Легирующие материалы. Влияние легирующих элементов на свойства стали

Легирующие материалы. Влияние легирующих элементов на свойства стали

Драгоценные металлы

Благородные металлы – это металлы, обладающие особой химической стойкостью, тягучестью и красивым внешним видом. Такие металлы называют благородными за природные свойства (не подверженные коррозии и окислению).

За какие свойства их считают драгоценными?

Прежде всего, за их красивый вид, высокую сопротивляемость коррозии и редкую встречаемость. Это - золото, серебро, платина и некоторые металлы платиновой группы. В ювелирном деле они широко используются из-за прекрасных механических свойств: пластичности, прочности, ковкости.

Согласно федеральному закону «О драгоценных металлах и камнях» выделяют восемь металлов относящихся к драгоценным:

· Серебро

· Платина

И металлы платиновой группы (платиноиды)

· Палладий

· Рутений

Впервые на золото обратили внимание в Древнем Египте примерно 6000 лет назад. Добывали мелкие и средние самородки в аравийских пустынях, из них и делались первые золотые украшения.

Для изготовления ювелирных украшений чаще всего используют многокомпонентные сплавы золота.

единственный металл, который имеет красивый желтый цвет.

Золото высокопластично, оно может быть проковано в листки толщиной до ~0,1 мкм (сусальное золото – тончайшие листы золота, которые используются в декоративных целях); при такой толщине золото полупрозрачно и в отражённом свете имеет жёлтый цвет, в проходящем - окрашено в дополнительный к жёлтому синевато-зеленоватый. Золото хорошо полируется, имеет не высокую твердость. Из-за невысокой твердости и прочности золото используется в ювелирном производстве в виде сплавов с другими металлами и в очень редких случаях в чистом виде.

· Серебро

В Росси впервые добыча серебра произошла в 1974 году. Из-за наличия в воздухе серо-водорода имеет свойства темнеть. Серебро покрывается родием для повышения Износостойкости.

Серебро - металл белого цвета, почти не изменяющийся под воздействием кислорода при комнатной температуре, однако из-за наличия в воздухе сероводорода со временем покрывается темным налетом сульфида серебра. Серебро хорошо полируется, имеет высокую отражательную способность, обладает высокой ковкостью и самой высокой из всех металлов тепло – электропроводностью.

· Платина

За внешнее сходство с серебром окрестили платина. (с испанского «серебришко».) Первыми применение для платины нашли фальшивомонетчики. В Испании очень быстро начали распространение монеты с примесью платины Такое золото считалось грязным (испанским золотом). По указанию короля в 19740 г. найденное золото необходимо было просматривать тщательно. Платину необходимо было отделять и затапливать в реках. 3 года платина была под запретом. Настоящее применение платина нашла в 1776 году. В витринах магазинов Парижа появились украшения из платины.

металл, имеющий бело-серую окраску сходную по цвету со сталью. Платина пластична, имеет высокую отражательную способность. Имеет низкую тепло – электропроводность. Твердость по шкале Мооса = 5. Тугоплавок, очень прочен, устойчив к коррозиям

а также металлы платиновой группы (платиноиды):

Они достаточно устойчивы на воздухе (не окисляются), обладают высокой сопротивляемостью агрессивной среде (кислотам, щелочам и т.д.), мягкостью, пластичностью.

· палладий

· родий

· иридий

· рутений

· осмий

Металлы платиновой группы достаточно устойчивы на воздухе (не окисляются), обладают высокой сопротивляемостью агрессивной среде (кислотам, щелочам и т.д.), мягкостью, пластичностью, тягучестью.

Благодаря перечисленным свойствам металлы данной группы широко используются в ювелирном деле.

В чистом виде драгметаллы не используются, так как они сравнительно мягкие, и обладают малой механической прочностью.

Для придания ювелирным изделиям большей твердости и износостойкости используются сплавы других металлов.

По сравнению с чистым металлом сплавы обладают лучшими механическими свойствами, более низкой температурой плавления и определенным оттенком.

Легирующие металлы и их характеристика

Сплавы – это тела, образовавшиеся в результате затвердения жидких систем, состоящие из двух или более компонентов.

При изготовлении ювелирных изделий различного назначения к драгоценным металлам добавляют в определенных соотношениях другие металлы, которые называют легирующими, или лигатурой (легирующими металлами могут быть как драгоценные так и не драгоценные металлы. Например: медь, кадмий, никель и т.д.)

Таким способом металлам придают необходимые для дальнейшего использования свойства.

Это может быть изменение цвета, понижение илиповышение пластичности, увеличение или уменьшение твердости, изменение температуры плавления. Полученные смеси называют сплавами драгоценных металлов.

Сплавы драгоценных металлов принято различать по составу . По составу сплавы называют в зависимости от основного компонента (сплавы золота, сплавы серебра и т.д.).

Цвета ювелирных изделий

Для любого человека купить ювелирные украшения из драгоценного металла – это не только возможность удачно вложить капитал, это еще и возможность приобрести высокохудожественные ювелирные украшения, обозначив принадлежность к социальной нише в обществе. Чем больше золотых ювелирных изделий у человека, тем выше его общественное положение, так как золото все еще остается предметом роскоши.

Природа подарила нам драгоценный металл лишь одного цвета – ярко желтого, а на сегодняшний день рынок предлагает нам целую палитру для золотых украшений.

Так почему мы различаем ювелирные изделия из желтого золота, белого и красного? Цвет золота в украшениях зависит от количества добавленных легирующих металлов.

Ювелирное золото представлено в виде различных сплавов следующих цветов:

· Желтое - наиболее часто используется в ювелирном деле в Европе. Так повелось, что Европа при изготовлении ювелирных изделий добавляла в сплавы драгоценных металлов больше серебра, что придавало сплаву желтый цвет.

· Красное - так повелось, что в России в сплавы металлов добавляли больше меди, поэтому золото приобретало красноватый оттенок. Таким образом красное золото стали называть русским.

· Белое - в основном типично для ювелирных изделий с бриллиантами, так как оно гармонично выглядит с камнем. получают посредством добавления в золото легирующих металлов. Если в золотом сплаве больше палладия цвет металла приобретает бело-стальной цвет. В случае добавления никеля сплав приобретает желтоватый цвет, а покрытие родим дает сплаву холодную голубизну

Основные легирующие элементы и их влияние на свойства сталей

Легирующий элемент Свойства стали
Хром (Cr ) · повышает твердость и прочность, незначительно уменьшая пластичность; · увеличивает коррозионную стойкость; · содержание хрома в количестве более 13 % делает сталь нержавеющей; · увеличивает устойчивость магнитных сил
Никель (Ni ) · придает стали коррозионную стойкость, высокую прочность и пластичность; · увеличивает прокаливаемость; · оказывает влияние на изменение коэффициента теплового расширения
Вольфрам (W ) · образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость; · препятствует росту зерен при нагреве; · способствует устранению хрупкости при отпуске
Ванадий (V ) · повышает твердость и прочность; · измельчает зерно; · увеличивает плотность стали, так как является хорошим раскислителем
Кремний (Si ) · в количестве свыше 1 % увеличивает прочность, при сохранении вязкости; · при большем содержании кремния увеличивается электросопротивление и магнитопроницаемость; · увеличивает упругость, кислостойкость, окалиностойкость

Окончание таблицы 5.1

Легирующий элемент Свойства стали
Марганец (Mn ) · при содержании свыше 1 % увеличивает твердость, изно­соустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности
Кобальт (Co ) · повышает жаропрочность, магнитные свойства; · увеличивает сопротивление удару
Молибден (Mo ) · увеличивает красностойкость, упругость, предел прочности на растяжение; · повышает антикоррозионные свойства и сопротивление окислению при высоких температурах
Титан (Ti ) · повышает прочность и плотность стали; · раскисляет сталь и способствует измельчению зерна; · улучшает обрабатываемость и сопротивление коррозии
Ниобий (Nb ) · улучшает кислостойкость; · способствует уменьшению коррозии в сварных конструкциях
Алюминий (Аl ) · способствует измельчению зерна; · повышает жаростойкость и окалиностойкость
Медь (Cu ) · увеличивает антикоррозионные свойства строительной стали
Цирконий (Zr ) · оказывает особое влияние на величину и рост зерна в стали; · измельчает зерно и позволяет получать сталь с заранее заданной зернистостью

Введение легирующих элементов значительно усложняет взаимодействие компонентов в стали между собой, приводит к образованию новых фаз и структурных составляющих, изменяет кинетику превращений и технологию термической обработки. Причем распределение легирующих элементов в сталях весьма разнообразно – они могут находиться в сталях:

· в свободном состоянии (медь, свинец, серебро);

· в виде интерметаллидных соединений (металла с металлом) с железом или между собой;

· в виде оксидов, сульфидов и других неметаллических соединений (алюминий, титан и ванадий, являясь раскислителями, образуют оксиды Αl 2 О 3 , TiO 2 , V 2 O 5 );

· в карбидной фазе – в виде твердого раствора в цементите или в виде самостоятельных соединений с углеродом – специальных карбидов;

· в растворенном виде в железе.

Взаимодействие легирующих элементов с углеродом.

Углерод, взаимодействуя с железом, формирует в сталях внутреннее строение и механические свойства. Введение легирующих элементов нарушает это взаимодействие. По характеру взаимодействия с углеродом легирующие элементы подразделяются на некарбидообразующие и карбидообразующие.

К некарбидообразующим элементам относятся никель, кремний, кобальт, алюминий, медь. Они растворяются во всех кристаллических состояниях железа и изменяют его свойства. Карбидообразующими элементами являются хром, марганец, молибден, вольфрам, ванадий, титан, ниобий, цирконий. Они могут растворяться в железе или образовывать карбиды (Mn 3 C , Cr 23 C 6 , Cr 7 C 6 , Fe 3 Mo 3 C , Fe 3 W 3 C и др.), сравнительно легко растворяющиеся в аустените при нагреве, и карбиды (MoC , W 2 C , WC , VC , TiC и др.), практически не растворяющиеся в аустените при нагреве.

Кроме того, все карбидообразующие элементы могут растворяться в цементите, образуя легированный цементит. Все карбиды и легированный цементит обладают более высокой температурой распада и твердостью и в дисперсном виде значительно упрочняют сталь.

Влияние легирующих элементов на полиморфные модификации железа.

Полиморфные состояния железа при образовании твердых растворов введением легирующих элементов смещаются по температуре. Все легирующие элементы по влиянию на полиморфные состояния железа можно разделить на две группы:

· расширяющие область Fe γ (или легированного аустенита);

· сужающие область Fe γ .

К первой группе относятся никель, марганец, кобальт, медь. Точка А 3 железа с увеличением содержания этих элементов снижается, расширяя область существования Fe γ на диаграмме «Железо – легирующий элемент». Такое состояние сплава может существовать от температуры плавления до весьма низких отрицательных температур. Такие стали называются аустенитными. Примером может служить износостойкая сталь 110Г13Л, содержащая 13 % марганца.

Ко второй группе относятся кремний, хром, вольфрам, молибден, алюминий, ванадий, титан. Точка А 3 железа с увеличением содержания этих элементов повышается, расширяя область Fe α и сужая область Fe γ . Область Fe α легированного феррита также может существовать от температуры плавления до весьма низких отрицательных температур. Такие стали называются ферритными. Примером может служить жаростойкая сталь Х25.

Свойства феррита существенно изменяются при введении легирующих элементов. Причиной изменения свойств является размерное несоответствие атомов легирующих элементов и железа, приводящее к искажению кристаллической решетки железа, возникновению внутренних напряжений и торможению движения дислокаций. Прочность и твердость феррита возрастает, а ударная вязкость снижается. Исключением являются хром (до 3 %) и никель, с введением которых ударная вязкость возрастает.

Кроме того, добавки никеля до 6 % снижают температурный порог хладноломкости железа до –200 °С. Поэтому детали механизмов и машин, работающих при низких температурах, изготавливаются из сталей с добавками никеля. Остальные элементы существенно повышают температурный порог хладноломкости, что ухудшает надежность работы деталей при низких температурах из-за увеличения вероятности их разрушения.

Влияние легирующих элементов на равновесную структуру железоуглеродистых сплавов.

Важнейшими точками диаграммы «Fe – Fe 3 C », позволяющими классифицировать железоуглеродистые стали, являются точки S и E. Большинство легирующих элементов сдвигают эти точки в сторону меньшего содержания углерода, что означает смещение границ для сталей и чугунов. Например, при введении 5 % хрома доэвтектоидные стали содержат до 0,6 % углерода, эвтектоидные – 0,6 %, заэвтектоидные – от 0,6 до 1,5 %. Свыше 1,5 % углерода – в структуре стали появляется ледебурит, поэтому такие стали названы ледебуритными . Эти стали, обладая высокой износостойкостью, используются для изготовления холодных штампов. Аналогичные закономерности наблюдаются у сталей с добавками вольфрама и молибдена, которые используются для изготовления быстрорежущего инструмента.

Кроме того, в легированных сталях совместное влияние углерода и легирующих элементов на точки А 1 , А 3 , А m весьма сложное, поэтому температура этих точек для каждой стали определяется экспериментально. Знание этих точек необходимо для назначения режимов термической обработки, например, для сравнения (из марочника сталей):

– сталь 45 имеет А С1 = 730 °С, а А С3 = 755 °С;

– сталь 45Х имеет А С1 = 735 °С, а А С3 = 770 °С;

– сталь 45ХН имеет А С1 = 750 °С, а А С3 = 790 °С;

– сталь 45ХН2МФА имеет А С1 = 735 °С, а А С3 = 825 °С.

Влияние легирующего элемента на изотермический распад аустенита, а также на его распад при непрерывном охлаждении.

Это выражается в увеличении устойчивости переохлажденного аустенита. С-образные области (диффузионные и частично диффузионные превращения) на изотермических и термокинетических диаграммах сдвигаются вправо по оси времени (увеличивается устойчивость переохлажденного аустенита), что обусловлено меньшей диффузионной подвижностью атомов легирующих элементов (кроме кобальта) по сравнению с атомами углерода (рис. 5.1). Причем при введении некарбидообразующих элементов (никель, марганец, кремний) форма С-образной области остается такой же, как и для углеродистой стали. Введение же карбидообразующих элементов (хром, вольфрам, молибден) изменяет вид
С-образной области: выделяются области диффузионного и частично диффузионного превращений и между этими областями аустенит может иметь аномально высокую устойчивость.

В целом увеличение устойчивости переохлажденного аустенита повышает прокаливаемость легированных сталей. Введение отдельных элементов, например бора 0,001–0,005 %, может увеличить прокаливаемость в десятки раз.

Рис. 5.1 . Диаграммы изотермического распада аустенита:
а – углеродистая (1, область А п →Ф + Ц ) и легированная некарбидообразующими
элементами (2, область А п →Ф + К ) стали; б – углеродистая (1) и легированная

карбидообразующими элементами (2, область А п →Ф + К ) стали

При закалке (нагрев, выдержка, охлаждение со скоростью V > V КР ) углеродистых сталей из переохлажденного аустенита образуется мартенсит. Влияние легирующих элементов на рост зерна аустенита при нагреве зависит от их способности образовывать карбиды при взаимодействии с углеродом. Элементы, не образующие карбиды (никель, кобальт, кремний, медь), практически не препятствуют росту зерна аустенита, а элементы, образующие карбиды (хром, вольфрам, молибден, ванадий, титан), препятствуют росту зерна аустенита. Сохранение мелкозернистого состояния аустенита до температур 930–950 ºС обусловлено высокой теплостойкостью карбидов, являющихся барьерами для перемещения границ зерна аустенита. Мелкоигольчатый мартенсит, полученный из мелкозернистого аустенита, обеспечивает стали повышенную вязкость.

Влияние легирующих элементов на мартенситное превращение сталей.

При введении легирующих добавок температурный интервал мартенситного превращения изменяется, что отражается на количестве остаточного аустенита в закаленной стали (рис. 5.2). Как видно из рисунка, алюминий и кобальт повышают мартенситную точку и снижают количество остаточного аустенита, но большинство легирующих элементов (марганец, молибден, хром) снижают мартенситную точку и увеличивают количество остаточного аустенита, что ухудшает качество стали после закалки. Для устранения остаточного аустенита такие стали после закалки обрабатываются холодом.

Рис. 5.2 . Влияние легирующих элементов на температуру мартенситного
превращения (а ) и количество остаточного аустенита (б ) в стали с 1,0 % углерода

Более того, влияние легирующих элементов на поведение сталей может быть настолько значительным, что точка М Н смещается ниже комнатной температуры. В этом случае мартенситное превращение отсутствует и охлаждением фиксируется аустенитное состояние, например, при введении 5 % марганца.

Влияние легирующих элементов на отпуск стали.

После закалки выполняется обязательная термическая операция для повышения вязкости стали – отпуск. В процессе отпуска неравновесные фазы – мартенсит и остаточный аустенит – превращаются в феррит и цементит. Это превращение протекает диффузионным путем и зависит от температуры нагрева.

Влияние легирующих элементов на отпуск стали выражается количественно и качественно. Количественное влияние легирующих элементов – уменьшение скорости превращений и повышение температуры превращений (выделение углерода из Fe α и коагуляция карбидов). Это наиболее заметно проявляется при введении хрома, ванадия, титана, вольфрама, молибдена, кремния. Поэтому температурные интервалы всех видов отпуска легированных сталей на 100–150 ºС выше по сравнению с углеродистыми.

Качественное влияние легирующих элементов – карбидные превращения (преобразование легированного цементита в специальные карбиды) и влияние вторичной твердости (превращение остаточного аустенита в мартенсит и выделение дисперсных карбидов).

Таким образом, легирование, изменяя скорости и температуру превращений, а также тепловые свойства стали, существенно влияет на режимы термической обработки. Основные особенности упрочняющей термической обработки легированных сталей по сравнению с углеродистыми заключаются в следующем:

· нагрев изделий производится с меньшей скоростью в связи с уменьшением теплопроводности сталей. Пониженная теплопроводность увеличивает перепад температур по сечению изделий, а следовательно, повышает и напряжения, вызывающие коробление и трещинообразование;

· температура нагрева для получения аустенита при введении карбидообразующих элементов повышается. Труднорастворимые карбиды сдерживают рост зерна аустенита и сохраняют его мелкозернистое состояние;

· охлаждение изделий возможно со значительно меньшей скоростью, так как процесс распада переохлажденного аустенита замедляется. Уменьшение критической скорости закалки позволяет охлаждать изделия в более мягком охладителе. Это уменьшает внутренние напряжения, коробление деталей, вероятность образования трещин;

· увеличивается прокаливаемость сталей, что позволяет упрочнять закалкой крупные изделия во всем сечении.

Влияние легирующих элементов на свойства металлургических сплавов изучено по-настоящему хорошо. Благодаря этому введение в сталь различных добавок позволяет получать композиции с уникальными технологическими характеристиками.

1

Компоненты, используемые для улучшения свойств сталей, разбивают по степени применимости на три подвида:

  1. Никель – обозначение в готовом сплаве – Н, молибден – М;
  2. Марганец – Г, хром – Х, кремний – С, бор – Р;
  3. Ванадий – Ф, ниобий – Б, титан – Т, цирконий – Ц, вольфрам – В.

К третьему подвиду относят и остальные элементы для легирования – азот (обозначение – А), медь (Д), алюминий (Ю), кобальт (К), бор (Р), фосфор (П), углерод (У), селен (Е). Отметим, что подобное деление обусловлено в основном экономическими соображениями, а не сугубо физическими.

Элементы для легирования стального сплава

По характеру воздействия добавок на модификации (полиморфные), наблюдаемые в сталях, все легирующие элементы делят на два типа. К первому относят компоненты, которые при любых температурах способны стабилизировать аустенит (в основном это марганец и никель). Вторая группа включает в себя элементы, которые при определенном своем содержании могут поддерживать ферритную структуру сплава (алюминий, молибден, хром, кремний, вольфрам и другие).

По механизму влияния на свойства и структуру сталей добавки причисляют к одному из трех типов:

  1. Легирующие элементы, способные создавать карбиды углерода при реакции с последним (бор, молибден, титан, цирконий).
  2. Добавки, обеспечивающие полиморфные превращения (альфа-железо в гамма-железо).
  3. Химэлементы, при использовании которых получаются интерметаллические соединения (ниобий, вольфрам).

Правильное подразумевает введение в их состав тех или иных добавок в строго рассчитанных количествах. При этом оптимальных результатов металлурги достигают в случае, когда "насыщение" сплавов производится комплексно.

2

Легирование дает возможность снизить деформируемость изделий, производимых из различных марок стали, снизить порог хладоломкости сплавов, свести к минимуму риск появления в них трещин, значительно уменьшить скорость закалки и при этом повысить:

  • прокаливаемость;
  • ударную вязкость;
  • текучесть;
  • сужение (относительное);
  • коррозионную стойкость.

Все легирующие добавки (кроме кобальта), повышают прокаливаемость сталей и уменьшают (зачастую весьма существенно) критическую скорость закалки. Достигается это за счет увеличения устойчивости аустенита в сплавах.

Образующие карбиды элементы способны замещать атомы железа в цементите. За счет этого карбидные фазы становятся более устойчивыми. При выделении карбидов из твердых растворов наблюдается явление дисперсионного упрочнения сталей. Другими словами – сплав получает дополнительную твердость.

Дисперсионное упрочнение сталей

Также карбидообразующие добавки делают процесс коагуляции дисперсных частиц в сталях более медленным и препятствуют (при нагреве) росту аустенитных зерен. Благодаря таким легирующим компонентам сплавы становятся намного прочнее.

Аустенитную структуру улучшают любыми легирующими добавками, кроме углерода и азота.

Насыщенный добавками аустенит получает высокий показатель теплового расширения, становится парамагнитным, у него снижается предел текучести. Композиции с подобными свойствами незаменимы для выпуска немагнитных и . Аустенитные сплавы, кроме того, прекрасно упрочняются при грамотно проведенной холодной деформации.

Стали, имеющие ферритную структуру, при легировании также обретают добавочную прочность. Максимальное влияние на этот показатель оказывает хром и марганец. Обратите внимание! Прочностные характеристики сплавов увеличиваются при снижении геометрических параметров ферритных зерен.

3

Давайте посмотрим, какие именно характеристики готовых сплавов способны улучшить те или иные добавки:

  • Вольфрам создает карбиды, которые повышают красностойкость и показатели твердости стали. Также он облегчает процесс отпуска готовой продукции, снижая хрупкость стали.
  • Кобальт увеличивает магнитный потенциал металла, его ударостойкость и жаропрочность.
  • Никель повышает прокаливаемость, прочность, коррозионную стойкость, пластичность сталей и делает их более ударопрочными, снижает предел хладноломкости.
  • Титан придает сплавам высокую плотность и прочностные свойства, делает металл коррозионностойким. Стали с такой добавкой хорошо обрабатываются специальным инструментом на металлорежущих агрегатах.
  • Цирконий вводят в сплавы, когда необходимо получить в них зерна со строго определенными размерами.
  • Марганец делает металл устойчивым к износу, повышает его твердость, удароустойчивость. При этом пластичные свойства сталей остаются на прежнем уровне, что важно. Заметим – марганца нужно вводить не менее 1 %. Тогда влияние этого элемента на эксплуатационные показатели сплава будет ощутимым.
  • Медь делает металлургические композиции стойкими к ржавлению.
  • Ванадий измельчает зерно сплава, делает его прочным и очень твердым.
  • Ниобий вводят для снижения явлений коррозии в сварных изделиях, а также для повышения кислотостойкой стальных конструкций.
  • Алюминий увеличивает окалийность и жаропрочность.
  • Неодим и церий используют для сталей с заданной заранее величиной зерна, сплавов с малым содержанием серы. Эти элементы также снижают пористость металла.
  • Молибден повышает прочность сплавов на растяжение, их упругость и красностойкость. Кроме того, эта легирующая добавка делает стали стойкими к окислению при высоких температурах.

Влияние химических элементов на свойства стали

Больше влияние на характеристики сталей оказывает кремний. Он повышает окалийность и упругость металла. Если кремния содержится около 1,5 %, сталь становится вязкой и при этом очень прочной. А при его добавке более 1,5 % сплавы обретают свойства магнитопроницаемости и электросопротивления.

Грамотно выполненное легирование сталей обеспечивает их особыми свойствами. И современные металлургические предприятия активно используют этот процесс для выпуска широкой номенклатуры сплавов с высокими технологическими характеристиками.

Легирующие элементы – химические элементы, специально вводимые в сталь для получения заданных свойств. Улучшают , физические и химические свойства основного материала.

Основным легирующим элементом является хром (0,8…1,2)%. Он повышает прокаливаемость, способствует получению высокой и равномерной стали. хромистых сталей — (0…-100) o С.

Дополнительные легирующие элементы:

  • Бор — 0.003%. Увеличивает прокаливаемость, а такхе повышает порог хладоломкости (+20…-60 o С .
  • Марганец – увеличивает прокаливаемость, однако содействует росту зерна, и повышает порог хладоломкости до (+40…-60) o С.
  • Титан (см. ) (~0,1%) вводят для измельчения зерна в хромомарганцевой стали.
  • Введение молибдена (0,15…0,46%) в хромистые стали увеличивает прокаливаемость, снижает до –20…-120 o С . Молибден увеличивает статическую, динамическую и усталостную прочность стали, устраняет склонность к внутреннему окислению. Кроме того, молибден снижает склонность к сталей, содержащих никель.
  • Ванадий в количестве (0.1…0.3) % в хромистых сталях измельчает зерно и повышает и .
  • Введение в хромистые стали никеля , значительно повышает прочность и прокаливаемость, понижает порог хладоломкости, но при этом повышает склонность к отпускной хрупкости (этот недостаток компенсируется введением в сталь молибдена). Хромоникелевые стали, обладают наилучшим комплексом свойств. Однако никель является дефицитным, и применение таких сталей ограничено.Значительное количество никеля можно заменить медью, это не приводит к снижению вязкости.

При легировании хромомарганцевых сталей кремнием получают, стали – хромансиль (20ХГС, 30ХГСА) . Стали обладают хорошим сочетанием прочности и , хорошо свариваются, штампуются и обрабатываются резанием.Кремний повышает ударную вязкость и температурный запас вязкости.

Добавка свинца, кальция – улучшает обрабатываемость резанием. Применение упрочнения улучшает комплекс .

Распределение легирующих элементов в стали.

Легирующие элементы растворяются в основных железоуглеродистых сплавов (феррит, аустенит, цементит), или образуют специальные карбиды. Растворение легирующих элементов в Fe α происходит в результате замещения атомов железа атомами этих элементов. Эти атомы создают в решетке напряжения, которые вызывают изменение ее периода. Изменение размеров решетки вызывает изменение свойств феррита – прочность повышается, пластичность уменьшается. Хром, молибден и вольфрам упрочняют меньше, чем никель, кремний и марганец. Молибден и вольфрам, а также кремний и марганец в определенных количествах, снижают вязкость.

В сталях карбиды образуются металлами, расположенными в таблице Менделеева левее железа (хром, ванадий, ), которые имеют менее достроенную d – электронную полосу.

В процессе карбидообразования углерод отдает свои валентные электроны на заполнение d – электронной полосы атома металла, тогда как у металла валентные электроны образуют металлическую связь, обуславливающую металлические свойства карбидов.

При соотношении атомных радиусов углерода и металла более 0,59 образуются типичные химические соединения: Fe 3 C, Mn 3 C, Cr 23 C 6 , Cr 7 C 3 , Fe 3 W 3 C – которые имеют сложную кристаллическую решетку и при нагреве растворяются в аустените.

При соотношении атомных радиусов углерода и металла менее 0,59 образуются фазы внедрения: Mo 2 C, WC, VC, TiC, TaC, W 2 C – которые имеют простую и трудно растворяются в аустените.

Легирующие элементы

химические элементы, преимущественно металлы, вводимые в состав сплавов для придания им определённых свойств (см. Легирование). Основные Л. э. в стали и чугуне - Cr, Ni, Mn, Si, Мо, W, V, Ti, Zr, Be, Nb, Co, Al, Cu, B, Mg; в алюминиевых сплавах - Si, Cu, Mg, Zn, Mn, Ti, Zr; в медных сплавах - Zn, Sn, Pb, Al, Mn, Fe, Ni, Be; в магниевых сплавах - Al, Zn, Mn, Zr; в свинцовых сплавах - Sn, Zn, Sb; в никелевых сплавах - Cr, Fe, Ti, Al. Л. э. вводят в легируемый металл обычно в виде сплавов (см. Ферросплавы , Лигатура).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Легирующие элементы" в других словарях:

    легирующие элементы - химические элементы, преимущественно металлы, вводимые в состав сплавов для придания им определенных свойств (Смотри Легирование). Основные легирующие элементы в стали и чугуне Cr, Ni, Mn, Si, Mo, W, V, Ti, Zr, Nb, Co, Al, Cu …

    Tramp alloys Случайные легирующие элементы. Остаточные легирующие элементы, которые содержатся в неконтролируемых легированных стальных отходах, загружаемых в сталелитейную печь. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П.… … Словарь металлургических терминов

    случайные легирующие элементы - Остаточные легирующие элементы, которые содержатся в неконтролируемых легированных стальных отходах, загружаемых в сталелитейную печь. Тематики машиностроение в целом … Справочник технического переводчика

    Прил., кол во синонимов: 1 низколегированный (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Элементы химические - составные части всего многообразия простых и сложных веществ. Каждый химический элемент это совокупность атомов с одинаковым зарядом атомных ядер и одинаковым числом электронов в атомной оболочке. Атомное ядро состоит из… … Энциклопедический словарь по металлургии

    Входящие в состав руды и улучшающие качество конечного продукта. Имеют большое значение в черной металлургии, где ими являются Ni, Co, Сr и V. Отношение Сr и Ni в природою легированных рудах (бурых железняках коры выветривания, образовавшейся за… … Геологическая энциклопедия

    Составные части полезного ископаемого, представляющие интерес для промышленности. В Э. п. входят элементы главные и второстепенные, включая элементы примеси, элементы спутники и элементы легирующие. Геологический словарь: в 2 х томах. М.: Недра.… … Геологическая энциклопедия - 19 элементов сульфидных руд по классификации норвежкого геохимика В. М. Гольдшмидта: S, Cu, Zn, Ga, Ge, As, Se, Ag, Cd, Ln, Sn, Sb, Те, Au, Hg, Tl, Pb, Bi, Po. Металлы xалькофильные элементы обладают специфическим сродством … Энциклопедический словарь по металлургии