График линейной функции y. Линейная функция, её свойства и график

График линейной функции y. Линейная функция, её свойства и график

Понятие числовой функции. Способы задания функции. Свойства функций.

Числовая функция - функция, которая действует из одного числового пространства (множества) в другое числовое пространство (множество).

Три главных способа задания функции: аналитический, табличный и графический.

1. Аналитический.

Способ задания функции при помощи формулы называется аналитическим. Этот способ является основным в мат. анализе, но на практике не удобен.

2. Табличный способ задания функции.

Функцию можно задать с помощью таблицы, содержащей значения аргумента и соответствующие им значения функции.

3. Графический способ задания функции.

Функция у=f(х) называется заданной графически, если построен ее график. Такой способ задания функции дает возможность определять значения функции только приближенно, так как построение графика и нахождение на нем значений функции сопряжено с погрешностями.

Свойства функции, которые необходимо учитывать при построении её графика:

1)Область определения функции.

Область определения функции, то есть те значения, которые может принимать аргумент х функции F =y (x).

2) Промежутки возрастания и убывания функции.

Функция называется возрастающей на рассматриваемом промежутке, если большему значению аргумента соответствует большее значение функции у(х). Это означает, что если из рассматриваемого промежутка взяты два произвольных аргумента х 1 и х 2 , причём х 1 > х 2 , то у(х 1) > у(х 2).

Функция называется убывающей на рассматриваемом промежутке, если большему значению аргумента соответствует меньшее значение функции у(х). Это означает, что если из рассматриваемого промежутка взяты два произвольных аргумента х 1 и х 2 , причём х 1 < х 2 , то у(х 1) < у(х 2).

3) Нули функции.

Точки, в которых функция F = y (x) пересекает ось абсцисс (они получаются, если решить уравнение у(х) = 0) и называются нулями функции.

4)Чётность и нечётность функции.

Функция называется чётной, если для всех значений аргумента из области определения



у(-х) = у(х).

График чётной функции симметричен относительно оси ординат.

Функция называется нечётной , если для всех значений аргумента из области определения

у(-х) = -у(х).

График чётной функции симметричен относительно начала координат.

Многие функции не являются ни чётными, ни нечётными.

5)Периодичность функции.

Функция называется периодической, если существует такое число Р, что для всех значений аргумента из области определения

у(х + Р) = у(х).


Линейная функция, её свойства и график.

Линейной функцией называется функция вида y = kx + b , заданная на множестве всех действительных чисел.

k угловой коэффициент (действительное число)

b – свободный член (действительное число)

x – независимая переменная.

· В частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси Ox, проходящая через точку с координатами (0; b).

· Если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью.

o Геометрический смысл коэффициента b – длина отрезка, который отсекает прямая по оси Oy, считая от начала координат.

o Геометрический смысл коэффициента k – угол наклона прямой к положительному направлению оси Ox, считается против часовой стрелки.

Свойства линейной функции:

1) Область определения линейной функции есть вся вещественная ось;

2) Если k ≠ 0, то область значений линейной функции есть вся вещественная ось.

Если k = 0, то область значений линейной функции состоит из числа b;

3) Четность и нечетность линейной функции зависят от значений коэффициентов k и b.

a) b ≠ 0, k = 0, следовательно, y = b – четная;

b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

4) Свойством периодичности линейная функция не обладает;

5) Точки пересечения с осями координат:

Ox: y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) – точка пересечения с осью абсцисс.

Oy: y = 0k + b = b, следовательно (0; b) – точка пересечения с осью ординат.

Замечание. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. Если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х.

6) Промежутки знакопостоянства зависят от коэффициента k.

a) k > 0; kx + b > 0, kx > -b, x > -b/k.

y = kx + b – положительна при x из (-b/k; +∞),

y = kx + b – отрицательна при x из (-∞; -b/k).

b) k < 0; kx + b < 0, kx < -b, x < -b/k.

y = kx + b – положительна при x из (-∞; -b/k),

y = kx + b – отрицательна при x из (-b/k; +∞).

c) k = 0, b > 0; y = kx + b положительна на всей области определения,

k = 0, b < 0; y = kx + b отрицательна на всей области определения.

7) Промежутки монотонности линейной функции зависят от коэффициента k.

k > 0, следовательно y = kx + b возрастает на всей области определения,

k < 0, следовательно y = kx + b убывает на всей области определения.

11. Функция у = ах 2 + bх + с, её свойства и график.

Функция у = ах 2 + bх + с (а, b, с - постоянные величины, а ≠ 0) называется квадратичной. В простейшем случае у = ах 2 (b = с = 0) график есть кривая линия, проходящая через начало координат. Кривая, служащая графиком функции у = ах 2 , есть парабола. Каждая парабола имеет ось симметрии, называемую осью параболы. Точка О пересечения параболы с ее осью называется вершиной параболы .
График можно строить по следующей схеме: 1) Находим координаты вершины параболы х 0 = -b/2a; у 0 = у(х 0). 2) Строим еще несколько точек, которые принадлежат параболе, при построении можно использовать симметрии параболы относительно прямой х = -b/2a. 3) Соединяем обозначены точки плавной линией. Пример. Построить график функции в = х 2 + 2х - 3. Решения. Графиком функции является парабола, ветви которой направлены вверх. Абсцисса вершины параболы х 0 = 2/(2 ∙1) = -1, ее ординаты y(-1) = (1) 2 + 2(-1) - 3 = -4. Итак, вершина параболы - точка (-1; -4). Составим таблицу значений для нескольких точек, которые размещены справа от оси симметрии параболы - прямой х = -1.

Свойства функции.

>>Математика: Линейная функция и ее график

Линейная функция и ее график


Алгоритм построения графика уравнения ах + by + с = 0, который мы сформулировали в § 28, при всей его четкости и определенности математикам не очень нравится. Обычно они выдвигают претензии к первым двум шагам алгоритма. Зачем, говорят они, дважды решать уравнение относительно переменной у: сначала ах1 + Ьу + с = О, затем ахг + Ьу + с = О? Не лучше ли сразу выразить у из уравнения ах + by + с = 0, тогда легче будет проводить вычисления (и, главное, быстрее)? Давайте проверим. Рассмотрим сначала уравнение 3x - 2у + 6 = 0 (см. пример 2 из § 28).

Придавая х конкретные значения, легко вычислить соответствующие значения у. Например, при х = 0 получаем у = 3; при х = -2 имеем у = 0; при х = 2 имеем у = 6; при х = 4 получаем: у = 9.

Видите, как легко и быстро найдены точки (0; 3), (- 2; 0), (2; 6) и (4; 9), которые были выделены в примере 2 из § 28.

Точно так же уравнение Ьх - 2у = 0 (см. пример 4 из § 28) можно было преобразовать к виду 2у =16 -3x . далее у = 2,5x; нетрудно найти точки (0; 0) и (2; 5), удовлетворяющие этому уравнению.

Наконец, уравнение 3x + 2у - 16 = 0 из того же примера можно преобразовать к виду 2y = 16 -3x и далее нетрудно найти точки (0; 0) и (2; 5), которые ему удовлетворяют.

Рассмотрим теперь указанные преобразования в общем виде.


Таким образом, линейное уравнение (1) с двумя переменными х и у всегда можно преобразовать к виду
y = kx + m,(2) где k,m - числа (коэффициенты), причем .

Этот частный вид линейного уравнения будем называть линейной функцией.

С помощью равенства (2) легко, указав конкретное значение х, вычислить соответствующее значение у. Пусть, например,

у = 2х + 3. Тогда:
если х = 0, то у = 3;
если х = 1, то у = 5;
если х = -1, то у = 1;
если х = 3, то у = 9 и т. д.

Обычно эти результаты оформляют в виде таблицы :

Значения у из второй строки таблицы называют значениями линейной функции у = 2х + 3, соответственно, в точках х = 0, х = 1, х = -1,х=-3.

В уравнении (1) переменные хну равноправны, а в уравнении (2) - нет: конкретные значения мы придаем одной из них - переменной х, тогда как значение переменной у зависит от выбранного значения переменной х. Поэтому обычно говорят, что х - независимая переменная (или аргумент), у - зависимая переменная.

Обратите внимание: линейная функция - это специальный вид линейного уравнения с двумя переменными. Графиком уравнения у - kx + т, как всякого линейного уравнения с двумя переменными, является прямая - ее называют также графком линейной функции y = kx + тп. Таким образом, справедлива следующая теорема.


Пример 1. Построить график линейной функции у = 2х + 3.

Решение. Составим таблицу:

Во второй ситуации независимая переменная х, обозначающая, как и в первой ситуации, число дней, может принимать только значения 1, 2, 3, ..., 16. Действительно, если х = 16, то по формуле у = 500 - З0x находим: у = 500 - 30 16 = 20. Значит, уже на 17-й день вывезти со склада 30 т угля не удастся, поскольку на складе к этому дню останется всего 20 т и процесс вывоза угля придется прекратить. Следовательно, уточненная математическая модель второй ситуации выглядит так:

у = 500 - ЗОд:, где х = 1, 2, 3, .... 16.

В третьей ситуации независимая переменная х теоретически может принять любое неотрицательное значение (напр., значение х = 0, значение х = 2, значение х = 3,5 и т. д.), но практически турист не может шагать с постоянной скоростью без сна и отдыха сколько угодно времени. Значит, нам нужно было сделать разумные ограничения на х, скажем, 0 < х < 6 (т. е. турист идет не более 6 ч).

Напомним, что геометрической моделью нестрогого двойного неравенства 0 < х < 6 служит отрезок (рис. 37). Значит, уточненная модель третьей ситуации выглядит так: у = 15 + 4х, где х принадлежит отрезку .

Условимся вместо фразы «х принадлежит множеству X» писать (читают: «элемент х принадлежит множеству X», е - знак принадлежности). Как видите, наше знакомство с математическим языком постоянно продолжается.

Если линейную функцию у = kx + m надо рассматривать не при всех значениях х, а лишь для значений х из некоторого числового промежутка X, то пишут:

Пример 2. Построить график линейной функции:

Решение, а) Составим таблицу для линейной функции y = 2x + 1

Построим на координатной плоскости хОу точки (-3; 7) и (2; -3) и проведем через них прямую линию. Это - график уравнения у = -2x: + 1. Далее, выделим отрезок, соединяющий построенные точки (рис. 38). Этот отрезок и есть график линейной функции у = -2х+1, гдехе [-3, 2].

Обычно говорят так: мы построили график линейной функции у = - 2х + 1 на отрезке [- 3, 2].

б) Чем отличается этот пример от предыдущего? Линейная функция та же (у = -2х + 1), значит, и ее графиком служит та же прямая. Но - будьте внимательны! - на этот раз х е (-3, 2), т. е. значения х = -3 и х = 2 не рассматриваются, они не принадлежат интервалу (- 3, 2). Как мы отмечали концы интервала на координатной прямой? Светлыми кружочками (рис. 39), об этом мы говорили в § 26. Точно так же и точки (- 3; 7) и B; - 3) придется отметить на чертеже светлыми кружочками. Это будет напоминать нам о том, что берутся лишь те точки прямой у = - 2х + 1, которые лежат между точками, отмеченными кружочками (рис. 40). Впрочем, иногда в таких случаях используют не светлые кружочки, а стрелки (рис. 41). Это непринципиально, главное, понимать, о чем идет речь.


Пример 3. Найти наибольшее и наименьшее значения линейной функции на отрезке .
Решение. Составим таблицу для линейной функции

Построим на координатной плоскости хОу точки (0; 4) и (6; 7) и проведем через них прямую - график линейной х функции (рис. 42).

Нам нужно рассмотреть эту линейную функцию не целиком, а на отрезке , т. е. для х е .

Соответствующий отрезок графика выделен на чертеже. Замечаем, что самая большая ордината у точек, принадлежащих выделенной части, равна 7 - это и есть наибольшее значение линейной функции на отрезке . Обычно используют такую запись: у наиб =7.

Отмечаем, что самая маленькая ордината у точек, принадлежащих выделенной на рисунке 42 части прямой, равна 4 - это и есть наименьшее значение линейной функции на отрезке .
Обычно используют такую запись: y наим. = 4.

Пример 4. Найти у наиб и y наим. для линейной функции y = -1,5x + 3,5

а) на отрезке ; б) на интервале (1,5);
в) на полуинтервале .

Решение. Составим таблицу для линейной функции у = -l,5x + 3,5:

Построим на координатной плоскости хОу точки (1; 2) и (5; - 4) и проведем через них прямую (рис. 43-47). Выделим на построенной прямой часть, соответствующую значениям х из отрезка (рис. 43), из интервала A, 5) (рис. 44), из полуинтервала (рис. 47).

а) С помощью рисунка 43 нетрудно сделать вывод, что у наиб = 2 (этого значения линейная функция достигает при х = 1), а у наим. = - 4 (этого значения линейная функция достигает при х = 5).

б) Используя рисунок 44, делаем вывод: ни наибольшего, ни наименьшего значений на заданном интервале у данной линейной функции нет. Почему? Дело в том, что, в отличие от предыдущего случая, оба конца отрезка, в которых как раз и достигались наибольшее и наименьшее значения, из рассмотрения исключены.

в) С помощью рисунка 45 заключаем, что y наиб. = 2 (как и в первом случае), а наименьшего значения у линейной функции нет (как и во втором случае).

г) Используя рисунок 46, делаем вывод: у наиб = 3,5 (этого значения линейная функция достигает при х = 0), а у наим. не существует.

д) С помощью рисунка 47 делаем вывод: y наим = -1 (этого значения линейная функция достигает при х = 3), а у наиб., не существует.

Пример 5. Построить график линейной функции

у = 2х - 6. С помощью графика ответить на следующие вопросы:

а) при каком значении х будет у = 0?
б) при каких значениях х будет у > 0?
в) при каких значениях х будет у < 0?

Ре ш е ни е. Составим таблицу для линейной функции у = 2х- 6:

Через точки (0; - 6) и (3; 0) проведем прямую - график функции у = 2х - 6 (рис. 48).

а) у = 0 при х = 3. График пересекает ось х в точке х = 3, это и есть точка с ординатой у = 0.
б) у > 0 при х > 3. В самом деле если х > 3, то прямая расположена выше оси ж, значит, ординаты соответствующих точек прямой положительны.

в) у < 0 при х < 3. В самом деле если х < 3, то прямая расположена ниже оси х, значит, ординаты соответствующих точек прямой отрицательны. A

Обратите внимание, что в этом примере мы с помощью графика решили:

а) уравнение 2х - 6 = 0 (получили х = 3);
б) неравенство 2х - 6 > 0 (получили х > 3);
в) неравенство 2x - 6 < 0 (получили х < 3).

Замечание. В русском языке часто один и тот же объект называют по-разному, например: «дом», «здание», «сооружение», «коттедж», «особняк», «барак», «хибара», «избушка». В математическом языке ситуация примерно та же. Скажем, равенство с двумя переменными у = кх + m, где к, m - конкретные числа, можно назвать линейной функцией, можно назвать линейным уравнением с двумя переменными х и у (или с двумя неизвестными х и у), можно назвать формулой, можно назвать соотношением, связывающим х и у, можно, наконец, назвать зависимостью между х и у. Это неважно, главное, понимать, что во всех случаях речь идет о математической модели у = кх + m

.

Рассмотрим график линейной функции, изображенный на рисунке 49, а. Если двигаться по этому графику слева направо, то ординаты точек графика все время увеличиваются, мы как бы «поднимаемся в горку». В таких случаях математики употребляют термин возрастание и говорят так: если k>0, то линейная функция у = kx + m возрастает.

Рассмотрим график линейной функции, изображенный на рисунке 49, б. Если двигаться по этому графику слева направо, то ординаты точек графика все время уменьшаются, мы как бы «спускаемся с горки». В таких случаях математики употребляют термин убывание и говорят так: если k < О, то линейная функция у = kx + m убывает.

Линейная функция в жизни

А теперь давайте подведем итог этой темы. Мы с вами уже познакомились с таким понятие, как линейная функция, знаем ее свойства и научились строить графики. Так же, вы рассматривали частные случаи линейной функции и узнали от чего зависит взаимное расположение графиков линейных функций. Но, оказывается, в нашей повседневной жизни мы также постоянно пересекаемся с этой математической моделью.

Давайте мы с вами подумаем, какие реальные жизненные ситуации связаны с таким понятием, как линейные функции? А также, между какими величинами или жизненными ситуациями, возможно, устанавливать линейную зависимость?

Многие из вас, наверное, не совсем представляют, зачем им нужно изучать линейные функции, ведь это вряд ли пригодится в дальнейшей жизни. Но здесь вы глубоко ошибаетесь, потому что с функциями мы сталкиваемся постоянно и повсюду. Так как, даже обычная ежемесячная квартплата также является функцией, которая зависит от многих переменных. А к этим переменным относится метраж площади, количество жильцов, тарифов, использование электроэнергии и т.д.

Конечно же, самыми распространенными примерами функций линейной зависимости, с которыми мы с вами сталкивались – это уроки математики.

Мы с вами решали задачи, где находили расстояния, которые проезжали машины, поезда или проходили пешеходы при определенной скорости движения. Это и есть линейные функции времени движения. Но ведь эти примеры применимы не только в математике, они присутствуют в нашей повседневной жизни.

Калорийности молочных продуктов зависит жирности, а такая зависимость, как правило, является линейной функцией. Так, например, при увеличении сметане процента жирности, увеличивается и калорийность продукта.



Теперь давайте сделаем подсчеты и найдем значения k и b, решив систему уравнений:


Теперь давайте выведем формулу зависимости:

В итоге мы получили линейную зависимость.

Чтобы знать скорость распространения звука в зависимости от температуры, возможно, узнать, применив формулу: v = 331 +0,6t, где v - скорость (в м/с), t - температура. Если мы начертим график этой зависимости, то увидим, что он будет линейным, то есть представлять прямую линию.

И таких практических использований знаний в применении линейной функциональной зависимости можно перечислять долго. Начиная от платы за телефон, длины и роста волос и даже пословиц в литературе. И этот список можно продолжать до бесконечности.

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Линейной функцией называется функция вида y=kx+b, где x-независимая переменная, k и b-любые числа.
Графиком линейной функции является прямая.

1. Чтобы постороить график функции, нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.

Например, чтобы построить график функции y= ⅓ x+2, удобно взять x=0 и x=3, тогда ординаты эти точек будут равны y=2 и y=3. Получим точки А(0;2) и В(3;3). Соединим их и получим график функции y= ⅓ x+2:

2. В формуле y=kx+b число k называется коэффицентом пропорциональности:
если k>0, то функция y=kx+b возрастает
если k
Коэффициент b показывает смещение графика функции вдоль оси OY:
если b>0, то график функции y=kx+b получается из графика функцииy=kx сдвигом на b единиц вверх вдоль оси OY
если b
На рисунке ниже изображены графики функций y=2x+3; y= ½ x+3; y=x+3

Заметим, что во всех этих функциях коэффициент k больше нуля, и функции являются возрастающими. Причем, чем больше значение k, тем больше угол наклона прямой к положительному направлению оси OX.

Во всех функциях b=3 – и мы видим, что все графики пересекают ось OY в точке (0;3)

Теперь рассмотрим графики функций y=-2x+3; y=- ½ x+3; y=-x+3

На этот раз во всех функциях коэффициент k меньше нуля, и функции убывают. Коэффициент b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)

Рассмотрим графики функций y=2x+3; y=2x; y=2x-3

Теперь во всех уравнениях функций коэффициенты k равны 2. И мы получили три параллельные прямые.

Но коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
График функции y=2x+3 (b=3) пересекает ось OY в точке (0;3)
График функции y=2x (b=0) пересекает ось OY в точке (0;0) - начале координат.
График функции y=2x-3 (b=-3) пересекает ось OY в точке (0;-3)

Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции y=kx+b.
Если k 0

Если k>0 и b>0 , то график функции y=kx+b имеет вид:

Если k>0 и b , то график функции y=kx+b имеет вид:

Если k, то график функции y=kx+b имеет вид:

Если k=0 , то функция y=kx+b превращается в функцию y=b и ее график имеет вид:

Ординаты всех точек графика функции y=b равны b Если b=0 , то график функции y=kx (прямая пропорциональность) проходит через начало координат:

3. Отдельно отметим график уравнения x=a. График этого уравнения представляет собой прямую линию, параллельую оси OY все точки которой имеют абсциссу x=a.

Например, график уравнения x=3 выглядит так:
Внимание! Уравнение x=a не является функцией, так одному значению аргумента соотвутствуют разные значения функции, что не соответствует определению функции.


4. Условие параллельности двух прямых:

График функции y=k 1 x+b 1 параллелен графику функции y=k 2 x+b 2 , если k 1 =k 2

5. Условие перепендикулярности двух прямых:

График функции y=k 1 x+b 1 перепендикулярен графику функции y=k 2 x+b 2 , если k 1 *k 2 =-1 или k 1 =-1/k 2

6. Точки пересечения графика функции y=kx+b с осями координат.

С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).

С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда x=-b/k. То есть точка пересечения с осью OX имеет координаты (-b/k;0):

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.