоток Т303 нагружена на две последовательно включенные CCFL-лампы. C резисторов R221-R224, включенных последовательно с лампами, снимаются напряжения обратной связи и через развязывающие диоды и фильтр R215 C209 подаются на вход обратной связи FB (выв. 4). Напряжение на этом входе может находиться в пределах 2,1...2,5 В. Напряжение с резисторов R221-R224 также используется для контроля состояния (обрыва) ламп. Через соответствующие цепи оно через развязывающие диоды поступает на вход OLP (выв. 3).

С конденсаторных делителей С311 С231, С312 С232, С313 С233, С314 С234, включенных параллельно лампам, снимаются сигналы для контроля напряжений на лампах и подаются на вход защиты OVP (выв. 2). Микросхема имеет следующие пороги срабатывания узлов защиты: V OLP 2,5 В.

Выходное напряжение инвертора (или яркость подсветки) можно регулировать двумя способами:

По входу обратной связи FB (выв. 4). Сигнал регулировки A-DIM от микроконтроллера монитора через делитель подается на вход микросхемы, суммируясь с напряжением обратной связи с выхода инвертора;

По входу BDIM (выв. 14). В составе микросхемы имеется НЧ генератор, его частота определяется номиналом конденсаторов С205, С236 (примерно 330 Гц при значении 5,5 нФ). Сигнал ШИМ модулируется низкочастотным сигналом, в результате выходные сигналы микросхемы представляют собой пачки ШИМ импульсов, и, контролируя НЧ генератор, можно изменять яркость подсветки.

Приведем основные электрические параметры транзисторов в составе сборки U301:

N-канал: V DS = 30 В, I D = 7,7 A (V GS = 10 В), R DS(ON)

P-канал: V DS = -30 В, I D = -6,2 A (V GS = -10 В) R DS(ON)

Рис. 6. Расположение выводов сборки

Диагностика неисправностей инвертора

При отсутствии подсветки в первую очередь проводят визуальный осмотр платы на наличие обгоревших участков, особенно во вторичных цепях - в месте разъемов, через которые к ней подключаются лампы. Довольно часто из-за плохого качества разъема контакт нарушается, и инвертор переключается в режим защиты (см. описание). Проверяют электролитические конденсаторы на отсутствие вздутий корпуса и резисторы - на отсутствие гари на корпусе.

Если визуальный осмотр ничего не дал, на инвертор подают питающее напряжение и с помощью осциллографа (необходимо использовать внешний щуп-делитель с высоким входным сопротивлением) проверяют наличие выходного напряжения на лампах. Если оно равно нулю, проверяют цепь питания инвертора: подачу 15 В (предохранитель F301 в этой цепи). Как правило, предохранитель сгорает по причине неисправности силовых ключей в составе сборки U301. Их легко диагностировать с помощью омметра.

Если 15 В на схему поступает и короткого замыкания нет, проверяют наличие питания и управляющих сигналов(включение, уровень яркости) на микросхеме U201. Косвенным признаком исправности контроллера является наличие сигнала частотой 50...60 кГц на выв. 12 и частотой около 300 Гц на выв. 13. Кроме того, на выв. 16 должно быть опорное напряжение 5 В.

Если внутренние генераторы микросхемы работают, а в момент включения ТВ на выходах контроллера появляются и пропадают ШИМ сигналы размахом около 10 В, скорее всего, срабатывает защита. Контролируют уровни напряжений на входах OVP и OLP (см. описание). Если такие сигналы на входах микросхемы присутствуют, необходимо выяснить причину срабатывания защиты и устранить.

В случае, когда после включения лампы вспыхивают и сразу же гаснут, для диагностики неисправной лампы можно применить метод сравнения. Осциллограф поочередно подключают к "холодному" выводу каждой лампы и в момент включения контролируют сигнал: его форма не важна, важно отличие сигнала от других. Например, на трех лампах уровень сигнала 3 В, а на одной 1.2 В. Если в цепи лампы обрыв, на экране осциллографа в этом случае будут помехи ("мусор").

В каждом из двух выходных каналов лампы включены последовательно, значит в случае дефекта (обрыва) одной из ламп не будет работать весь канал. В этом случае неисправную лампу можно заменить эквивалентом - керамическим конденсатором номиналом 270 пФ (для 17-дюймовых мониторов) или 470 пФ (для 19-дюймовых мониторов) с рабочим напряжением не менее 1,5 кВ.

Типовая неисправность такого инвертора - короткое замыкание одной из вторичных обмоток трансформатора (см. рис. 7). Если такой трансформатор найти не удалось, можно решить проблему следующим образом. Скальпелем аккуратно удаляют остатки обмотки, а с обратной стороны платы обрезают дорожки, к которым подключены выводы обмотки. На плате необходимо выпаять (или обрезать дорожки) катоды диодов диодных сборок соответствующего канала. Например, для неисправной обмотки 3-4 Т303 это катоды правых (по схеме) диодов сборок D211, D221, D212, D222, а сборку D201 необходимо выпаять целиком. Для равномерной подсветки подключают к исправному каналу одну верхнюю и одну нижнюю лампы.

Рис. 7. Типовая неисправность инвертора IP-35155A - короткое замыкание высоковольтной обмотки трансформатора

В случае если подсветка работает нестабильно (яркость самопроизвольно изменяется), это может быть связано со стабильностью входного сигнала управления яркостью (B-DIM или A-DIM), а также неисправностью элементов время-задающей цепи генератора (см. описание). Элементы цепи проверяют заменой. Если результата нет - заменяют контроллер.

Литература и интернет-источники

1. Samsung Electro-Mechanics. Specification IP-35155A (P).

2. Samsung Electro-Mechanics. Halfbridge invertet driver IC SEM2005.

3. Fairchild Semiconductor FSDM0465RB. Green Mode Fairchild Power Switch (FPSTM).

4. http://monitor.net.ru/forum/.

Всем привет!
В этой статье мы с вами рассмотрим блок питания жк телевизоров Samsung BN44-00192A , который применяется в аппаратах, диагональ экрана которых 26 и 32 дюймов. Также разберём некоторые типовые неисправности этого модуля.
Все компоненты данного блока питания расположены на одной плате. Внешний вид платы представлен на рисунке:
Схему модуля питания BN44-00192A можно найти в данного сайта.
Данный модуль функционально делится на несколько узлов:
— Power Factor Correction (PFC) или корректор коэффициента мощности (ККМ);
— источник питания «дежурный»;
— источник питания «рабочий».
Рассмотрим каждый узел в отдельности.
Корректор коэффициента мощности

Этот узел устраняет гармонические составляющие тока во входной цепи, которые воспроизводятся выпрямительными диодами вместе с электролитическим конденсатором фильтра сетевого выпрямителя импульсного источника питания (ИИП). Эти гармонические составляющие негативно влияют на электросеть, поэтому производителей бытовой техники обязывают оборудовать свою продукцию устройствами PFС. В зависимости от мощности, данные устройства бывают активными и пассивными. В рассматриваемом нами блоке питания BN44-00192A, устройство PFС является активным.



Здесь PFС включается коммутацией напряжения М_Vсс на 8 выводе контроллера ICP801S одновременно с «рабочим» источником питания. Когда включен дежурный режим активный PFС не работает, так как напряжение +311В с диодного моста через диод DP801 поступает на конденсатор фильтра. Для фильтрации гармоник при малых нагрузках вполне хватает установленных входных фильтров. По сути, эти фильтры являются пассивными PFС.

Источник питания «дежурный»

Дежурный источник питания представляет собой схему обратноходового преобразователя, который управляется ШИМ-контроллером ICB801S. Преобразователем, работающим на фиксированной частоте 55…67 кГц, формируется на выходе стабилизированное напряжение 5,2В и имеющее в нагрузке ток до 0,6А. Это напряжение обеспечивает питание процессора управления в дежурном режиме, питание микросхем ШИМ основного источника, а также питание PFС в рабочем режиме. Из дежурного в рабочий режим телевизор переходит путём формирования напряжения 5,2В посредством транзисторного ключа QB802. Напряжение питания М_Vcc, при этом, поступает на ШИМ-контроллеры ICP801S и ICM801. Одновременно с этим запускается PFС и основной источник питания.

Источник питания «рабочий»
Рабочий источник питания реализован по схеме прямоходового преобразователя, который выполнен по полумостовой схеме. Данный источник на выходе формирует стабилизированные напряжения:
24В (питание инвертора подсветки), 13В, 12В и 5,3В для питания майна.
Типовые неисправности
Теперь рассмотрим наиболее популярные дефекты данного блока питания.
К таковым относятся: