Конструктивные решения реконструируемых жилых зданий. Конструктивные решения кирпичной стен Конструктивные решения наружных стен в кирпичных зданиях

Конструктивные решения реконструируемых жилых зданий. Конструктивные решения кирпичной стен Конструктивные решения наружных стен в кирпичных зданиях

В настоящее время наряду со стенами из кирпича и дерева, все чаще применяются технологии изготовления монолитных домов, в том числе и при помощи несъемной пенополистирольной опалубки, трехслойная конструкция с утеплителем посередине: между несущей стеной из кирпича или крупноформатных блоков и внешним слоем облицовочного кирпича создается прослойка из пенопласта. По теплоизоляционным свойствам такая система толщиной 35-40 см аналогична метровой кирпичной стене.

Востребованы технологии с применением крупноформатных блоков из пенобетона, газобетона и других модифицированных бетонов. Они обладают хорошими теплофизическими параметрами и рядом технологических преимуществ, но при строительстве элитного жилья все же не так востребованы. Для индивидуального жилищного строительства, возможно, очень перспективным штучным материалом следует считать крупноформатные блоки из поризованной керамики. Но сейчас в России их производит только одно предприятие: Санкт-Петербургская "Победа-Кнауф". Этот материал обладает уникальными характеристиками, он совмещает в себе эстетические и экологические свойства качественного керамического кирпича и технологичность крупноформатных блоков.

Строятся и сборные дома из сэндвич панелей на основе деревянного каркаса. Эти технологии могли бы решить очень многие проблемы в индивидуальном массовом строительстве, если бы удалось снизить цену их производства до 300-400 долларов за метр. Но все же, как правило, подобные здания стоят намного больше.

Традиционным материалом для России всегда являлось дерево. По-прежнему основными стеновыми материалами на сегодня остаются кирпич (до 50%) и древесина (около 30%).

В деревянном домостроении применяются в основном три известные архитектурно-строительные системы: домостроение из массивной древесины, каркасное и панельное домостроение. Как полагают специалисты, структура деревянного домостроения на ближайшие 10-15 лет (по оптимистичному прогнозу) будет выглядеть следующим образом: домостроение из массивной древесины - 35-40%, панельное деревянное домостроение - 30-35%, каркасное деревянное домостроение - 25-30%.

В общей стоимости стройматериалов для индивидуального дома деревянные детали и конструкции (стены, окна, двери, полы, перекрытия, крыша) составляют в зависимости от вида стен (кирпич или брус, бревно) от 40% до 75%. Поэтому малоэтажное жилищное строительство часто называют деревянным домостроением.

В существующей по России в настоящее время структуре продукции деревянного домостроения по конструктивным типам домов наибольший удельный вес занимают дома панельной конструкции - 70%, брусчатые и бревенчатые - 26%, каркасные - 4%.

Санкт-Петербург в этом плане имеет особый статус. Даже по сравнению с Москвой в Северо-западном регионе предпочтение отдается брусчато-бре-венчатым конструкциям. Объясняется это как наличием ресурса для подобного домостроения, так и эстетическими предпочтениями.

По мнению петербургских домостроителей, специализирующихся на дереве, этот рынок всегда имел положительную динамику. Особый рост был замечен в 2000-2003 годах. В этот период строительство деревянных домов приобрело более профессиональный характер. Компании, занимающиеся этим бизнесом, обрели достойную репутацию, а клиенты перестали ориентироваться на условную цену дома, отдавая предпочтение качеству.

Специалисты полагают, что рост рынка деревянного домостроения Петербургского региона с 2000 года составил не менее 30%. Если раньше основной тип деревянных домов был ориентирован на временное проживание (дачи и летние коттеджи), то теперь существенная доля клиентов предпочитает строить деревянный дом в непосредственной близости от города для постоянного проживания.

При разработке коструктивных решений приняты следующие характеристики основных строительных материалов и утеплителей:

Кирпич керамический пустотный М75, М100 (ГОСТ 530-90) плотностью 1400 кг/ м с коэффициентом теплопроводности 0,64 Вт/ м°С;

Сплошные блоки из ячеистого бетона у =600 кг/ м, с коэффициентом теплопроводности - 0,26 Вт/ м°С;

Пустотные блоки из керамзитобетона на керамзитовом песке g= 1000 кг/ м, с коэффициентом теплопроводности 0,4 Вт/ м° С;

Пустотные блоки из бетона на природных заполнителях у = 2400 кг/м с коэффициентом теплопроводности - 1,86 Вт/ м° С;

Плиты древесно-волокнистые и древесно-стружечные у = 1000 кг/ м с коэффициентом теплопроводности - 0,29 Вт/ м° С для наружной обшивки;

Плиты древесно-волокнистые и древесно-стружечные у = 600 кг/м с коэффициентом теплопроводности - 0,23 Вт/ м° С для внутренней обшивки;

Фанера клееная у = 600 кг/ м с коэффициентом теплопроводности- 0,18 Вт/м°С;

Плиты минераловатные повышенной жесткости «Роквул», «Изомат», «Парок» с р =130-142 кг/ м 3 и Х= 0,036-0,042 Вт/ м°К;

Плиты минераловатные полужесткие и для сухих систем утепления и колодцевой кладки из мелкоштучных материалов с р = 30-34 кг/ м и X = 0,36 Вт/ мК.

Плиты пенополистирольные «ТИГИ-КНАУФ» по ГОСТ15588-86 с антипиреном:

М 15 у=15 кг/м 3 X = 0,042 Вт/ мК;

М 25 у =25 кг/м 3 X = 0,039 Вт/ мК;

М 35 у =15 кг/ м 3 X = 0,037 Вт/ мК.

Конструктивные решения многослойных стен разработаны для жилых зданий, строительство которых будет осуществляться в климатических районах с количеством градусо-суток отопительного периода (ГСОП) 6000.

В зависимости от типа ограждающей конструкции может быть принята следующая этажность зданий:

- кирпичные стены с наружным утеплением толщиной 120 мм в стальном каркасе и толщиной 250 мм без стального каркаса - для 1-2-х этажных домов с мансардой;

- деревянные стены из бруса с наружным утеплением - для 1-2-х этажных домов с мансардой;

- 3-х слойные кирпичные стены с жесткими связями при толщине внутреннего слоя -120 мм - для одноэтажных домов, толщиной 250 мм - для 2-4-х этажных домов (с засыпным утеплителем - для 2-х этажных домов);

- 3-х слойные кирпичные стены с гибкими связями с плитным и засыпным утеплителем для жилых зданий высотой до 2-х этажей с мансардами. Кладку 3-х слойных кирпичных стен с жесткими и гибкими связями выполнять в строгом соответствии с указанием альбома «Технические решения теплоэффективных кирпичных наружных стен жилых зданий» с ГСОП-8000 НТК Центра Минстроя РФ;

И ячеисто-бетонных блоков с гибкими связями при толщине несущего слоя 190 мм (при щелевых камнях) и 200 мм (при ячеисто-бетонных блоках) - для одноэтажных домов с мансардой, а с несущим слоем 290 мм и 300 мм соответственно- для 2-х этажных домов с мансардой;

- колодцевые кладки из щелевых камней и ячеисто-бетонных блоков с жесткими связями при толщине несущего слоя 190 мм (при щелевых камнях) и 200 мм (при ячеистобетонных блоках) - для одноэтажных домов с мансардой, с наружным слоем 190 мм и несущим слоем 390 мм (при щелевых камнях) - для 4-5 этажных домов;

- каркасные деревянные стены - для 1 -2-х этажных домов с мансардой;

- монолитные стены из армированного бетона с наружным утеплением - для домов от 1 до 9 этажей с подтверждением расчетом на прочность.

Облегченная кладка из пустотелого кирпича с гибкими связями и керамзитовым гравием с внутренней стенкой 250 мм и наружной - 120 мм:

1- кладка: - керамзитобетонные камни; 2 - утеплитель - пенополистирол М25

Стена толщиной 250 мм с наружным утеплением и облицовкой плиткой (утеплитель - пенополистирол по ГОСТ 15588-86, у = 40 кг/м 3):

1 - кирпичная кладка на цементно-известковом растворе; 2 - клей для приклеивания пенополистирольных плит; 3 - пенополистирол М35, 6=120 мм; 4 - армирующая сетка; 5 - дюбели; 6 - штукатурка по сетке; 7 - облицовка плиткой; 8 - гипсокартонная плита

Облегченная кладка из пустотелого кирпича с гибкими связями с утеплителем из пенополистирола ГОСТ 15588-86 у =40 кг/м с внутренней стенкой - 250 мм и наружной - 120мм. Примечание: гибкие связи изготавливаются из оцинкованной стали В р -I и устанавливаются через 600 мм как по горизонтали, так и по вертикали в шахматном порядке (СНиП 2.03.01.84):

1 - кирпичная кладка; 2 - утеплитель - пенополистирол Ml5 6=14 см; 3- гипсокартонная плита

Стены комбинированные с облицовкой канадскими плитами (фирма А-7):

1- канадская плита с пенополиуретановым утеплителем 6=50 мм; 2- крепление плиты к основному каркасу саморезами М 4 х 35; 3- заделка швов базальтовой породой и силиконовым герметиком; 4- каркас стены из брусьев 40 х 120 мм с шагом 1,2 м с обвязкой понизу и поверху; 5- рубероид; 6,8- фанера (6=12 мм); 7- утеплитель - минерало-ватные плиты: 6=120 мм

1- деревянная стена из бруса 150x150 мм; 2- утеплитель - минплита 6=100;

3- горизонтальный деревянный держатель из двух досок 6=32 мм и

бобышек =160 мм с шагом 400 мм толщиной 40 мм; 4- гвозди для крепления поз. 3

к стене и бобышек к доскам; 5- вертикальный фасонный держатель;

6 - облицовочная плитка

Стены из пеногазобетонных блоков (190 х 190 х 390 мм) с наружным утеплением по системе «ХЕКК»:

1- кладка из блоков; 2- клей для приклеивания пенополистирольных плит;

3- утеплитель - плита из пенополистирола М 35 толщиной ПО мм;

4- армирующая сетка; 5 - дюбели; 6 - штукатурка по сетке «ХЕКК» толщиной

6-8 мм; 7 - накрывочный штукатурный слой «ХЕКК» 7 мм

Деревянная стена из бруса 6=150 мм с наружным утеплением минераловатными плитами компании «БИК» по технологии чешской фирмы «Икс штайн» (система СПИДИ):

1- кладка: - керамзитобетонные камни; 2 - утеплитель - пенополистирольные

плиты М 25, 6=220 мм

Облегченная кладка из пустотелого кирпича с гибкими связями с утеплителем из минплиты компании «БИК» с внутренней стенкой - 250 мм и наружной - 120 мм:

1- кирпичная кладка; 2 - минераловатные плиты 6=100 мм; 3 - гипсокартонная плита

Облегченная кладка из пустотелого кирпича с жесткими связями с утеплителем из минваты g = 200 кг/мЗ ГОСТ 9573-82 с толщиной внутренней и наружной стенки - 120 мм:

1- кирпичная кладка: 2 - утеплитель - плита П-200 г. ГОСТ 9573-82, 6=220 мм

Монолитная железобетонная стена с наружным утеплением по системе «ХЕКК» с утеплителем из пенополистирола по ГОСТ 15588-86 у =40 кг:

1- железобетонная армированная стена 6=100 мм; 1а - клей для приклеивания

пенополистирольных плит; 2 - утеплитель - пенополистирол 6=130 мм М 35;

3 - армирующая сетка; 4 - дюбели; 5 - штукатурка по сетке «ХЕКК» толщиной

6-8 мм; 6 - накрывочный штукатурный слой «ХЕКК» - 7 мм

Деревянная стена из бруса 150 х 150 мм с наружным утеплителем по системе «ХЕКК» с утеплителем из пенополистирола ГОСТ 15588-86 у = 40 кг/ м 3:

1 - стена из бруса 150 х 150 мм; 2 - клей для приклеивания пенополистирольных плит; 3- утеплитель - пенополистирольные плиты 6=100 мм, М 35; 4 – армирующая сетка; 5 - дюбели; 6 - штукатурка по сетке «ХЕКК»; 7 – накрывочный штукатурный слой «ХЕКК» - 7 мм

Стены из сплошных блоков из ячеистого бетона у =600 кг/м с жесткими связями и утеплителем из минераловатных плит компании «БИК» при толщине внутреннего слоя 300 мм и наружного - 145 мм:

1- кладка из ячеистого бетона; 2 - утеплитель - минераловатные плиты 90 мм;

3 - гипсокартонная плита

Стены из сплошных блоков из ячеистого бетона у =600 кг/м с гибкими связями с утеплителем из пенополистирола у =40 кг/м при толщине внутреннего слоя - 300 мм и наружного - 145 мм:

1 - кладка: блоки из ячеистого бетона; 2 - утеплитель - пенополистирольные плиты М25, 6=100 мм; 3 - гипсокартонная плита; 4 - гибкие связи

Стены из сэндвич-панелей на основе деревянного каркаса с утеплителем минеральной ватой базальтовых пород «Rockwool» с гидроизоляцией:

Наружная стена со штукатурным покрытием:

Наружная стена с облицовкой кирпичом:

Наружная стена с горизонтальной облицовкой деревом (блок-хаус):

Внутренняя несущая стена :

Доля стеновых материалов в цене объекта загородной недвижимости составляет 3- 10%. При этом влияние материала стен на комфортность проживания остается по- прежнему высоким. Даже просторечное название дома определяется конструкцией его стен.

Комфорт в доме зависит не только от того, из чего сделаны стены. Факторов, влияющих на комфорт, очень много. Но выбор материала стен определяет базовые характеристики дома, которые навсегда останутся с ним и никуда не денутся ни при замене системы отопления, ни при ремонте крыши. Даже устное определение дома основано на выборе стенового материала: каменный, деревянный, каркасный. Конструкция стены представляется основополагающей характеристикой строения даже на бытовом уровне.

В этой статье не будет сказано ни слова о достоинствах и недостатках различных материалов с точки зрения экологичности, долговечности или влияния на микроклимат помещений. Эти вопросы заслуживают отдельного рассмотрения.
Наша статья посвящена другому аспекту выбора: вероятности появления скрытых дефектов. Речь пойдёт о том, насколько реально достичь тех характеристик, которые заявляются производителями и используются в расчетах конструкторами, теплотехниками и другими специалистами.

В общем случае стена – это:

  1. Конструктивное решение стены (несущие, теплоизолирующие, паро- ветрозащитные, отделочные и т.д. слои);
  2. Конструктивное решение отдельных ее узлов (схема установки окон и дверей, примыкание перекрытий, крыши, перегородок, прокладка коммуникаций и другие неоднородности);
  3. Фактическое исполнение принятых конструктивных решений.

Реализуемость проектных решений

Формальных критериев надежности и реализуемости нет. Оценить устойчивость к браку на основе нормативов мы не можем. Поэтому определим реализуемость проектных решений исходя из соображений здравого смысла.

Устойчивость к браку складывается из двух составляющих:

  1. Принципиальная возможность допустить случайный брак при добросовестном производстве работ;
  2. Возможность проверить качество готовой стены без разборки, без применения сложного оборудования и в любое время года.

Обе эти составляющих одинаково важны при выборе конструктивного решения стены. А в зависимости от того, своими руками или с привлечением подрядчиков ведется строительство, акцент при выборе конструктива стены может смещаться от вероятности случайного брака к возможности визуальной оценки качества уже выполненных работ.

Краткая классификация наружных стен

1. Несущий каркас с заполнением. Пример: силовой каркас – доски или металлический профиль, обшивка и заполнение (по слоям изнутри наружу) – ГВЛ (ГКЛ, OSB), п/э пленка, утеплитель, ветрозащита, облицовка.

2. Несущая стена с наружным утеплением с разделением несущей и теплоизолирующей функций между слоями. Пример: стена из кирпича, камней или блоков с наружным утеплителем (пенополистирол или минераловатная плита) и облицовкой (лицевой кирпич, штукатурка, навесной фасад с воздушным зазором).

3. Однослойная стена из материала, выполняющего и несущую и теплоизолирующую функции. Пример: бревенчатая стена без отделки или оштукатуренная кирпичная стена.

4. Экзотические системы с несъёмной опалубкой уберем из рассмотрения из-за малой распространенности.


Попробуем понять, на каких этапах строительных работ возможно отклонение от проектных решений и возникновение брака.

Каркасные конструкции

При упоминании каркасных построек нет необходимости отдавать пальму первенства в их изобретении Канаде. Щитовые домики появились у нас задолго до падения «железного занавеса». А потому оценить их надежность нам вполне посильно. Конструктив: вертикальные и горизонтальные силовые элементы каркаса, раскосы или листовая обшивка, придающие конструкции жесткость.

Никаких вопросов к реализуемости собственно каркаса не возникает – собранный каркас позволяет простейшими средствами оценить свое качество. Визуальная ровность и проверяемая жесткость при приложении горизонтальных нагрузок являются достаточными для приемки каркаса в эксплуатацию. Другое дело – слои, призванные обеспечить тепловую защиту.

Утеплитель . Должен плотно заполнять все полости, образованные силовыми элементами. Задача, труднореализуемая при шаге между элементами каркаса, отличающемся от габаритов плитного утеплителя. И почти не реализуемая при наличии диагональных раскосов в структуре каркаса (конечно, существуют и заливочный, и засыпной утеплители, лишенные этих недостатков – здесь речь идет о наиболее ходовых вариантах заполнения).

Пароизоляция . Слой пленки с высоким сопротивлением паропроницанию. Должен быть установлен с герметизацией стыков, без ослабления перфорацией от механических элементов крепления, с особо тщательным исполнением вокруг оконных и дверных проемов, а также в местах выхода из стены коммуникаций, запрятанных в толщу утеплителя электро- и других разводок и пр. В теории, пароизоляцию можно сделать добротно и тщательно. Но в случае, если вы – заказчик, получающий готовую конструкцию, качество пароизоляции уже обшитой изнутри стены не проверяемо.

Стены с наружным утеплением

Конструктивное решение, распространившееся в последние двадцать лет, одновременно с ужесточением нормативных требований к теплозащите и ростом цен на энергию. Наиболее распространены два варианта:

  • несущая каменная стена (200–300 мм) + утеплитель + облицовка в 1⁄2 кирпича (120 мм);
  • несущая каменная стена (200–300 мм) + приклеенный и закрепленный дюбелями утеплитель + армированная штукатурка по утеплителю или воздушный зазор, ветровая защита и листовая облицовка.

Вопросов к несущему слою стены практически нет. Если стена сложена достаточно ровно (без явных отклонений от вертикали), ее несущей способности практически всегда будет достаточно для выполнения своей основной – несущей – функции. (В малоэтажном строительстве прочностные характеристики стеновых материалов редко когда используются полностью.)

Утеплитель . Приклеенный на несущую стену, закрепленный к ней механически, укрытый слоем армированной штукатурки, он не вызывает вопросов. Можно ошибиться в выборе клея, дюбелей, штукатурного состава – тогда спустя какое-то время слой теплоизоляции или отделки начнет отставать от стены. В целом же – качество проверяемо средствами визуального контроля, а всплывающий брак очевиден.

Качество работ при навесном фасаде с воздушным зазором уже не столь очевидно. Для проверки плотности установки утеплителя необходим демонтаж облицовки, монтаж ветровой защиты также требует промежуточной приемки.

При облицовке утеплителя кирпичом качество его установки невозможно проверить даже тепловизором. А устранить брак можно только после демонтажа облицовки (читай – сноса кирпичной стены).

Однослойные стены

Стена из бревна или бруса, сложенная с применением качественного межвенцового уплотнителя и ничем не обшитая, поверяется на соответствие проекту простым осмотром. Растрескивание древесины, уменьшающее приведенную толщину бревна на 40-60%, и усадку в 6-8% здесь мы рассматривать не будем.

Пустотелые камни . К ним относятся пустотные бетонные блоки и многопустотная крупноформатная керамика. Пустотелые блоки из тяжелого бетона не обеспечат требуемого термического сопротивления, а потому могут выступать лишь как часть стены из предыдущего раздела. Однослойная стена из крупноформатной керамики, оштукатуренная с двух сторон, гарантировано защищена от продувания. Ее тонкие места: углы, отличные от 90 ̊ и кладочные швы.

Обработка хрупких многощелевых блоков для создания не прямого угла, ведет к образованию ажурной стыкуемой поверхности и толстому вертикальному растворному шву. Но значительно большее влияние на отклонение стены от расчетных характеристик оказывают горизонтальные кладочные швы. Во-первых, сами по себе они уже являются мостиками холода. Во-вторых, по правилам, во избежание заполнения пустот раствором, поверх камня до укладки раствора положено раскатывать стекловолоконную сетку с ячейкой 5х5 мм. При этом следует тщательно контролировать подвижность раствора, чтобы не допустить его протекания сквозь ячейки сетки.

Таким образом, возникновение случайного брака возможно даже при добросовестном производстве работ. При производстве работ силами подрядчика, возможность оценить качество кладки без применения тепловизора отсутствует.

Полнотелые камни. К ним относятся стеновые блоки из ячеистого или лёгкого бетона и полнотелый кирпич. Качество стены из полнотелого кирпича можно оценить издалека невооруженным глазом, поэтому говорить о скрытом браке применительно к такой кладке не приходится. Недостаток полнотелого кирпича, как и камней из бетона с большой плотностью – относительно высокая теплопроводность. Такие стены требуют дополнительной теплоизоляции, что возвращает нас в предыдущий раздел, к стенам с наружным утеплением.

Остаются ячеистобетонные блоки. При плотности более 500 кг/м3, а также при использовании обычного цементно-песчаного раствора с толщиной шва более 10 мм, возникает целесообразность дополнительного утепления стены, что лишает ее конструкцию изящной простоты. И только ячеистый бетон с плотностью до 500 кг/м3, с высокой геометрической точностью блоков, позволяющей вести кладку на тонкослойном растворе, дает нам конструкцию столь простую, что возникновение в ней скрытого брака попросту невозможно.

Однослойная стена из ячеистого бетона низкой плотности с клеевыми швами толщиной 1-3мм.

Испортить ее не просто. Например, блоки можно сложить насухо, без какого бы то ни было скрепления друг с другом, просто как детские кубики. Если потом такую стену оштукатурить с двух сторон по сетке – она будет выполнять все возложенные на нее задачи на 100%. Тепловая защита сложенной насухо (и оштукатуренной с двух сторон) конструкции не снизится, а даже несколько вырастет за счет отсутствия теплопроводных растворных прослоек. При этом способность к восприятию вертикальных нагрузок, общая жесткость и устойчивость такой стены при наличии обвязочного пояса в уровне перекрытия не будут отличаться от расчетных.

Точность геометрических размеров, крупный формат блоков и тонкослойный̆ клей обеспечивают принципиальную невозможность сложить кладку с заметными отклонениями от вертикали или какими-либо неровностями. Кладка автоматически получается ровной даже у неопытного каменщика. Углы, отличные от 90 ̊, выполняются при помощи обычной ручной ножовки. Подготовка под чистовую отделку производится простой шпаклевкой швов, т.е. столь же легко, как перед отделкой гипсокартонной поверхности.

По защищенности от скрытых дефектов однослойной̆ стене нет равных. По защищенности от дефектов вообще, как скрытых, так и явных, равных нет однослойной стене из ячеистобетонных блоков плотностью до 500 кг/м3. Только такая стена, выполненная в материале, гарантированно будет соответствовать принятому проектному решению.


Дата публикации: 12 Января 2007 года

Предлагаемая вашему вниманию статья посвящена конструкции наружных стен современных зданий по показателям их теплозащиты и внешнему виду.

Рассматривая современные здания, т.е. здания, которые существуют в настоящее время, следует их разделять на здания, спроектированные до и после 1994 г. Отправной вехой в изменении принципов конструктивного решения наружных стен в отечественных зданиях является приказ Госстроя Украины № 247 от 27.12.1993 г., которым устанавливались новые нормативы по теплоизоляции ограждающих конструкций жилых и общественных зданий. В дальнейшем приказом Госстроя Украины № 117 от 27.06.1996 г. были введены поправки в СНиП II -3-79 «Строительная теплотехника», которые установили принципы проектирования теплоизоляции новых и реконструируемых жилых и общественных зданий.

После шести лет действия новых норм уже не возникают вопросы об их целесообразности. Годы практики показали, что был сделан правильный выбор, который, в то же время, требует тщательного многостороннего анализа и дальнейшего своего развития.

У зданий, спроектированных до 1994 г. (к сожалению, строительство зданий по старым теплоизоляционным нормативам встречается и до сих пор), наружные стены выполняют и несущие, и ограждающие функции. Причем несущие характеристики обеспечивались при достаточно незначительных толщинах конструкций, а выполнение ограждающих функций требовало существенных материальных затрат. Поэтому удешевление строительства шло по пути априори низкой энергоэффективности в силу известных причин для богатой энергоносителями страны. Эта закономерность относится в равной степени как к зданиям с кирпичными стенами, так и к зданиям из крупноразмерных бетонных панелей. В тепловом отношении различия между этими зданиями заключались только в степени термической неоднородности наружных стен. Стены из кирпичной кладки можно рассматривать как достаточно однородные в термическом отношении, что является преимуществом, так как равномерное температурное поле внутренней поверхности наружной стены - это один из показателей теплового комфорта. Однако для обеспечения теплового комфорта необходимо, чтобы абсолютное значение температуры поверхности было достаточно высоким. А для наружных стен зданий, созданных по нормативам до 1994 г., максимальной температурой внутренней поверхности наружной стены при расчетных температурах внутреннего и наружного воздуха могло быть только 12°С, что для условий теплового комфорта недостаточно.

Внешний вид стен из кирпичной кладки также оставлял желать лучшего. Это обусловлено тем, что отечественные технологии изготовления кирпича (и глиняного, и керамического) были далеки от совершенства, в результате и кирпич в кладке имел разные опенки. Несколько лучше выглядели здания из силикатного кирпича. В последние годы в нашей стране появился кирпич, изготовленный по всем требованиям современных мировых технологий. Это относится к Кор-чеватскому заводу, где выпускают кирпич с прекрасным внешним видом и относительно хорошими теплоизоляционными характеристиками. Из таких изделий можно строить здания, внешний вид которых не будет уступать зарубежным аналогам. Многоэтажные здания в нашей стране в основном строились из бетонных панелей. Для этого типа стен характерна существенная термическая неоднородность. В однослойных керамзито-бетонных панелях термическая неоднородность обусловлена наличием стыковых соединений (фото 1). Причем на ее степень, кроме конструктивного несовершенства, еще существенно влияет так называемый человеческий фактор - качество уплотнения и утепления стыковых соединений. А так как это качество в условиях советской стройки было низким, то и стыки протекали и промерзали, преподнося жителям все «прелести» сырых стен. Кроме того, повсеместное несоблюдение технологии изготовления керамзито-бетона приводило к повышенной плотности панелей и низкой их теплоизоляции.

Не намного лучше обстояли дела и в зданиях с трехслойными панелями. Так как ребра жесткости панелей обуславливали термическую неоднородность конструкции, проблема стыковых соединений оставалась актуальной. Внешний вид бетонных стен был крайне непритязателен (фото 2) - цветных бетонов у нас не было, а краски были не надежны. Понимая эти проблемы, архитекторы пытались придать разнообразие зданиям за счет нанесения плитки на наружную поверхность стен. С точки зрения законов тепломассообмена и циклических температурно-влажностных воздействий такое конструктивно-архитектурное решение является абсолютным нонсенсом, что и подтверждается внешним видом наших домов. При проектировании
после 1994 г. определяющей стала энергоэффективность сооружения и его элементов. Поэтому пересмотрены сложившиеся принципы проектирования зданий и их ограждающих конструкций. В основу обеспечения энергоэффективности положено строгое соблюдение функционального назначения каждого элемента конструкции. Это относится как к зданию в целом, так и к ограждающим конструкциям. В практику отечественного строительства уверенно вошли так называемые каркасно-монолитные здания, где прочностные функции выполняет монолитный каркас, а наружные стены несут только ограждающие (тепло- и звукоизоляционные) функции. В то же время сохранились и успешно развиваются конструктивные принципы зданий с несущими наружными стенами. Последние решения интересны еще и тем, что они полностью применимы для реконструкции тех зданий, которые были рассмотрены в начале статьи и которые повсеместно требуют реконструкции.

Конструктивным принципом наружных стен, которые в одинаковой мере могут применяться для строительства новых зданий и для реконструкции существующих, является сплошное утепление и утепление с воздушной прослойкой. Эффективность данных конструктивных решений определяется оптимальным подбором теплофизических характеристик многослойной конструкции - несущей или самонесущей стены, утеплителя, фактурных слоев, наружного отделочного слоя. Материал основной стены может быть любым и определяющие требования к нему -прочностные и несущие.

Теплоизоляционные характеристики в этом решении стены полностью описываются теплопроводностью утеплителя, в качестве которого используются пенополистирол ПСБ-С, минераловатные плиты, пенобетон, керамические материалы. Пенополистирол - теплоизоляционный материал с низкой теплопроводностью, долговечный и технологичный при утеплении. Его производство налажено на отечественных заводах (комбинаты «Стироль» в Ирпене, заводы в Горловке, Житомире, Буче). Основной недостаток - материал горюч и по отечественным пожарным нормам имеет ограниченное применение (для малоэтажных зданий, или же при наличии значительной защиты из негорючей облицовки). При утеплении наружных стен многоэтажных зданий к ПСБ-С предъявляются еще и определенные требования по прочности: плотность материала должна быть не менее 40 кг/м3.

Минераловатные плиты - теплоизоляционный материал с низкой теплопроводностью, долговечный, технологичный при утеплении, отвечает требованиям отечественных пожарных норм для наружных стен зданий. На рынке Украины, как и на рынках многих других стран Европы, применяются минераловатные плиты концернов ROCKWOOL, PAROC, ISOVER и др. Характерной особенностью этих фирм является широкая палитра производимых изделий - от мягких плит до жестких. При этом каждое наименование имеет строго адресное назначение - для утепления кровли, внутри стен, фасадное утепление и пр. Например, для фасадного утепления стен по рассматриваемым конструктивным принципам фирма ROCKWOOL выпускает плиты «FASROCK», а фирма PAROC -плиты L-4. Характерной особенностью этих материалов является их высокая формоустойчивость, что особенно важно при утеплении с вентилируемой воздушной прослойкой, низкая теплопроводность и гарантированное качество изделий. По теплопроводности эти минера-ловатные плиты за счет своей структуры не хуже пенополистирола (0,039-0,042 ВтДмК). Адресное изготовление плит обуславливает эксплуатационную надежность утепления наружных стен. Совершенно не приемлемо применение для рассматриваемых конструктивных вариантов матов или мягких минераловатных плит. К сожалению, в отечественной практике встречаются решения утепления стен с вентилируемой воздушной прослойкой, когда в качестве утеплителя используют минераловатные маты. Тепловая надежность подобных изделий вызывает серьезные опасения, и факт достаточно широкого их применения может объясняться только отсутствием в Украине системы ввода в эксплуатацию новых конструктивных решений. Важным элементом в конструкции стен с фасадным утеплением является наружный защитно-декоративный слой. Он не только определяет архитектурное восприятие здания, но и обуславливает влажностное состояние утеплителя, являясь одновременно защитой от атмосферных воздействий и для сплошного утепления элементом удаления парообразной влаги, попадающей в утеплитель под воздействием сил тепло- массообмена. Поэтому особое значение приобретает оптимальный подбор: утеплитель - защитно-отделочный слой.

Выбор защитно-отделочных слоев определяется прежде всего экономическими возможностями. Фасадное утепление с вентилируемой воздушной прослойкой в 2-3 раза дороже, чем сплошное утепление, что определяется уже не энергоэффективностью, так как слой утеплителя в обоих вариантах один и тот же, а стоимостью защитно-отделочного слоя. При этом в общей стоимости системы утепления цена непосредственно утеплителя может составлять (особенно для вышеуказанных некорректных вариантов применения дешевых неплитных материалов) всего 5-10%. Рассматривая фасадное утепление, нельзя не остановиться на утеплении помещений изнутри. Таково уж свойство нашего народа, что во всех практических начинаниях, не взирая на объективные законы, он ищет неординарных путей, будь-то социальные революции или строительство-реконструкция зданий. Внутреннее утепление привлекает всех своей дешевизной - затраты только на утеплитель, а его выбор достаточно широкий, так как нет необходимости в строгом соответствии критериям надежности, следовательно, стоимость утеплителя уже будет не высока при тех же теплоизоляционных показателях, отделка минимальна - любой листовой материал и обои, трудозатраты минимальны. Снижается полезный объем помещений - это мелочи по сравнению с постоянным тепловым дискомфортом. Эти доводы были бы хороши, если бы подобное решение не противоречило закономерностям формирования нормального тепловлажностного режима конструкций. А нормальным этот режим можно назвать только при условии ненакопления в нем влаги в холодный период года (длительность которого для Киева составляет 181 сутки -ровно половина года). При невыполнении этого условия, то есть при конденсации парообразной влаги, которая попадает в наружную конструкцию под действием сил тепло- массообмена, в толще конструкции происходит намокание материалов конструкции и, прежде всего, теплоизоляционного слоя, теплопроводность которого при этом увеличивается, что вызывает еще большую интенсивность дальнейшей конденсации парообразной влаги. Результат - потеря теплоизоляционных свойств, образование плесени, грибков и прочие неприятности.

На графиках 1, 2 представлены характеристики тепловлажностного режима стен при их внутреннем утеплении. В качестве основной стены рассмотрена керамзитобетонная стена, в качестве теплоизолирующих слоев - наиболее часто применяемые пенобетон и ПСБ-С. Для обоих вариантов наблюдается пересечение линий парциального давления водяного пара е и насыщенного водяного пара Е, что сигнализирует о возможности конденсации паров уже в зоне пересечения, которая находится на границе утеплитель - стена. К чему приводит такое решение на уже эксплуатируемых зданиях, где стены находились в неудовлетворительном тепловлажностном режиме (фото 3) и где попытались подобным решением этот режим улучшить, видно на фото 4. Совершенно иная картина наблюдается при перемене мест слагаемых, то есть размещении слоя утеплителя на фасадной стороне стены (график 3).

График №1

График №2

График №3

Необходимо отметить, что ПСБ-С является материалом с закрытопористой структурой и с низким коэффициентом паропроницаемости. Однако и для такого вида материалов, как и при использовании минераловатных плит (график 4), создаваемый при утеплении механизм термовла-гопереноса обеспечивает нормальное влажностное состояние утепляемой стены. Таким образом, если и приходится выбирать внутреннее утепление, а это может быть для зданий с архитектурной ценностью фасада, необходимо тщательно оптимизировать состав теплоизоляции, чтобы избежать или хотя бы минимизировать последствия режима.

График №4

Стены зданий колодцевой кирпичной кладки

Теплоизолирующие свойства стен определяются слоем утеплителя, требования к которому в основном обуславливаются его теплоизоляционными характеристиками. Прочностные свойства утеплителя, его устойчивость к атмосферным воздействиям для такого типа конструкций не играют определяющую роль. Поэтому в качестве утеплителя могут использоваться плиты ПСБ-С плотностью 15-30 кг/м3, минераловатные мягкие плиты и маты. При проектировании стен такой конструкции необходимо обязательно рассчитывать приведенное сопротивление теплопередаче, учитывающее влияние сплошных кирпичных перемычек на интегральный тепловой поток через стены.

Стены зданий каркасно-монолитной схемы .

Характерной особенностью этих стен является возможность обеспечения относительно равномерного температурного поля на достаточно большой площади внутренней поверхности наружных стен. В то же время несущие колонны каркаса являются массивными теплопроводными включениями, что обуславливает необходимость обязательной проверки соответствия температурных полей нормативным требованиям. Наиболее распространено в качестве наружного слоя стен данной схемы использование кирпичной кладки в четверть кирпича, 0,5 кирпича или в один кирпич. При этом используется качественный импортный или отечественный кирпич, что придает зданиям привлекательный архитектурный облик (фото 5).

С точки зрения формирования нормального влаж-ностного режима наиболее оптимальным является применение наружного слоя в четверть кирпича, однако это требует высокого качества как самого кирпича, так и работы по устройству кладки. К сожалению, в отечественной практике для многоэтажных зданий не всегда может обеспечиваться надежная кладка даже в 0,5 кирпича, и потому в основном используется наружный слой в один кирпич. Такое решение уже требует тщательного анализа тепловлажностного режима конструкций, только после которого можно принимать вывод о жизнеспособности конкретной стены. В качестве утеплителя в Украине широко используется пенобетон. Наличие вентилируемой воздушной прослойки позволяет удалять влагу из слоя утеплителя, что гарантирует нормальный тепловлажностный режим конструкции стены. К недостаткам этого решения следует отнести то, что в теплоизоляционном отношении совершенно не работает внешний слой в один кирпич, наружный холодный воздух напрямую обмывает утеплитель из пенобетона, что обуславливает необходимость предъявления высоких требований к его морозостойкости. Учитывая то, что для теплоизоляции следует использовать пенобетон плотностью 400 кг/м3, а в практике отечественного производства часто наблюдается нарушение технологии, и пенобетон, используемый в таких конструктивных решениях, имеет фактическую плотность выше указанной (до 600 кг/м3), данное конструктивное решение требует тщательного контроля при монтаже стен и при приемке здания. В настоящее время разработаны и находятся в

стадии предзавод-ской готовности (строится производственная линия) перспективные тепло- звукоизоляционные и, одновременно, отделочные материалы, которые могут применяться в конструкциях стен зданий каркасно-монолитной схемы.К таким материалам относятся плиты и блоки на основе керамического минерального материала «Сиолит». Очень интересным решением конструкций наружных стен является светопрозрачная изоляция. При этом формируется такой тепловлажностный режим, при котором отсутствует конденсация паров в толще утеплителя, а светопрозрачная изоляция является не только тепловой изоляцией, но и источником теплоты в холодный период года.

  • Классификация основных схем планировочной компоновки жилых капитальных зданий старой постройки
  • Конструктивные схемы капитальных жилых зданий старой постройки
  • § 1.4. Объемно-планировочные и конструктивные решения домов первых массовых серий
  • Общая площадь квартир (м2) по нормам проектирования
  • § 1.5. Жизненный цикл зданий
  • § 1.6. Моделирование процесса физического износа зданий
  • § 1.7. Условия продления жизненного цикла зданий
  • § 1.8. Основные положения по реконструкции жилых зданий различных периодов постройки
  • Глава 2 инженерные методы диагностики технического состояния конструктивных элементов зданий
  • § 2.1. Общие положения
  • Классификация повреждений конструктивных элементов зданий
  • § 2.2. Физический и моральный износ зданий
  • Оценка степени физического износа по материалам визуального и инструментального обследования
  • § 2.3. Методы обследования состояния зданий и конструкций
  • § 2.4. Инструментальные средства контроля технического состояния зданий
  • Характеристики тепловизоров
  • § 2.5. Определение деформаций зданий
  • Значение предельно допустимых прогибов
  • § 2.6. Дефектоскопия конструкций
  • Повреждения и дефекты фундаментов и грунтов основания
  • Число точек зондирования для различных зданий
  • Значения коэффициента к снижения несущей способности кладки в зависимости от характера повреждений
  • § 2.7. Дефекты крупнопанельных зданий
  • Классификация дефектов панельных зданий первых массовых серий
  • Допустимая глубина разрушения бетона за 50 лет эксплуатации
  • § 2.8. Статистические методы оценки состояния конструктивных элементов зданий
  • Значение показателя достоверности
  • Глава 3 методы реконструкции жилых зданий
  • § 3.1. Общие принципы реконструкции жилых зданий
  • Методы реконструкции зданий
  • § 3.2. Архитектурно-планировочные приемы при реконструкции жилых зданий ранней постройки
  • § 3.3. Конструктивно-технологические решения при реконструкции жилых зданий старой постройки
  • § 3.4. Методы реконструкции малоэтажных жилых зданий первых массовых серий
  • § 3.5. Конструктивно-технологические решения при реконструкции зданий первых массовых серий
  • Уровень реконструктивных работ жилых зданий первых типовых серий
  • Глава 4 математические методы оценки надежности и долговечности реконструируемых зданий
  • § 4.1. Физическая модель надежности реконструируемых зданий
  • § 4.2. Основные понятия теории надежности
  • § 4.3. Основная математическая модель для изучения надежности зданий
  • § 4.4. Методы оценки надежности зданий с помощью математических моделей
  • § 4.5. Асимптотические методы в оценке надежности сложных систем
  • § 4.6. Оценка среднего времени до возникновения отказа
  • § 4.7. Иерархические модели надежности
  • Методики оценки функции надежности p(t) реконструированных зданий
  • § 4.8. Пример оценки надежности реконструируемого здания
  • Глава 5 основные положения технологии и организации реконструкции зданий
  • § 5.1. Общая часть
  • § 5.2. Технологические режимы
  • § 5.3. Параметры технологических процессов при реконструкции зданий
  • § 5.4. Подготовительные работы
  • § 5.5. Механизация строительных процессов
  • § 5.6. Технологическое проектирование
  • § 5.7. Проектирование технологических процессов реконструкции зданий
  • § 5.8. Календарные планы и сетевые графики
  • § 5.9. Организационно-технологическая надежность строительного производства
  • Глава 6 технология производства работ по повышению и восстановлению несущей и эксплуатационной способности конструктивных элементов зданий
  • Расчетное сопротивление грунтов по нормам 1932 - 1983 гг.
  • § 6.1. Технологии укрепления оснований
  • § 6.1.1. Силикатизация грунтов
  • Радиусы закрепления грунтов в зависимости от коэффициента фильтрации
  • Технология и организация производства работ
  • Механизмы, оборудование и приспособления для проведения инъекционных работ
  • Значения коэффициента насыщения грунта раствором
  • § 6.1.2. Закрепление грунтов цементацией
  • § 6.1.3. Электрохимическое закрепление грунтов
  • § 6.1.4. Восстановление оснований фундаментов с карстовыми образованиями
  • § 6.1.5. Струйная технология закрепления грунтов оснований фундаментов
  • Прочность грунтоцементных образований
  • § 6.2. Технологии восстановления и усиления фундаментов
  • § 6.2.1. Технология усиления ленточных фундаментов монолитными железобетонными обоймами
  • § 6.2.2. Восстановление несущей способности ленточных фундаментов методом торкретирования
  • § 6.2.3. Усиление фундаментов сваями
  • § 6.2.4. Усиление фундаментов буроинъекционными сваями с электроимпульсным уплотнением бетона и грунтов
  • § 6.2.5. Усиление фундаментов сваями в раскатанных скважинах
  • Производство работ
  • § 6.2.6. Усиление фундаментов многосекционными сваями, погружаемыми методом вдавливания
  • § 6.3. Усиление фундаментов с устройством монолитных плит
  • § 6.4. Восстановление водонепроницаемости и гидроизоляции элементов зданий
  • § 6.4.1. Вибрационная технология устройства жесткой гидроизоляции
  • § 6.4.2. Восстановление гидроизоляции инъецированием кремнийорганических соединений
  • § 6.4.3. Восстановление наружной вертикальной гидроизоляции стен фундаментов
  • § 6.4.4. Технология повышения водонепроницаемости заглубленных конструкций зданий и сооружений путем создания кристаллизационного барьера
  • § 6.5. Технология усиления кирпичных стен, столбов, простенков
  • § 6.6. Технология усиления железобетонных колонн, балок и перекрытий
  • Усиление конструкций композитными материалами из углеродных волокон
  • Глава 7 индустриальные технологии замены перекрытий
  • § 7.1. Конструктивно-технологические решения замены междуэтажных перекрытий
  • График производства работ при устройстве монолитного перекрытия по профнастилу
  • § 7.2. Технология замены перекрытий из мелкоштучных бетонных и железобетонных элементов
  • § 7.3. Технология замены перекрытий из крупноразмерных плит
  • § 7.4. Возведение сборно-монолитных перекрытий в несъемной опалубке
  • § 7.5. Технология возведения монолитных перекрытий
  • § 7.6. Эффективность конструктивно-технологических решений по замене перекрытий
  • Трудозатраты на устройство междуэтажных перекрытий при реконструкции жилых зданий
  • Область эффективного применения различных конструктивных схем перекрытий
  • График производства работ по устройству сборно-монолитных перекрытий
  • Глава 8 повышение эксплуатационной надежности реконструируемых зданий
  • § 8.1. Эксплуатационные характеристики ограждающих конструкций
  • § 8.2. Повышение энергоэффективности ограждающих конструкций
  • § 8.3. Характеристики теплоизоляционных материалов
  • § 8.4. Технологии утепления фасадов зданий с изоляцией штукатурными покрытиями
  • § 8.5. Теплоизоляция стен с устройством вентилируемых фасадов
  • Физико-механические характеристики облицовочных плит
  • § 8.6. Технологии устройства вентилируемых фасадов
  • Характеристика средств подмащивания
  • В таблице 3.2 приведена схема, показывающая зависимость и вариантность конструктивных решений и методов реконструкции старого жилого фонда. В практике реконструктивных работ, учитывающей физический износ несменяемых конструкций, используются несколько вариантов решений: без изменения конструктивной схемы и с ее изменением; без изменения строительного объема, с надстройкой этажей и пристройкой малых объемов.

    Таблица 3.2

    Первый вариант предусматривает восстановление здания без изменения строительного объема, но с заменой перекрытий, кровельной части и других конструктивных элементов. При этом создается новая планировка, отвечающая современным требованиям и запросам социальных групп жильцов. Реконструируемое здание должно сохранять архитектурный облик фасадов, а его эксплуатационные характеристики должны быть доведены до современных нормативных требований.

    Варианты с изменением конструктивных схем предусматривают увеличение строительного объема зданий путем: пристройки объемов и расширения корпуса без изменения его высоты; надстройки без изменения габаритов в плане; надстройки несколькими этажами, пристройки дополнительных объемов с изменением габаритов здания в плане. Такая форма реконструкции сопровождается перепланировкой помещений.

    В зависимости от расположения здания и его роли в застройке осуществляются следующие варианты переустройства: с сохранением жилых функций; с частичным перепрофилированием и полным перепрофилированием функций здания.

    Реконструкция жилой застройки должна осуществляться комплексно, захватывая наряду с реконструкцией внутриквартальной среды ее озеленение, благоустройство и восстановление инженерных сетей и т.п. В процессе реконструкции производится пересмотр номенклатуры встроенных помещений в соответствии с нормативами обеспеченности населения учреждениями первичного обслуживания.

    В центральных районах городов в реконструируемых зданиях могут располагаться встроенные общегородские и коммерческие учреждения периодического и постоянного обслуживания. Использование встроенных помещений превращает жилые дома в многофункциональные здания. Нежилые помещения размещаются в первых этажах домов, расположенных по красным линиям застройки.

    На рис. 3.5 приведены конструктивно-технологические варианты реконструкции зданий с сохранением (а ) и с изменением (б ,в ) конструктивных схем, без изменения объемов и с их увеличением (надстройкой, пристройкой и расширением плановых габаритов зданий).

    Рис. 3.5. Варианты реконструкции жилых зданий ранней постройки а - без изменения конструктивной схемы и строительного объема; б - с пристройкой малых объемов и превращением чердачного этажа в мансардный; в - с надстройкой этажей и пристройкой объемов; г - с пристройкой корпуса к торцевой части здания; д, е - с обстройкой зданий; ж - с пристройкой объемов криволинейных форм

    Особое место при реконструкции центров городской застройки должно отводиться рациональному освоению подземного, примыкающего к зданиям пространства, которое может быть использовано в качестве торговых центров, автостоянок, малых предприятий и т.п.

    Основным конструктивно-технологическим приемом реконструкции зданий без изменения расчетной схемы является сохранение несменяемых конструкций наружных и внутренних стен, лестничных клеток с устройством перекрытий повышенной капитальности. При значительной степени износа внутренних стен в результате частых перепланировок с устройством дополнительных проемов, переносом вентиляционных каналов и т.п. реконструкция осуществляется путем устройства встроенных систем с сохранением только наружных стен как несущих и ограждающих конструкций.

    Реконструкция с изменением строительного объема предусматривает устройство встроенных несменяемых систем с самостоятельными фундаментами. Это обстоятельство позволяет осуществлять надстройку зданий несколькими этажами. При этом конструкции наружных и в ряде случаев внутренних стен освобождаются от нагрузок вышележащих этажей и превращаются в самонесущие ограждающие элементы.

    При реконструкции с уширением здания возможны конструктивно-технологические варианты частичного использования существующих фундаментов и стен в качестве несущих с перераспределением нагрузок от надстраиваемых этажей на выносные элементы зданий.

    Принципы реконструкции зданий поздней постройки (1930-40-е гг.) диктуются более простой конфигурацией домов секционного типа, наличием перекрытий из мелкоштучных железобетонных плит или деревянных по балкам, а также меньшей толщиной наружных стен. Основные приемы реконструкции состоят в пристройке лифтовых шахт и других малых объемов в виде эркеров и вставок, надстройке этажей и мансард, устройстве выносных малоэтажных пристроек административного, коммерческого или хозяйственного назначения.

    Повышение комфортности квартир достигается за счет полной перепланировки с заменой перекрытий, а увеличение объема здания в результате надстройки обеспечивает повышение плотности застройки квартала.

    Наиболее характерными приемами реконструкции зданий данного типа являются замена перекрытий на сборные или монолитные конструкции с полной перепланировкой, а также дополнительная надстройка 1-2 этажами. При этом надстройка зданий производится в случаях, когда состояние фундаментов и стенового ограждения обеспечивает восприятие изменившихся нагрузок. Как показал опыт, постройки данного периода позволяют осуществлять надстройку до двух этажей без усиления фундаментов и стен.

    В случае увеличения высоты надстройки используются встроенные строительные системы из сборных, сборно-монолитных и монолитных конструкций.

    Использование встроенных систем позволяет реализовать принцип создания больших перекрываемых площадей, способствующих реализации гибкой планировки помещений.

  • Известно, что однослойные ограждающие конструкции из известных на сегодняшний день строительных материалов не могут обеспечить требуемую по современным энергосберегающим нормам тепловую защиту здания, в связи с этим, необходимо изначально предусматривать многослойное ограждение, имеющее в своем составе эффективный утеплитель, а в ряде случаев - воздушную вентилируемую прослойку.

    При разработке конструктивного решения стен и покрытия исходили из требований к расчетным сопротивлениям ограждающих конструкций по III уровню теплозащиты [ КМК ].

    В соответствие с этим нормативным документом предписано расчетные сопротивления теплопередаче принимать в зависимости от величины градусо-суток отопительного периода (ГСОП), определяемого по формуле (2.6).

    Для города Ташкента необходимые для расчета параметры, определенные по КМК 2.01.01-94 , составили:

    • - температура наиболее холодных суток с обеспеченностью 0,92 и пятидневки с обеспеченностью 0,98 равна tн= - 160С;
    • - средняя температура отопительного периода tот.пер=+2,70С;
    • - продолжительность отопительного периода Zот.пер=129 суток.

    Температура воздуха внутри помещений для обеспечения достаточного уровня комфортности принималась равной tв= +200С.

    Тогда ГСОП= (20 - 2,7)х129= 2232 град х сут.

    При таком значении ГСОП по изменению 1 к КМК 2.01.04-07 принимаем:

    • - для стен зданий расчетное сопротивление теплопередаче по зимним условиям эксплуатации Rтр0=2, 1 м2·0С/Вт;
    • - для покрытий Rтр0=2,8 м2·0С/Вт.

    Теплотехнические расчеты выполнялись с использованием программного комплекса «BASE» (версия 7.3).

    Наружные стены для расчета были приняты следующего конструктивного решения (рис.3.12):

    • - цементно-песчаный раствор М50, толщиной 20 мм;
    • - кирпич глиняный обыкновенный М75 на цементно-песчаном растворе марки М-50 толщиной 380 мм;
    • - утеплитель из пенополистирола;
    • - цементно-песчаный раствор М50, толщиной 20 мм.

    Рис. 3.12.

    В результате расчета была принята толщина утеплителя 80 мм. Затем принятая конструкция была проверена на теплоустойчивость по летним условиям эксплуатации.

    Результаты расчета

    1. - Исходные данные:

    Тип здания - Административные.

    Тип конструкции - СТЕНА

    Таблица 3.1

    Характеристика ограждения:

    Требуется произвести:

    максимальное 744 Вт/м2

    среднее 275 Вт/м2

    Отделка наружней поверхности: Штукатурка цементная кремовая

    Коэффициент поглощения солнечной радиации 0.4

    2. - Выводы:

    Требуемое сопротивление ограждения теплопередаче 2,1 м2*град/Вт

    Фактическое (приведенное) сопротивление ограждения теплопередаче 2,21 м2*град/Вт


    Таблица 3.2

    Фактическое сопротивление воздухопроницанию 656,45 м2*ч*Па/кг

    Амплитуда колебаний температуры внутренней поверхности 0,04 град.С

    Заполнение оконных проемов и остекление оранжерей приняты без расчета, исходя из имеющейся в Узбекистане номенклатуры изделий такого назначения, - однокамерные стеклопакеты в пластмассовых переплетах из обычного стекла с приведенным сопротивлением теплопередаче равном 0,36 м2·0С/Вт.

    Конструктивное решение покрытия мансардного этажа для расчета было принято следующее (рис.3.13):

    • - гипсокартон толщиной 10 мм;
    • - деревянный сплошной настил толщиной 20 мм;
    • - утеплитель из экструдированного пенополистирола 40000С;
    • - пароизоляционный слой из пергамина кровельного толщиной 0,4 мм;
    • - воздушное пространство толщиной 40 мм;
    • - металлочерепица.

    Рис. 3.13.

    Вставить распечатку расчета на теплопередачу

    В результате расчета была принята толщина утеплителя 140 мм. Затем принятая конструкция была проверена на теплоустойчивость по летним условиям эксплуатации.

    Результаты расчета

    Теплотехнический расчет ограждающих конструкций

    1. - Исходные данные:

    Тип здания - Общественные, административные, бытовые

    Тип конструкции - ПОКРЫТИЕ

    Условия эксплуатации ограждения:

    Температура наружнего воздуха -16 град.

    Температура внутреннего воздуха 20 град.

    Средняя температура отопительного периода -2,7 град.

    Продолжительность отопительного периода 129 дней

    Таблица 3.3

    Характеристика ограждения:

    Номер слоя

    Толщина, м

    Наименование

    Величина

    Ед. измерения

    Материал слоя

    Теплопроводность

    Вт/(м*град)

    Гипсокартон

    Теплопроводность

    Вт/(м*град)

    Пергамин

    Теплопроводность

    Вт/(м*град)

    Пенополистирол G=100кг/м3

    Теплопроводность

    Вт/(м*град)

    Пергамин

    Теплопроводность

    Вт/(м*град)

    Коэффициент теплоотдачи внутренней поверхности 8,7 Вт/(м2*град)

    Коэффициент теплоотдачи наружней поверхности 23 Вт/(м2*град)

    Режим работы ограждающей конструкции:

    Эксплуатация; режим помещений - Нормальный (55%); зона влажности - Нормальный

    Требуется произвести:

    Проверку ограждения на сопротивление теплопередаче

    Расчет ограждающей конструкции на теплоустойчивость

    Расчет ограждающей конструкции на воздухопроницаемость

    Среднемесячная температура за июль 27,1 град.

    Амплитуда суточных колебаний воздуха в июле месяце 23,7 град.

    Минимальная скорость ветра за июль 1,4 м/с

    Значение суммарной солнечной радиации, для стен - как для вертикальных поверхностей, для покрытий - как для горизонтальных:

    максимальное 1022 Вт/м2

    среднее 497 Вт/м2

    Отделка наружней поверхности: Сталь кровельная оцинкованная

    Коэффициент поглощения солнечной радиации 0.65

    Высота здания до верха вытяжной шахты 11,7 м

    Максимальная скорость ветра за январь месяц 2,1 м/с

    2. - Выводы:

    Сопротивление ограждения теплопередаче ДОСТАТОЧНО

    Требуемое сопротивление ограждения теплопередаче 2,8 м2*град/Вт

    Фактическое (приведенное) сопротивление ограждения теплопередаче 2,95 м2*град/Вт


    Таблица 3.4

    Температура на контакте слоев ограждения:

    Фактическое сопротивление воздухопроницанию 13000160 м2*ч*Па/кг

    Нормируемое сопротивление воздухопроницанию 24,87 м2*ч*Па/кг

    Сопротивления паропроницаемости ДОСТАТОЧНО.

    Амплитуда колебаний температуры внутренней поверхности 0,96 град.С

    Нормируемая амплитуда колебаний температуры поверхности 1,89 град.С

    Теплоустойчивости ограждающей конструкции ДОСТАТОЧНО.

    Вставить распечатку расчета на теплоустойчивость

    Не меньшее значение придается в практике проектирования и утеплению полов первого этажа здания, так как через полы, устроенные без теплоизоляции, проходят большие потери тепла. Помимо уменьшения потерь тепла, теплоизоляция пола позволяет более эффективно использовать их теплоемкость. Температура же поверхности пола является основным фактором, определяющим степень комфортности помещений. В нашем случае для утепления пола всех помещений первого этажа, за исключением холла, принято конструктивное решение, представленное на рис. 3.14.


    Рис. 3.14.

    Был произведен расчет по определению термического сопротивления утепленного пола и неутепленного пола холла.

    Вставить расчеты

    Таким образом, расчетное сопротивление утепленного пола составило Rо ут.п.= 0,57 м2·0С/Вт; а «холодного» пола холла Rо холл..п.= 0,39 м2·0С/Вт;

    В завершении была выполнена проверка запроектированной оболочки здания на повышенную теплозащиту по формуле (2.8).

    В запроектированном здании были определены площади ограждающих конструкций, которые составили:

    • - площадь стен - 652 м2;
    • - площадь кровли - 357 м2;
    • - площадь утепленного пола - 139 м2;
    • - площадь холодного пола - 104 м2;
    • - площадь остекления - 166 м2;

    Тогда расчетное сопротивление наружной оболочки здания составит: Rоб=(Rст Sст+RокSок+0,8 RкрSкр+ 0,5RоснSосн+ 0,5Rаб Sаб)/Sоб = 2,21*485+ +0,36*166+0,8*357*2,95+0,5(0,57*139+104*0,39)=1,62 м2. 0С /Вт.

    Так как полученное значение на 45% превышает требуемую величину, то можно уменьшить толщину теплоизоляционного слоя на стеновых панелях и покрытии мансардного этажа, а также нет необходимости утеплять пола 1го этажа.

    Уменьшаем толщину утеплителя на стенах с 80 мм до 60 мм, при этом Rст = 1,82 м2. 0С /Вт; уменьшаем толщину утеплителя в покрытии с 140 мм до 100 мм при этом Rкр = 2,15 м2. 0С /Вт. Расчетное сопротивление всей поверхности пола 1го этажа принимаем Rосн = 0,39 м2. 0С /Вт. Для этого решения теплозащиты:

    Rоб=(Rст Sст+RокSок+0,8 RкрSкр+ 0,5RоснSосн+ 0,5Rаб Sаб)/Sоб = 1,82*485+ +0,36*166+0,8*357*2,15+0,5(243*0,39)=1,23 м2. 0С /Вт.

    Rоб =1,23 > 1,21 м2. 0С /Вт полученные решения является наиболее экономичным, соответствует европейским требованием к повышенной теплозащите зданий.