Как найти угловой коэффициент уравнения. Уравнение прямой с угловым коэффициентом: теория, примеры, решение задач

Как найти угловой коэффициент уравнения. Уравнение прямой с угловым коэффициентом: теория, примеры, решение задач

Научитесь брать производные от функций. Производная характеризует скорость изменения функции в определенной точке, лежащей на графике этой функции. В данном случае графиком может быть как прямая, так и кривая линия. То есть производная характеризует скорость изменения функции в конкретный момент времени. Вспомните общие правила, по которым берутся производные, и только потом переходите к следующему шагу.

  • Прочитайте статью .
  • Как брать простейшие производные, например, производную показательного уравнения, описано . Вычисления, представленные в следующих шагах, будут основаны на описанных в ней методах.

Научитесь различать задачи, в которых угловой коэффициент требуется вычислить через производную функции. В задачах не всегда предлагается найти угловой коэффициент или производную функции. Например, вас могут попросить найти скорость изменения функции в точке А(х,у). Также вас могут попросить найти угловой коэффициент касательной в точке А(х,у). В обоих случаях необходимо брать производную функции.

  • Возьмите производную данной вам функции. Здесь строить график не нужно – вам понадобится только уравнение функции. В нашем примере возьмите производную функции . Берите производную согласно методам, изложенным в упомянутой выше статье:

    • Производная:
  • В найденную производную подставьте координаты данной вам точки, чтобы вычислить угловой коэффициент. Производная функции равна угловому коэффициенту в определенной точке. Другими словами, f"(х) – это угловой коэффициент функции в любой точке (x,f(x)). В нашем примере:

    • Найдите угловой коэффициент функции f (x) = 2 x 2 + 6 x {\displaystyle f(x)=2x^{2}+6x} в точке А(4,2).
    • Производная функции:
      • f ′ (x) = 4 x + 6 {\displaystyle f"(x)=4x+6}
    • Подставьте значение координаты «х» данной точки:
      • f ′ (x) = 4 (4) + 6 {\displaystyle f"(x)=4(4)+6}
    • Найдите угловой коэффициент:
    • Угловой коэффициент функции f (x) = 2 x 2 + 6 x {\displaystyle f(x)=2x^{2}+6x} в точке А(4,2) равен 22.
  • Если возможно, проверьте полученный ответ на графике. Помните, что угловой коэффициент можно вычислить не в каждой точке. Дифференциальное исчисление рассматривает сложные функции и сложные графики, где угловой коэффициент можно вычислить не в каждой точке, а в некоторых случаях точки вообще не лежат на графиках. Если возможно, используйте графический калькулятор, чтобы проверить правильность вычисления углового коэффициента данной вам функции. В противном случае проведите касательную к графику в данной вам точке и подумайте, соответствует ли найденное вами значение углового коэффициента тому, что вы видите на графике.

    • Касательная будет иметь тот же угловой коэффициент, что и график функции в определенной точке. Для того, чтобы провести касательную в данной точке, двигайтесь вправо/влево по оси Х (в нашем примере на 22 значения вправо), а затем вверх на единицу по оси Y. Отметьте точку, а затем соедините ее с данной вам точкой. В нашем примере соедините точки с координатами (4,2) и (26,3).
  • Уравнение прямой на плоскости.
    Направляющий вектор прямой. Вектор нормали

    Прямая линия на плоскости – это одна из простейших геометрических фигур, знакомая вам ещё с младших классов, и сегодня мы узнаем, как с ней справляться методами аналитической геометрии. Для освоения материала необходимо уметь строить прямую; знать, каким уравнением задаётся прямая, в частности, прямая, проходящая через начало координат и прямые, параллельные координатным осям. Данную информацию можно найти в методичке Графики и свойства элементарных функций , я её создавал для матана, но раздел про линейную функцию получился очень удачным и подробным. Поэтому, уважаемые чайники, сначала разогрейтесь там. Кроме того, нужно обладать базовыми знаниями о векторах , иначе понимание материала будет неполным.

    На данном уроке мы рассмотрим способы, с помощью которых можно составить уравнение прямой на плоскости. Рекомендую не пренебрегать практическими примерами (даже если кажется очень просто), так как я буду снабжать их элементарными и важными фактами, техническими приёмами, которые потребуются в дальнейшем, в том числе и в других разделах высшей математики.

    • Как составить уравнение прямой с угловым коэффициентом?
    • Как ?
    • Как найти направляющий вектор по общему уравнению прямой?
    • Как составить уравнение прямой по точке и вектору нормали?

    и мы начинаем:

    Уравнение прямой с угловым коэффициентом

    Всем известный «школьный» вид уравнения прямой называется уравнением прямой с угловым коэффициентом . Например, если прямая задана уравнением , то её угловой коэффициент: . Рассмотрим геометрический смысл данного коэффициента и то, как его значение влияет на расположение прямой:

    В курсе геометрии доказывается, что угловой коэффициент прямой равен тангенсу угла между положительным направлением оси и данной прямой : , причём угол «откручивается» против часовой стрелки.

    Чтобы не загромождать чертёж, я нарисовал углы только для двух прямых. Рассмотрим «красную» прямую и её угловой коэффициент . Согласно вышесказанному: (угол «альфа» обозначен зелёной дугой). Для «синей» прямой с угловым коэффициентом справедливо равенство (угол «бета» обозначен коричневой дугой). А если известен тангенс угла, то при необходимости легко найти и сам угол с помощью обратной функции – арктангенса. Как говорится, тригонометрическая таблица или микрокалькулятор в руки. Таким образом, угловой коэффициент характеризует степень наклона прямой к оси абсцисс .

    При этом возможны следующие случаи:

    1) Если угловой коэффициент отрицателен: , то линия, грубо говоря, идёт сверху вниз. Примеры – «синяя» и «малиновая» прямые на чертеже.

    2) Если угловой коэффициент положителен: , то линия идёт снизу вверх. Примеры – «чёрная» и «красная» прямые на чертеже.

    3) Если угловой коэффициент равен нулю: , то уравнение принимает вид , и соответствующая прямая параллельна оси . Пример – «жёлтая» прямая.

    4) Для семейства прямых , параллельных оси (на чертеже нет примера, кроме самой оси ), углового коэффициента не существует (тангенс 90 градусов не определён) .

    Чем больше угловой коэффициент по модулю, тем круче идёт график прямой .

    Например, рассмотрим две прямые . Здесь , поэтому прямая имеет более крутой наклон. Напоминаю, что модуль позволяет не учитывать знак, нас интересуют только абсолютные значения угловых коэффициентов.

    В свою очередь, прямая более крутА, чем прямые .

    Обратно: чем меньше угловой коэффициент по модулю, тем прямая является более пологой .

    Для прямых справедливо неравенство , таким образом, прямая более полога. Детская горка, чтобы не насадить себе синяков и шишек.

    Зачем это нужно?

    Продлить ваши мучения Знания вышеперечисленных фактов позволяет немедленно увидеть свои ошибки, в частности, ошибки при построении графиков – если на чертеже получилось «явно что-то не то». Желательно, чтобы вам сразу было понятно, что, например, прямая весьма крутА и идёт снизу вверх, а прямая – очень полога, близко прижата к оси и идёт сверху вниз.

    В геометрических задачах часто фигурируют несколько прямых, поэтому их удобно как-нибудь обозначать.

    Обозначения : прямые обозначаются маленькими латинскими буквами: . Популярный вариант – обозначение одной и той же буквой с натуральными подстрочными индексами. Например, те пять прямых, которые мы только что рассмотрели, можно обозначить через .

    Поскольку любая прямая однозначно определяется двумя точками, то её можно обозначать данными точками: и т.д. Обозначение совершенно очевидно подразумевает, что точки принадлежат прямой .

    Пора немного размяться:

    Как составить уравнение прямой с угловым коэффициентом?

    Если известна точка , принадлежащая некоторой прямой, и угловой коэффициент этой прямой, то уравнение данной прямой выражается формулой :

    Пример 1

    Составить уравнение прямой с угловым коэффициентом , если известно, что точка принадлежит данной прямой.

    Решение : Уравнение прямой составим по формуле . В данном случае:

    Ответ :

    Проверка выполняется элементарно. Во-первых, смотрим на полученное уравнение и убеждаемся, что наш угловой коэффициент на своём месте. Во-вторых, координаты точки должны удовлетворять данному уравнению. Подставим их в уравнение:

    Получено верное равенство, значит, точка удовлетворяет полученному уравнению.

    Вывод : уравнение найдено правильно.

    Более хитрый пример для самостоятельного решения:

    Пример 2

    Составить уравнение прямой, если известно, что её угол наклона к положительному направлению оси составляет , и точка принадлежит данной прямой.

    Если возникли затруднения, перечитайте теоретический материал. Точнее больше практический, многие доказательства я пропускаю.

    Прозвенел последний звонок, отгремел выпускной бал, и за воротами родной школы нас поджидает, собственно, аналитическая геометрия. Шутки закончились…. А может быть только начинаются =)

    Ностальгически машем ручкой привычному и знакомимся с общим уравнением прямой. Поскольку в аналитической геометрии в ходу именно оно:

    Общее уравнение прямой имеет вид : , где – некоторые числа. При этом коэффициенты одновременно не равны нулю, так как уравнение теряет смысл.

    Оденем в костюм и галстук уравнение с угловым коэффициентом . Сначала перенесём все слагаемые в левую часть:

    Слагаемое с «иксом» нужно поставить на первое место:

    В принципе, уравнение уже имеет вид , но по правилам математического этикета коэффициент первого слагаемого (в данном случае ) должен быть положительным. Меняем знаки:

    Запомните эту техническую особенность! Первый коэффициент (чаще всего ) делаем положительным!

    В аналитической геометрии уравнение прямой почти всегда будет задано в общей форме. Ну, а при необходимости его легко привести к «школьному» виду с угловым коэффициентом (за исключением прямых, параллельных оси ординат).

    Зададимся вопросом, что достаточно знать, чтобы построить прямую? Две точки. Но об этом детском случае позже, сейчас властвуют палочки со стрелочками. У каждой прямой есть вполне определённый наклон, к которому легко «приспособить» вектор .

    Вектор, который параллелен прямой, называется направляющим вектором данной прямой . Очевидно, что у любой прямой бесконечно много направляющих векторов, причём все они будут коллинеарны (сонаправлены или нет – не важно).

    Направляющий вектор я буду обозначать следующим образом: .

    Но одного вектора недостаточно для построения прямой, вектор является свободным и не привязан к какой-либо точке плоскости. Поэтому дополнительно необходимо знать некоторую точку , которая принадлежит прямой.

    Как составить уравнение прямой по точке и направляющему вектору?

    Если известна некоторая точка , принадлежащая прямой, и направляющий вектор этой прямой, то уравнение данной прямой можно составить по формуле :

    Иногда его называют каноническим уравнением прямой .

    Что делать, когда одна из координат равна нулю, мы разберёмся в практических примерах ниже. Кстати, заметьте – сразу обе координаты не могут равняться нулю, так как нулевой вектор не задаёт конкретного направления.

    Пример 3

    Составить уравнение прямой по точке и направляющему вектору

    Решение : Уравнение прямой составим по формуле . В данном случае:

    С помощью свойств пропорции избавляемся от дробей:

    И приводим уравнение к общему виду:

    Ответ :

    Чертежа в таких примерах, как правило, делать не нужно, но понимания ради:

    На чертеже мы видим исходную точку , исходный направляющий вектор (его можно отложить от любой точки плоскости) и построенную прямую . Кстати, во многих случаях построение прямой удобнее всего осуществлять как раз с помощью уравнения с угловым коэффициентом. Наше уравнение легко преобразовать к виду и без проблем подобрать ещё одну точку для построения прямой.

    Как отмечалось в начале параграфа, у прямой бесконечно много направляющих векторов, и все они коллинеарны. Для примера я нарисовал три таких вектора: . Какой бы направляющий вектор мы не выбрали, в результате всегда получится одно и то же уравнение прямой .

    Составим уравнение прямой по точке и направляющему вектору :

    Разруливаем пропорцию:

    Делим обе части на –2 и получаем знакомое уравнение:

    Желающие могут аналогичным образом протестировать векторы или любой другой коллинеарный вектор.

    Теперь решим обратную задачу:

    Как найти направляющий вектор по общему уравнению прямой?

    Очень просто:

    Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является направляющим вектором данной прямой.

    Примеры нахождения направляющих векторов прямых:

    Утверждение позволяет найти лишь один направляющий вектор из бесчисленного множества, но нам больше и не нужно. Хотя в ряде случаев координаты направляющих векторов целесообразно сократить:

    Так, уравнение задаёт прямую, которая параллельна оси и координаты полученного направляющего вектора удобно разделить на –2, получая в точности базисный вектор в качестве направляющего вектора. Логично.

    Аналогично, уравнение задаёт прямую, параллельную оси , и, разделив координаты вектора на 5, получаем в качестве направляющего вектора орт .

    Теперь выполним проверку Примера 3 . Пример уехал вверх, поэтому напоминаю, что в нём мы составили уравнение прямой по точке и направляющему вектору

    Во-первых , по уравнению прямой восстанавливаем её направляющий вектор: – всё нормально, получили исходный вектор (в ряде случаев может получиться коллинеарный исходному вектор, и это обычно несложно заметить по пропорциональности соответствующих координат).

    Во-вторых , координаты точки должны удовлетворять уравнению . Подставляем их в уравнение:

    Получено верное равенство, чему мы очень рады.

    Вывод : задание выполнено правильно.

    Пример 4

    Составить уравнение прямой по точке и направляющему вектору

    Это пример для самостоятельного решения. Решение и ответ в конце урока. Крайне желательно сделать проверку по только что рассмотренному алгоритму. Старайтесь всегда (если это возможно) выполнять проверку на черновике. Глупо допускать ошибки там, где их 100%-но можно избежать.

    В том случае, если одна из координат направляющего вектора нулевая, поступают очень просто:

    Пример 5

    Решение : Формула не годится, так как знаменатель правой части равен нулю. Выход есть! Используя свойства пропорции, перепишем формулу в виде , и дальнейшее покатилось по глубокой колее:

    Ответ :

    Проверка :

    1) Восстановим направляющий вектор прямой :
    – полученный вектор коллинеарен исходному направляющему вектору.

    2) Подставим координаты точки в уравнение :

    Получено верное равенство

    Вывод : задание выполнено правильно

    Возникает вопрос, зачем маяться с формулой , если существует универсальная версия , которая сработает в любом случае? Причин две. Во-первых, формула в виде дроби гораздо лучше запоминается . А во-вторых, недостаток универсальной формулы состоит в том, что заметно повышается риск запутаться при подстановке координат.

    Пример 6

    Составить уравнение прямой по точке и направляющему вектору .

    Это пример для самостоятельного решения.

    Вернёмся к вездесущим двум точкам:

    Как составить уравнение прямой по двум точкам?

    Если известны две точки , то уравнение прямой, проходящей через данные точки, можно составить по формуле:

    На самом деле это разновидность формулы и вот почему: если известны две точки , то вектор будет направляющим вектором данной прямой. На уроке Векторы для чайников мы рассматривали простейшую задачу – как найти координаты вектора по двум точкам. Согласно данной задаче, координаты направляющего вектора:

    Примечание : точки можно «поменять ролями» и использовать формулу . Такое решение будет равноценным.

    Пример 7

    Составить уравнение прямой по двум точкам .

    Решение : Используем формулу:

    Причёсываем знаменатели:

    И перетасовываем колоду:

    Именно сейчас удобно избавиться от дробных чисел. В данном случае нужно умножить обе части на 6:

    Раскрываем скобки и доводим уравнение до ума:

    Ответ :

    Проверка очевидна – координаты исходных точек должны удовлетворять полученному уравнению:

    1) Подставим координаты точки :

    Верное равенство.

    2) Подставим координаты точки :

    Верное равенство.

    Вывод : уравнение прямой составлено правильно.

    Если хотя бы одна из точек не удовлетворяет уравнению, ищите ошибку.

    Стоит отметить, что графическая проверка в данном случае затруднительна, поскольку построить прямую и посмотреть, принадлежат ли ей точки , не так-то просто.

    Отмечу ещё пару технических моментов решения. Возможно, в данной задаче выгоднее воспользоваться зеркальной формулой и, по тем же точкам составить уравнение:

    Таки дробей поменьше. Если хотите, можете довести решение до конца, в результате должно получиться то же самое уравнение.

    Второй момент состоит в том, чтобы посмотреть на итоговый ответ и прикинуть, нельзя ли его ещё упростить? Например, если получилось уравнение , то здесь целесообразно сократить на двойку: – уравнение будет задавать ту же самую прямую. Впрочем, это уже тема разговора о взаимном расположении прямых .

    Получив ответ в Примере 7, я на всякий случай, проверил, не делятся ли ВСЕ коэффициенты уравнения на 2, 3 или 7. Хотя, чаще всего подобные сокращения осуществляются ещё по ходу решения.

    Пример 8

    Составить уравнение прямой, проходящей через точки .

    Это пример для самостоятельного решения, который как раз позволит лучше понять и отработать технику вычислений.

    Аналогично предыдущему параграфу: если в формуле один из знаменателей (координата направляющего вектора) обращается в ноль, то переписываем её в виде . И снова заметьте, как неуклюже и запутанно она стала выглядеть. Не вижу особого смысла приводить практические примеры, поскольку такую задачу мы уже фактически прорешали (см. № 5, 6).

    Вектор нормали прямой (нормальный вектор)

    Что такое нормаль? Простыми словами, нормаль – это перпендикуляр. То есть, вектор нормали прямой перпендикулярен данной прямой. Очевидно, что у любой прямой их бесконечно много (так же, как и направляющих векторов), причём все векторы нормали прямой будут коллинеарными (сонаправленными или нет – без разницы).

    Разборки с ними будут даже проще, чем с направляющими векторами:

    Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является вектором нормали данной прямой.

    Если координаты направляющего вектора приходится аккуратно «вытаскивать» из уравнения, то координаты вектора нормали достаточно просто «снять».

    Вектор нормали всегда ортогонален направляющему вектору прямой. Убедимся в ортогональности данных векторов с помощью скалярного произведения :

    Приведу примеры с теми же уравнениями, что и для направляющего вектора:

    Можно ли составить уравнение прямой, зная одну точку и вектор нормали? Нутром чувствуется, можно. Если известен вектор нормали, то однозначно определено и направление самой прямой – это «жёсткая конструкция» с углом в 90 градусов.

    Как составить уравнение прямой по точке и вектору нормали?

    Если известна некоторая точка , принадлежащая прямой, и вектор нормали этой прямой, то уравнение данной прямой выражается формулой :

    Тут всё обошлось без дробей и прочих нежданчиков. Такой вот у нас нормальный вектор. Любите его. И уважайте =)

    Пример 9

    Составить уравнение прямой по точке и вектору нормали . Найти направляющий вектор прямой.

    Решение : Используем формулу:

    Общее уравнение прямой получено, выполним проверку:

    1) «Снимаем» координаты вектора нормали с уравнения : – да, действительно, получен исходный вектор из условия (либо должен получиться коллинеарный исходному вектор).

    2) Проверим, удовлетворяет ли точка уравнению :

    Верное равенство.

    После того, как мы убедились в том, что уравнение составлено правильно, выполним вторую, более лёгкую часть задания. Вытаскиваем направляющий вектор прямой:

    Ответ :

    На чертеже ситуация выглядит следующим образом:

    В целях тренировки аналогичная задача для самостоятельного решения:

    Пример 10

    Составить уравнение прямой по точке и нормальному вектору . Найти направляющий вектор прямой.

    Заключительный раздел урока будет посвящен менее распространённым, но тоже важным видам уравнений прямой на плоскости

    Уравнение прямой в отрезках.
    Уравнение прямой в параметрической форме

    Уравнение прямой в отрезках имеет вид , где – ненулевые константы. Некоторые типы уравнений нельзя представить в таком виде, например, прямую пропорциональность (так как свободный член равен нулю и единицу в правой части никак не получить).

    Это, образно говоря, «технический» тип уравнения. Обыденная задача состоит в том, чтобы общее уравнение прямой представить в виде уравнения прямой в отрезках . Чем оно удобно? Уравнение прямой в отрезках позволяет быстронайти точки пересечения прямой с координатными осями, что бывает очень важным в некоторых задачах высшей математики.

    Найдём точку пересечения прямой с осью . Обнуляем «игрек», и уравнение принимает вид . Нужная точка получается автоматически: .

    Аналогично с осью – точка, в которой прямая пересекает ось ординат.

    Угловой коэффициент прямой. В этой статье мы с вами рассмотрим задачи связанные с координатной плоскостью включённые в ЕГЭ по математике. Это задания на:

    — определение углового коэффициента прямой, когда известны две точки через которые она проходит;
    — определение абсциссы или ординаты точки пересечения двух прямых на плоскости.

    Что такое абсцисса и ордината точки было описано в данной рубрики. В ней мы уже рассмотрели несколько задач связанных с координатной плоскостью. Что необходимо понимать для рассматриваемого типа задач? Немного теории.

    Уравнение прямой на координатной плоскости имеет вид:

    где k это и есть угловой коэффициент прямой.

    Следующий момент! Угловой коэффициент прямой равен тангенсу угла наклона прямой. Это угол между данной прямой и осью ох.



    Он лежит в пределах от 0 до 180 градусов.

    То есть, если мы приведём уравнение прямой к виду y = kx + b , то далее всегда сможем определить коэффициент k (угловой коэффициент).

    Так же, если мы исходя из условия сможем определить тангенс угла наклона прямой, то тем самым найдём её угловой коэффициент.

    Следующий теоретический момент! Уравнение прямой походящей через две данные точки. Формула имеет вид:


    Рассмотрим задачи (аналогичные задачам из открытого банка заданий):

    Найдите угловой коэффициент прямой, проходящей через точки с координатами (–6;0) и (0;6).


    В данной задаче самый рациональный путь решения это найти тангенс угла между осью ох и данной прямой. Известно, что он равен угловому коэффициенту. Рассмотрим прямоугольный треугольник образованный прямой и осями ох и оу:


    Тангенсом угла в прямоугольном треугольнике является отношение противолежащего катета к прилежащему:

    *Оба катета равны шести (это их длины).

    Конечно, данную задачу можно решить используя формулу нахождения уравнения прямой проходящей через две данные точки. Но это будет более длительный путь решения.

    Ответ: 1

    Найдите угловой коэффициент прямой, проходящей через точки с координатами (5;0) и (0;5).


    Наши точки имеют координаты (5;0) и (0;5). Значит,

    Приведём формулу к виду y = kx + b

    Получили, что угловой коэффициент k = – 1.

    Ответ: –1

    Прямая a проходит через точки с координатами (0;6) и (8;0). Прямая b проходит через точку с координатами (0;10) и параллельна прямой a b с осью оx.


    В данной задаче можно найти уравнение прямой a , определить угловой коэффициент для неё. У прямой b угловой коэффициент будет такой же, так как они параллельны. Далее можно найти уравнение прямой b . А затем, подставив в него значение y = 0, найти абсциссу. НО!

    В данном случае, проще использовать свойство подобия треугольников.

    Прямоугольные треугольники, образованные данными (параллельными) прямыми о осями координат подобны, а это значит, что отношения их соответствующих сторон равны.


    Искомая абсцисса равна 40/3.

    Ответ: 40/3

    Прямая a проходит через точки с координатами (0;8) и (–12;0). Прямая b проходит через точку с координатами (0; –12) и параллельна прямой a . Найдите абсциссу точки пересечения прямой b с осью оx .


    Для данной задачи самый рациональный путь решения — это применение свойства подобия треугольников. Но мы решим её другим путём.

    Нам известны точки, через которые проходит прямая а . Можем составить уравнение прямой. Формула уравнения прямой походящей через две данные точки имеет вид:


    По условию точки имеют координаты (0;8) и (–12;0). Значит,

    Приведём к виду y = kx + b :

    Получили, что угловой k = 2/3.

    *Угловой коэффициент можно было найти через тангенс угла в прямоугольном треугольнике с катетами 8 и 12.

    Известно, у параллельных прямых угловые коэффициенты равны. Значит уравнение прямой проходящей через точку (0;-12) имеет вид:

    Найти величину b мы можем подставив абсциссу и ординату в уравнение:

    Таким образом, прямая имеет вид:

    Теперь чтобы найти искомую абсциссу точки пересечения прямой с осью ох, необходимо подставить у = 0:

    Ответ: 18

    Найдите ординату точки пересечения оси оy и прямой, проходящей через точку В(10;12) и параллельной прямой, проходящей через начало координат и точку А(10;24).


    Найдём уравнение прямой проходящей через точки с координатами (0;0) и (10;24).

    Формула уравнения прямой походящей через две данные точки имеет вид:

    Наши точки имеют координаты (0;0) и (10;24). Значит,

    Приведём к виду y = kx + b

    Угловые коэффициенты параллельных прямых равны. Значит, уравнение прямой, проходящей через точку В(10;12) имеет вид:

    Значение b найдём подставив в это уравнение координаты точки В(10;12):

    Получили уравнение прямой:

    Чтобы найти ординату точки пересечения этой прямой с осью оу нужно подставить в найденное уравнение х = 0:

    *Самый простой способ решения. При помощи параллельного переноса сдвигаем данную прямую вниз вдоль оси оу до точки (10;12). Сдвиг происходит на 12 единиц, то есть точка А(10;24) «перешла» в точку В(10;12), а точка О(0;0) «перешла» в точку (0;–12). Значит, полученная прямая будет пересекать ось оу в точке (0;–12).

    Искомая ордината равна –12.

    Ответ: –12

    Найдите ординату точки пересечения прямой, заданной уравнением

    + 2у = 6 , с осью Oy .

    Координата точки пересечения заданной прямой с осью оу имеет вид (0;у ). Подставим в уравнение абсциссу х = 0, и найдём ординату:

    Ордината точки пересечения прямой с осью оу равна 3.

    *Решается система:

    Ответ: 3

    Найдите ординату точки пересечения прямых, заданных уравнениями

    3х + 2у = 6 и у = – х .

    Когда заданны две прямые, и стоит вопрос о нахождении координат точки пересечения этих прямых, решается система из данных уравнений:

    В первом уравнении подставляем – х вместо у :

    Ордината равна минус шести.

    Ответ: 6

    Найдите угловой коэффициент прямой, проходящей через точки с координатами (–2;0) и (0;2).

    Найдите угловой коэффициент прямой, проходящей через точки с координатами (2;0) и (0;2).

    Прямая a проходит через точки с координатами (0;4) и (6;0). Прямая b проходит через точку с координатами (0;8) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью Ox.

    Найдите ординату точки пересечения оси оy и прямой, проходящей через точку B (6;4) и параллельной прямой, проходящей через начало координат и точку A (6;8).

    1. Необходимо чётко усвоить, что угловой коэффициент прямой равен тангенсу угла наклона прямой. Это поможет вам при решении многих задач данного типа.

    2. Формулу нахождения прямой проходящей через две данные точки нужно понимать обязательно. С её помощью всегда найдёте уравнение прямой, если даны координаты двух её точек.

    3. Помните о том, что угловые коэффициенты параллельных прямых равны.

    4. Как вы поняли, в некоторых задачах удобно использовать признак подобия треугольников. Задачи решаются практически устно.

    5. Задачи в которых даны две прямые и требуется найти абсциссу или ординату точки их пересечения можно решить графическим способом. То есть, построить их на координатной плоскости (на листе в клетку) и определить точку пересечения визуально. *Но этот способ применим не всегда.

    6. И последнее. Если дана прямая и координаты точек её пересечения с осями координат, то в таких задачах удобно находить угловой коэффициент через нахождение тангенса угла в образованном прямоугольном треугольнике. Как «увидеть» этот треугольник при различных расположениях прямых на плоскости схематично показано ниже:

    >> Угол наклона прямой от 0 до 90 градусов <<


    >> Угол наклона прямой от 90 до 180 градусов <<

    На этом всё. Успеха Вам!

    С уважением, Александр.

    P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.