Задачи по комбинаторике. Примеры решений

Задачи по комбинаторике. Примеры решений

Чтобы в материале было легче ориентироваться, добавлю содержание данной темы:

Введение. Множества и выборки.

В этой теме рассмотрим основные понятия комбинаторики: перестановки, сочетания и размещения. Выясним их суть и формулы, по которым можно найти их количество.

Для работы нам понадобятся кое-какие вспомогательные сведения. Начнём с такого фундаментального математического понятия как множество. Подробно понятие множества было раскрыто в теме "Понятие множества. Способы задания множеств" .

Очень краткий рассказ про множества : показать\скрыть

Если вкратце: множеством именуют некую совокупность объектов. Записывают множества в фигурных скобках. Порядок записи элементов роли не играет; повторения элементов не допускаются. Например, множество цифр числа 11115555999 будет таким: $\{1,5,9 \}$. Множество согласных букв в слове "тигрёнок" таково: $\{т, г, р, н, к\}$. Запись $5\in A$ означает, что элемент 5 принадлежит множеству $A=\{1,5,9 \}$. Количество элементов в конечном множестве называют мощностью этого множества и обозначают $|A|$. Например, для множества $A=\{1,5,9 \}$, содержащего 3 элемента, имеем: $|A|=3$.

Рассмотрим некое непустое конечное множество $U$, мощность которого равна $n$, $|U|=n$ (т.е. в множестве $U$ имеется $n$ элементов). Введём такое понятие, как выборка (некоторые авторы именуют её кортежем). Под выборкой объема $k$ из $n$ элементов (сокращённо $(n,k)$-выборкой) будем понимать набор элементов $(a_1, a_2,\ldots, a_k)$, где $a_i\in U$. Выборка называется упорядоченной, если в ней задан порядок следования элементов. Две упорядоченные выборки, различающиеся лишь порядком элементов, являются различными. Если порядок следования элементов выборки не является существенным, то выборку именуют неупорядоченной.

Заметьте, что в определении выборки ничего не сказано про повторения элементов. В отличие от элементов множеств, элементы выборки могут повторяться.

Для примера рассмотрим множество $U=\{a,b,c,d,e\}$. Множество $U$ содержит 5 элементов, т.е. $|U|=5$. Выборка без повторений может быть такой: $(a,b,c)$. Данная выборка содержит 3 элемента, т.е. объём этой выборки равен 3. Иными словами, это $(5,3)$-выборка.

Выборка с повторениями может быть такой: $(a,a,a,a,a,c,c,d)$. Она содержит 8 элементов, т.е. объём её равен 8. Иными словами, это $(5,8)$-выборка.

Рассмотрим ещё две $(5,3)$-выборки: $(a,b,b)$ и $(b,a,b)$. Если мы полагаем наши выборки неупорядоченными, то выборка $(a,b,b)$ равна выборке $(b,a,b)$, т.е. $(a,b,b)=(b,a,b)$. Если мы полагаем наши выборки упорядоченными, то $(a,b,b)\neq(b,a,b)$.

Рассмотрим ещё один пример, немного менее абстрактный:) Предположим, в корзине лежат шесть конфет, причём все они различны. Если первой конфете поставить в соответствие цифру 1, второй конфете - цифру 2 и так далее, то с конфетами в корзине можно сопоставить такое множество: $U=\{1,2,3,4,5,6\}$. Представьте, что мы наугад запускаем руку в корзинку с целью вытащить три конфеты. Вытащенные конфеты - это и есть выборка. Так как мы вытаскиваем 3 конфеты из 6, то получаем (6,3)-выборку. Порядок расположения конфет в ладони совершенно несущественен, поэтому эта выборка является неупорядоченной. Ну, и так как все конфеты различны, то выборка без повторений. Итак, в данной ситуации говорим о неупорядоченной (6,3)-выборке без повторений.

Теперь подойдём с иной стороны. Представим себе, что мы находимся на фабрике по производству конфет, и на этой фабрике производятся конфеты четырёх сортов. Множество $U$ в этой ситуации таково: $U=\{1,2,3,4 \}$ (каждая цифра отвечает за свой сорт конфет). Теперь вообразим, что все конфеты ссыпаются в единый жёлоб, около которого мы и стоим. И, подставив ладони, из этого потока отбираем 20 конфет. Конфеты в горсти – это и есть выборка. Играет ли роль порядок расположения конфет в горсти? Естественно, нет, поэтому выборка неупорядоченная. Всего 4 сорта конфет, а мы отбираем двадцать штук из общего потока - повторения сортов неизбежны. При этом выборки могут быть самыми различными: у нас даже могут оказаться все конфеты одного сорта. Следовательно, в этой ситуации мы имеем дело с неупорядоченной (4,20)-выборкой с повторениями.

Рассмотрим ещё пару примеров. Пусть на кубиках написаны различные 7 букв: к, о, н, ф, е, т, а. Эти буквы образуют множество $U=\{к,о,н,ф,е,т,а\}$. Допустим, из данных кубиков мы хотим составить "слова" из 5 букв. Буквы этих слов (к примеру, «конфе», «тенко» и так далее) образуют (7,5)-выборки: $(к,о,н,ф,е)$, $(т,е,н,к,о)$ и т.д. Очевидно, что порядок следования букв в такой выборке важен. Например, слова «нокфт» и «кфтон» различны (хотя состоят из одних и тех же букв), ибо в них не совпадает порядок букв. Повторений букв в таких «словах» нет, ибо в наличии только семь кубиков. Итак, набор букв каждого слова представляет собой упорядоченную (7,5)-выборку без повторений.

Еще один пример: мы составляем всевозможные восьмизначные числа из четырёх цифр 1, 5, 7, 8. Например, 11111111, 15518877, 88881111 и так далее. Множество $U$ таково: $U=\{1,5,7,8\}$. Цифры каждого составленного числа образуют (4,8)-выборку. Порядок следования цифр в числе важен, т.е. выборка упорядоченная. Повторения допускаются, поэтому здесь мы имеем дело с упорядоченной (4,8)-выборкой с повторениями.

Размещения без повторений из $n$ элементов по $k$

Размещение без повторений из $n$ элементов по $k$ - упорядоченная $(n,k)$-выборка без повторений.

Так как элементы в рассматриваемой выборке повторяться не могут, то мы не можем отобрать в выборку больше элементов, чем есть в исходном множестве. Следовательно, для таких выборок верно неравенство: $n≥ k$. Количество размещений без повторений из $n$ элементов по $k$ определяется следующей формулой:

\begin{equation}A_{n}^{k}=\frac{n!}{(n-k)!} \end{equation}

Что обозначает знак "!"? : показать\скрыть

Запись "n!" (читается "эн факториал") обозначает произведение всех чисел от 1 до n, т.е.

$$ n!=1\cdot2\cdot 3\cdot \ldots\cdot n $$

По определению полагается, что $0!=1!=1$. Для примера найдём 5!:

$$ 5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120. $$

Пример №1

Алфавит состоит из множества символов $E=\{+,*,0,1,f\}$. Определим количество таких трёхсимвольных слов в этом алфавите, которые не содержат повторяющихся букв.

Под трёхсимвольными словами будем понимать выражения вида "+*0" или "0f1". В множестве $E$ пять элементов, поэтому буквы трехсимвольных слов образуют (5,3)-выборки. Первый вопрос: эти выборки упорядочены или нет? Слова, которые отличаются лишь порядком букв, полагаются различными, поэтому порядок элементов в выборке важен. Значит, выборка является упорядоченной. Второй вопрос: допускаются повторения или нет? Ответ на этот вопрос даёт условие: слова не должны содержать повторяющихся букв. Подводим итоги: буквы каждого слова, удовлетворяющего условию задачи, образуют упорядоченную (5,3)-выборку без повторений. Иными словами, буквы каждого слова образуют размещение без повторений из 5 элементов по 3. Вот примеры таких размещений:

$$ (+,*,f), \; (*,+,f), \; (1,+,0) $$

Нас же интересует общее количество этих размещений. Согласно формуле (1) количество размещений без повторений из 5 элементов по 3 будет таким:

$$ A_{5}^{3}=\frac{5!}{(5-3)!}=\frac{5!}{2!}=60. $$

Т.е. можно составить 60 трёхсимвольных слов, буквы которых не будут повторяться.

Ответ : 60.

Размещения с повторениями из $n$ элементов по $k$

Размещение с повторениями из $n$ элементов по $k$ - упорядоченная $(n,k)$-выборка с повторениями.

Количество размещений с повторениями из $n$ элементов по $k$ определяется следующей формулой:

\begin{equation}\bar{A}_{n}^{k}=n^k \end{equation}

Пример №2

Сколько пятизначных чисел можно составить из множества цифр $\{5,7,2\}$?

Из данного набора цифр можно составить пятизначные числа 55555, 75222 и так далее. Цифры каждого такого числа образуют (3,5)-выборку: $(5,5,5,5,5)$, $(7,5,2,2,2)$. Зададимся вопросом: что это за выборки? Во-первых, цифры в числах могут повторяться, поэтому мы имеем дело с выборками с повторениями. Во-вторых, порядок расположения цифр в числе важен. Например, 27755 и 77255 - разные числа. Следовательно, мы имеем дело с упорядоченными (3,5)-выборками с повторениями. Общее количество таких выборок (т.е. общее количество искомых пятизначных чисел) найдём с помощью формулы (2):

$$ \bar{A}_{3}^{5}=3^5=243. $$

Следовательно, из заданных цифр можно составить 243 пятизначных числа.

Ответ : 243.

Перестановки без повторений из $n$ элементов

Перестановка без повторений из $n$ элементов - упорядоченная $(n,n)$-выборка без повторений.

По сути, перестановка без повторений есть частный случай размещения без повторений, когда объём выборки равен мощности исходного множества. Количество перестановок без повторений из $n$ элементов определяется следующей формулой:

\begin{equation}P_{n}=n! \end{equation}

Эту формулу, кстати, легко получить, если учесть, что $P_n=A_{n}^{n}$. Тогда получим:

$$ P_n=A_{n}^{n}=\frac{n!}{(n-n)!}=\frac{n!}{0!}=\frac{n!}{1}=n! $$

Пример №3

В морозилке лежат пять порций мороженого от различных фирм. Сколькими способами можно выбрать порядок их съедения?

Пусть первому мороженому соответствует цифра 1, второму - цифра 2 и так далее. Мы получим множество $U=\{1,2,3,4,5\}$, которое будет представлять содержимое морозилки. Порядок съедения может быть таким: $(2,1,3,5,4)$ или таким: $(5,4,3,1,2)$. Каждый подобный набор есть (5,5)-выборка. Она будет упорядоченной и без повторений. Иными словами, каждая такая выборка есть перестановка из 5 элементов исходного множества. Согласно формуле (3) общее количество этих перестановок таково:

$$ P_5=5!=120. $$

Следовательно, существует 120 порядков выбора очередности съедения.

Ответ : 120.

Перестановки с повторениями

Перестановка с повторениями – упорядоченная $(n,k)$-выборка с повторениями, в которой элемент $a_1$ повторяется $k_1$ раз, $a_2$ повторяется $k_2$ раза так далее, до последнего элемента $a_r$, который повторяется $k_r$ раз. При этом $k_1+k_2+\ldots+k_r=k$.

Общее количество перестановок с повторениями определяется формулой:

\begin{equation}P_{k}(k_1,k_2,\ldots,k_r)=\frac{k!}{k_1!\cdot k_2!\cdot \ldots \cdot k_r!} \end{equation}

Пример №4

Слова составляются на основе алфавита $U=\{a,b,d\}$. Сколько различных слов из семи символов может быть составлено, если в этих словах буква "a" должна повторяться 2 раза; буква "b" - 1 раз, а буква "d" - 4 раза?

Вот примеры искомых слов: "aabdddd", "daddabd" и так далее. Буквы каждого слова образуют (3,7)-выборку с повторениями: $(a,a,b,d,d,d,d)$, $(d,a,d,d,a,b,d)$ и т.д. Каждая такая выборка состоит из двух элементов "a", одного элемента "b" и четырёх элементов "d". Иными словами, $k_1=2$, $k_2=1$, $k_3=4$. Общее количество повторений всех символов, естественно, равно объёму выборки, т.е. $k=k_1+k_2+k_3=7$. Подставляя эти данные в формулу (4), будем иметь:

$$ P_7(2,1,4)=\frac{7!}{2!\cdot 1!\cdot 4!}=105. $$

Следовательно, общее количество искомых слов равно 105.

Ответ : 105.

Сочетания без повторений из $n$ элементов по $k$

Сочетание без повторений из $n$ элементов по $k$ – неупорядоченная $(n,k)$-выборка без повторений.

Общее количество сочетаний без повторений из $n$ элементов по $k$ определяется формулой:

\begin{equation}C_{n}^{k}=\frac{n!}{(n-k)!\cdot k!} \end{equation}

Пример №5

В корзине размещены карточки, на которых написаны целые числа от 1 до 10. Из корзины вынимают 4 карточки и суммируют числа, написанные на них. Сколько различных наборов карточек можно вытащить из корзины?

Итак, в данной задаче исходное множество таково: $U=\{1,2,3,4,5,6,7,8,9,10\}$. Из этого множества мы выбираем четыре элемента (т.е., четыре карточки из корзины). Номера вытащенных элементов образуют (10,4)-выборку. Повторения в этой выборке не допускаются, так как номера всех карточек различны. Вопрос вот в чём: порядок выбора карточек играет роль или нет? Т.е., к примеру, равны ли выборки $(1,2,7,10)$ и $(10,2,1,7)$ или не равны? Тут нужно обратиться к условию задачи. Карточки вынимаются для того, чтобы потом найти сумму элементов. А это значит, что порядок карточек не важен, так как от перемены мест слагаемых сумма не изменится. Например, выборке $(1,2,7,10)$ и выборке $(10,2,1,7)$ будет соответствовать одно и то же число $1+2+7+10=10+2+1+7=20$. Вывод: из условия задачи следует, что мы имеем дело с неупорядоченными выборками. Т.е. нам нужно найти общее количество неупорядоченных (10,4)-выборок без повторений. Иными словами, нам нужно найти количество сочетаний из 10 элементов по 4. Используем для этого формулу (5):

$$ C_{10}^{4}=\frac{10!}{(10-4)!\cdot 4!}=\frac{10!}{6!\cdot 4!}=210. $$

Следовательно, общее количество искомых наборов равно 210.

Ответ : 210.

Сочетания с повторениями из $n$ элементов по $k$

Сочетание с повторениями из $n$ элементов по $k$ – неупорядоченная $(n,k)$-выборка с повторениями.

Общее количество сочетаний с повторениями из $n$ элементов по $k$ определяется формулой:

\begin{equation}\bar{C}_{n}^{k}=\frac{(n+k-1)!}{(n-1)!\cdot k!} \end{equation}

Пример №6

Представьте себе, что мы находимся на конфетном заводе, - прямо возле конвейера, по которому движутся конфеты четырёх сортов. Мы запускаем руки в этот поток и вытаскиваем двадцать штук. Сколько всего различных "конфетных комбинаций" может оказаться в горсти?

Если принять, что первому сорту соответствует число 1, второму сорту - число 2 и так далее, то исходное множество в нашей задаче таково: $U=\{1,2,3,4\}$. Из этого множества мы выбираем 20 элементов (т.е., те самые 20 конфет с конвейера). Пригоршня конфет образует (4,20)-выборку. Естественно, повторения сортов будут. Вопрос в том, играет роль порядок расположения элементов в выборке или нет? Из условия задачи следует, что порядок расположения элементов роли не играет. Нам нет разницы, будут ли в горсти располагаться сначала 15 леденцов, а потом 4 шоколадных конфеты, или сначала 4 шоколадных конфеты, а уж потом 15 леденцов. Итак, мы имеем дело с неупорядоченной (4,20) выборкой с повторениями. Чтобы найти общее количество этих выборок используем формулу (6):

$$ \bar{C}_{4}^{20}=\frac{(4+20-1)!}{(4-1)!\cdot 20!}=\frac{23!}{3!\cdot 20!}=1771. $$

Следовательно, общее количество искомых комбинаций равно 1771.

План:

1. Элементы комбинаторики.

2. Общие правила комбинаторики.

4. Применение графов (схем) при решении комбинаторных задач.

1. Комбинаторика и ее возникновение.

Комбинаторика - это область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству.

Комбинаторика возникла в XVI веке. В жизни привилегированных слоев тогдашнего общества большое место занимали азартные игры (карты, кости). Широко были распространены лотереи. Первоначально комбинаторные задачи касались в основном азартных игр: сколькими способами можно получить данное число очков, бросая 2 или 3 кости или сколькими способами можно получить 2-ух королей в некоторой карточной игре. Эти и другие проблемы азартных игр являлись движущей силой в развитии комбинаторики и далее в развитии теории вероятностей.

Одним из первых занялся подсчетом числа различных комбинаций при игре в кости итальянский математик Тарталья. Он составил таблицы (числа способов выпадения k очков на r костях). Однако, он не учел, одна и та же сумма очков может выпасть различными способами, поэтому его таблицы содержали большое количество ошибок.

Теоретическое исследование вопросов комбинаторики предприняли в XVII веке французские математики Блез Паскаль и Ферма. Исходным пунктом их исследований были так же проблемы азартных игр.

Дальнейшее развитие комбинаторики связано с именами Я. Бернулли, Г. Лейбница, Л. Эйлера. Однако, и в их работах основную роль играли приложения к различным играм.

Сегодня комбинаторные методы используются для решения транспортных задач, в частности задач по составлению расписаний, для составления планов производства и реализации продукции и т.д.

2. Общие правила комбинаторики.

Правило суммы: Если некоторый объект А может быть выбран m способами, а объект В- k способами, то объект «либо А, либо В» можно выбрать m +k способами.

Примеры:

1. Допустим, что в ящике находится n разноцветных шаров. Произвольным образом вынимается 1 шарик. Сколькими способами это можно сделать?

Ответ: n способами.

Распределим эти n шариков по двум ящикам: в первый- m шариков, во второй- k шариков. Произвольным образом из произвольно выбранного ящика вынимается 1 шарик. Сколькими способами это можно сделать?

Решение: Из первого ящика шарик можно вынуть m способами, из второго- k способами. Тогда всего способов m+k=n .

2. Морской семафор.

В морском семафоре каждой букве алфавита соответствует определенное положение относительно тела сигнальщика двух флажков. Сколько таких сигналов может быть?

Решение: Общее число складывается из положений, когда оба флажка расположены по разные стороны от тела сигнальщика и положений, когда они расположены по одну сторону от тела сигнальщика. При подсчете числа возможных положений применяется правило суммы.

Правило произведения: Если объект А можно выбрать m способами, а после каждого такого выбора другой объект В можно выбрать (независимо от выбора объекта А) k способами, то пары объектов «А и В» можно выбрать m *k способами.

Примеры:

1. Сколько двузначных чисел существует?

Решение: Число десятков может быть обозначено любой цифрой от 1 до 9. Число единиц может быть обозначено любой цифрой от 0 до 9. Если число десятков равно 1, то число единиц может быть любым (от 0 до 9). Таким образом, существует 10 двузначных чисел, с числом десятков- 1.Аналогично рассуждаем и для любого другого числа десятков. Тогда можно посчитать, что существует 9 *10 = 90 двузначных чисел.

2. Имеется 2 ящика. В одном лежит m разноцветных кубиков, а в другом- k разноцветных шариков. Сколькими способами можно выбрать пару «Кубик-шарик»?

Решение: Выбор шарика не зависит от выбора кубика, и наоборот. Поэтому, число способов, которыми можно выбрать данную пару равно m *k .

3. Генеральная совокупность без повторений и выборки без повторений.

Генеральная совокупность без повторений - это набор некоторого конечного числа различных элементов a 1 , a 2 , a 3 , ..., a n .

Пример: Набор из n разноцветных лоскутков.

Выборкой объема k (k n ) называется группа из m элементов данной генеральной совокупности.

Пример: Пестрая лента, сшитая из m разноцветных лоскутков, выбранных из данных n .

Размещениями из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга либо составом элементов, либо порядком их расположения.

- число размещений из n по k .

Число размещений из n по k можно определить следующим способом: первый объект выборки можно выбрать n способами, далее второй объект можно выбрать n -1 способом и т.д.


Преобразовав данную формулу, имеем:

Следует помнить, что 0!=1.

Примеры:

1. В первой группе класса А первенства по футболу участвует 17 команд. Разыгрываются медали: золото, серебро и бронза. Сколькими способами они могут быть разыграны?

Решение: Комбинации команд-победителей отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 17 по 3.

2. Научное общество состоит из 25-ти человек. Необходимо выбрать президента общества, вице-президента, ученого секретаря и казначея. Сколькими способами это можно сделать?

Решение: Комбинации руководящего состава общества отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 25 по 4.

Перестановками без повторений из n элементов называются размещения без повторений из n элементов по n , т.е. размещения отличаются друг от друга только порядком следования элементов.

Число перестановок.

Примеры:

1. Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что они должны состоять из различных цифр?

Решение: Имеем перестановки из 5 элементов. 2. Сколькими способами можно собрать 6 разноцветных лоскутков в пеструю ленту?
Решение:
Имеем перестановки из 6 элементов.

Сочетаниями без повторений из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга только составом элементов.

- число сочетаний из n по k

Элементы каждого из сочетаний можно расставить способами. Тогда Примеры:

1. Если в полуфинале первенства по шахматам участвует 20 человек, а в финал выходят лишь трое, то сколькими способам и можно определить эту тройку?

Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки, вышедшие в финал, являются сочетаниями из 20 по 3.

2. Сколькими способами можно выбрать трех делегатов из десяти человек на конференцию?

Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки делегатов являются сочетаниями из 10 по 3.

Конспект:




4.Применение графов (схем) при решении комбинаторных задач.

В случае, когда число возможных выборов на каждом шагу зависит от того, какие элементы были выбраны ранее, можно изобразить процесс составления комбинаций в виде «дерева». Сначала из одной точки проводят столько отрезков, сколько различных выборов можно сделать на первом шагу. Из конца каждого отрезка проводят столько отрезков, сколько можно сделать выборов на втором шагу, если на первом шагу был выбран данный элемент и т.д.

Задача:

При составлении команд космического корабля учитывается вопрос и психологической совместимости участников путешествия. Необходимо составить команду космического корабля из 3 человек: командира, инженера и врача. На место командира есть 4 кандидата: a 1 , a 2 , a 3 , a 4 .На место инженера- 3: b 1 , b 2 , b 3 . На место врача- 3: c 1 , c 2 , c 3 . Проведенная проверка показала, что командир a 1 психологически совместим с инженерами b 1 и b 3 и врачами c 1 и c 3 . Командир a 2 - с инженерами b 1 и b 2 . и всеми врачами. Командир a 3 - с инженерами b 1 и b 2 и врачами c 1 и c 3 . Командир a 4 -со всеми инженерами и врачом c 2 . Кроме того, инженер b 1 не совместим с врачом c 3 , b 2 - с врачом c 1 и b 3 - с врачом c 2 . Сколькими способами при этих условиях может быть составлена команда корабля?

Решение:

Составим соответствующее «дерево».






Ответ: 10 комбинаций.

Такое дерево является графом и применяется для решения комбинаторных задач.

Рассмотрим задачу подсчета числа выборок из данного множества в общем виде. Пусть имеется некоторое множество N , состоящее из n элементов. Любое подмножество, состоящее из m элементов можно рассматривать без учета их порядка, так и с его учетом, т.е. при изменении порядка переходим к другой m – выборке.

Сформулируем следующие определения:

Размещения без повторения

Размещением без повторения из n элементов по m N , содержащее m различных элементов .

Из определения следует, что два размещения отличаются друг от друга, как элементами, так и их порядком, даже если элементы одинаковы.

Теорема 3 . Число размещений без повторения равно произведению m сомножителей, наибольшим из которых является число n . Записывают:

Перестановки без повторений

Перестановками из n элементов называются различные упорядочения множества N .

Из этого определения следует, что две перестановки отличаются только порядком элементов и их можно рассматривать как частный случай размещений.

Теорема 4 . Число различных перестановок без повторений вычисляется по формуле

Сочетания без повторений

Сочетанием без повторения из n элементов по m называется любое неупорядоченное подмножество множества N , содержащее m различных элементов.

Из определения следует, что два сочетания различаются только элементами, порядок не важен.

Теорема 5 . Число сочетаний без повторений вычисляют по одной из следующих формул:

Пример 1 . В комнате 5 стульев. Сколькими способами можно разместить на них

а) 7 человек; б) 5 человек; в) 3 человека?

Решение: а) Прежде всего надо выбрать 5 человек из 7 для посадки на стулья. Это можно сделать
способом. С каждым выбором конкретной пятерки можно произвести
перестановок местами. Согласно теореме умножения искомое число способов посадки равно.

Замечание: Задачу можно решать, используя только теорему произведения, рассуждая следующим образом: для посадки на 1-й стул имеется 7 вариантов, на 2-й стул-6 вариантов, на 3-й -5, на 4-й -4 и на 5-й -3. Тогда число способов посадки 7 человек на 5 стульев равно . Решения обоими способами согласуются, так как

б) Решение очевидно -

в) - число выборов занимаемых стульев.

- число размещений трех человек на трех выбранных стульях.

Общее число выборов равно .

Не трудно проверить формулы
;

;

Число всех подмножеств множества, состоящего из n элементов.

Размещения с повторением

Размещением с повторением из n элементов по m называется всякое упорядоченное подмножество множества N , состоящее из m элементов так, что любой элемент ожжет входить в это подмножество от 1 до m раз, либо вообще в нем отсутствовать .

Число размещений с повторением обозначают и вычисляют по формуле, представляющей собой следствие из теоремы умножения:

Пример 2 . Пусть дано множество из трех букв N = {a, b, c}. Назовем словом любой набор из букв, входящих в это множество. Найдем количество слов длиной 2, которые можно составить из этих букв:
.

Замечание: Очевидно, размещения с повторением можно рассматривать и при
.

Пример 3 . Требуется из букв {a, b}, составить всевозможные слова длиной 3. Сколькими способами это можно сделать?

Ответ :

Рассмотрим множество А = {а1, а2,..., аn}, содержащее n различных элементов, которое будем называть n-множеством
или генеральной совокупностью объема n. Из n-множества можно образовать его части (подмножества).
Определение. Подмножество, состоящее из m элементов n-множества, называют m-подмножеством n-множества или со-
единением из n элементов по m, или выборкой объема m из генеральной совокупности объема n.
Возможны два способа выбора:

1. Выбор без возвращения, при котором однажды выбранный элемент удаляется из генеральной совокупности. Выборка
(соединение) в этом случае не содержит повторяющихся элементов.

2. Выбор с возвращением, при котором выбор производится каждый раз из всей генеральной совокупности, то есть перед
следующим выбором предыдущий выбранный элемент возвращается в генеральную совокупность. В выборке (соединении) в
этом случае встречаются повторения.

Какие выборки одного и того же объема считать различными и какие одинаковыми, зависит от правил выбора соедине-
ния (подмножества, выборки).
Два соединения могут отличаться либо 1) составом, если они содержат хотя бы по одному различному элементу, либо
2) порядком входящих элементов.
В зависимости от правил выбора соединения делят на три типа: размещения, перестановки, сочетания. В зависимости от
способа выбора (без возвращения или с возвращением) каждый тип соединения может быть без повторений или с повторениями.

2. Размещения без и с повторениями.

Классической задачей комбинаторики является задача о числе размещений без повторений, содержание которой можно
выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n различных предметов?
Также классической задачей комбинаторики является задача о числе размещений с повторениями, содержание которой
можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n предметов,
среди которых есть одинаковые?

Определение. Размещениями из n элементов по m называются соединения из n элементов по m, которые отличаются
друг от друга либо своими элементами (составом), либо порядком их расположения.

На языке теории множеств это звучит следующим образом: размещения из n элементов по m – это упорядоченное
m-подмножество n-множества (упорядоченная m-выборка из генеральной совокупности объема n). Термин «упорядоченная»
означает, что порядок следования элементов в выборке существенен: выборки с одними и теми же элементами, но с разным
порядком их следования различны.

Задача . Пусть имеется множество, содержащее 4 буквы:
{А, B, C, D}. Записать все возможные размещения из 4 указанных букв по две:

а) без повторений;

б) с повторениями.

Решение.

а) Таких размещений 12: (АВ), (AC), (АD), (ВС),(ВD), (BA), (CA), (CB), (СD), (DА), (DВ), (DС). Заметим, что
размещения отличаются порядком входящих в них элементов и их составом. Размещения АВ и ВА содержат одинаковые буквы,
но порядок их расположения различен.
б) Таких размещений 16. К приведенным для случая (а)
размещениям добавляются размещения из одинаковых элементов (АА), (BB), (CC), (DD).

Задача . Пусть имеется множество, содержащее 2 буквы:{A, B}. Записать все возможные размещения с повторениями из
4-х букв.
Решение. Таких размещений 16: (AAAA), (BBBB), (AAAB),(AABA), (ABAA), (BAAA), (AABB), (ABAB), (BABA), (BBAA), (ABBA),
(BAAB), (BBBA), (BBAB), (BABB), (ABBB).

Теорема 3. 3.1 Число различных размещений без повторений из n элементов по m равно

для выборки без возвращения.

3.2 Число размещений с повторениями из n элементов по m равноm (2) для выборки с возвращением.

Доказательство. Для доказательства воспользуемся пра- вилом умножения.

Рассмотрим выборки без возвращения. Для выбора первого элемента имеется n возможностей, второго – (n – 1)

(перед вторым выбором в генеральной совокупности ос- талось (n –1) элементов),..., при m-ом выборе (n – m + 1) воз- можностей.

Таким образом, по правилу умножения

Запишем выражение в более удобном виде, умножив и разделив его на (m – n)!

Считается, что 0! = 1, что позволяет использовать эту формулу для случая m = n.

Рассмотрим выборки с возвращением . Для выбора первого элемента имеется n возможностей, второго – тоже n (перед выбо-
ром очередного элемента предыдущий выбранный элемент зафиксирован и возвращен в генеральную совокупность), при m-м вы-
боре тоже n возможностей. Таким образом .

Задача . В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить четыре фотографии.

Сколькими способами можно это сделать, если ни одна страница газеты не должна содержать более одной фотографии?
Решение . В данной задаче генеральной совокупностью являются 12 страниц газеты, и выборкой без возвращения 4 выбранные из них страницы для фотографий. В данной задаче важно не только то, какие выбраны страницы, но и в каком порядке (для расположения фотографий). Таким образом, задача сводится к классической задаче об определении числа размещений без повторений из 12 элементов по 4 элемента:

Таким образом, 4 фотографии на 12 страницах можно расположить 11880 способами.

Задача . У мальчика остались от набора для настольной игры штампы с цифрами 1, 3 и 7. Он решил с помощью этих
штампов нанести на все книги пятизначные номера – составить каталог. Сколько различных пятизначных номеров может со-
ставить мальчик?
Решение. Можно считать, что опыт состоит в 5-кратном выборе с возращением одной из 3 цифр {1, 3, 7}. Таким образом, число пятизначных номеров определяется числом размещений с повторениями из 3 элементов по 5:

3. Перестановки без повторений
Классической задачей комбинаторики является задача о числе перестановок без повторения, содержание которой можно
выразить вопросом: сколькими способами можно разместить n различных предметов на n различных местах?
Определение. Размещения, в которых участвуют все n элементов генеральной совокупности, называются перестанов-
ками без повторений из n элементов. Перестановки состоят из одних и тех же элементов, но отличаются между собой порядком.

Задача . Пусть имеется множество букв {A, B, C}. Записать все возможные перестановки.
Решение. Этому множеству букв соответствует 6 перестановок: (АВС), (ACB), (BAC), (BCA), (CBA), (CAB).

Теорема . Число перестановок n различных элементов равно n!, т. е. Рn = n!

Доказательство. Так как перестановки являются частным случаем размещений, то при n = m получаем

Замечание. При больших n для подсчета факториала исполь- зуют таблицу логарифмов факториалов либо приближенную формулу Стирлинга

Задача . Сколько можно составить четырехбуквенных «слов» из букв слова «брак»?

Решение . Генеральной совокупностью являются 4 буквы слова «брак» {б, р, а, к}.

Число «слов» определяется перестановками этих 4 букв, т. е. Р4 = 4! = 1 x 2 x 3 x 4 = 24.

Задача . Сколькими способами можно расставить девять различных книг на полке, чтобы определенные четыре книги стояли рядом?

Решение . В исходной генеральной совокупности – 9 разных книг.

Тогда для остальных 6 книг существует Р6 = 6! = 720 перестановок.

Однако четыре определенные книги можно переставить между собой Р4 = 4! = 24 способами.

По правилу умножения имеем Р6 x Р4 = 720 x 24 = 17280.

4. Перестановки с повторениями
Для случая, когда среди выбираемых n элементов есть одинаковые (выборка с возвращением), задачу о числе перестановок с повторениями можно выразить вопросом: сколькими способами можно переставить n предметов, расположенных на
n различных местах, если среди n предметов имеются k различных типов (k < n), т. е. есть одинаковые предметы.

Определение. Перестановками с повторениями называются соединения из генеральной совокупности, каждое из которых содержит n элементов, среди которых элемент

а1 повторяется n1 раз,
а2 повторяется n2 раз,
. . . . . . . . . . . . . . . . . . .
аn повторяется nk раз
n1 + n2 + ... + nk = n
и которые отличаются друг от друга только порядком расположения различных элементов.

Теорема. Число перестановок с повторениями

Доказательство. Доказательство очевидно, так как перестановки одинаковых элементов в перестановке с повторениями не дают новой перестановки.

Задача .

Сколько разных буквосочетаний можно сделать из букв слова «Миссисипи»?

Решение. Здесь 1 буква «м», 4 буквы «и», 3 буквы «c» и 1 буква «п», всего 9 букв.

Следовательно, число перестановок с повторениями равно

5. Сочетания без повторений
Классической задачей комбинаторики является задача о числе сочетаний без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать m из п различных предметов?
Определение. Сочетаниями из n различных элементов по m называются соединения из n элементов по m (m <=n), которые
отличаются друг от друга только составом элементов.

Задача. Пусть имеется множество, содержащее 4 буквы {A, B, C, D}. Запишем все возможные сочетания из указанных
букв по 3.
Решение. Таких сочетаний 4: ABC, ACD, ABD, BCD.
Здесь в число сочетаний не включены, например, АСВ,ВСА, так как они не отличаются по составу от последовательно-
сти букв АВС, потому что перестановка элементов нового сочетания не дает.

Теорема. Число сочетаний из n элементов по m равно

Доказательство.

Вспомним, что и сочетания, и размещения из n элементов по m – это выборки объема m из генеральной совокупности объема n и разница между ними в том, что в случае размещений важен и состав, и порядок элементов, тогда как в случае сочетаний важен только состав элементов. Пусть имеется какое-то одно сочетание. Для того, чтобы образовать все размещения с такими же элементами, нужно осуществить всевозможные перестановки элементов этого сочетания. Поскольку в сочетании m элементов, то существует m! перестановок. Следовательно, одному сочетанию, состоящему из m элементов, соответствует m! размещений с этими элементами. Поэтому

Числа называются биномиальными коэффициентами: они являются коэффициентами в разложении бинома Ньютона

Задача . Необходимо выбрать в подарок 4 из 10 имеющих- ся различных книг. Сколькими способами можно это сделать?

Решение . Генеральной совокупностью является 10 раз- личных книг. Из них нужно выбрать 4, причем порядок выбора книг не играет роли. Нужно найти число сочетаний из 10 элементов по

Задача . Имеется 10 белых и 5 черных шаров. Сколькими способами можно выбрать 7 шаров, чтобы среди них были 3 черных?

Решение . Имеем 15 шаров: 10 белых и 5 черных. Нужно выбрать 7 шаров: 4 белых и 3 черных.

Разобьем 15 шаров на 2 генеральные совокупности:

1) 10 белых шаров;

2) 5 черных шаров.

4 белых шара будем выбирать из I генеральной совокупности, порядок выбора безразличен, их можно выбрать

Способами. 3 черных шара будем выбирать из II генеральной совокупности, их можно выбрать

Способами.

Тогда по правилу умножения искомое число способов равно .

Решение этой задачи можно схематически представить следующим образом

Задача . Десять команд участвуют в розыгрыше первенства по футболу, лучшие из которых занимают 1-е, 2-е и 3-е место.

Две команды, занявшие последние места, не будут участвовать в следующем таком же первенстве.

Сколько разных вариантов результата первенства может быть, если учитывать только положение первых трех и последних двух команд.

Решение . Имеется генеральная совокупность объема 10 команд. Из нее будем выбирать 5 команд в 2 этапа:

1) сначала на первые 3 места из 10 с учетом состава и порядка команд;

2) затем на последние 2 места из оставшихся 7 с учетом только состава (порядок выбывших команд не важен).

Первые 3 места могут быть распределены способами.

Число способов исключить 2 команды из оставшихся 7 равно .

Согласно правилу умножения получаем, что число разных результатов неравенства равно 0.

Задача .

Сколько существует вариантов опроса 11 учащихся на одном занятии, если ни одни из них не будет подверг нут опросу дважды и на занятии может быть опрошено любое количество учащихся, причем порядок, в котором опрашивают- ся учащиеся, безразличен?

Решение .

I способ. Имеется генеральная совокупность объема 11 учащихся. Преподаватель может не опросить ни одного из 11 учащихся, что является одним из вариантов. Этому случаю соответствует . Преподаватель может опросить только одного из учащихся, таких вариантов .

Если преподаватель опросит двух учащихся, то число вариантов опроса . Для опроса трех учащихся существует вариантов и т. д.

Наконец, могут быть опрошены все учащиеся. Число вариантов в этом случае .

Число всех возможных вариантов опроса можно найти по пра- вилу сложения

Решение этой задачи можно схематически представить следующим образом:

II способ. Имеется генеральная совокупность, состоящая из 2 элементов:

{а, в}, где а – ученик опрошен, в – ученик не опрошен на данном занятии.

Опыт состоит в 11-кратном выборе с возвращением одного из элементов этого множества – каждый из 11 учеников либо опрошен, либо не опрошен.

В данной задаче важно не только то, какие выбраны элементы множества (сколько учеников опрошено и сколько нет),

но и в каком порядке (т. е. какой именно ученик опрошен или нет).

Число способов такого выбора определяется числом размещений с повторениями из 2 элементов по 11; .

6. Сочетания с повторениями
Рассмотрим задачу о числе сочетаний с повторениями:
имеется по r одинаковых предметов каждого из n различных типов;

сколькими способами можно выбрать m (m <= r) из этих (n x r) предметов?

Определение . Сочетаниями с повторениями называются соединения из n элементов по m (выбор с возвращением m элементов), которые отличаются только составом и при этом отдельные соединения могут содержать повторяющиеся элементы.

Задача . Имеются 2 буквы А, 2 буквы В, 2 буквы С. Сколькими способами можно выбрать две из этих шести букв?
Решение. Существует 6 способов выбора 2 букв из 6 с повторениями: (АА), (AB), (AC), (BC), (BB), (CC). Порядок следо-
вания букв не учитывается.

Теорема . Число сочетаний с повторениями равно

Доказательство. Пусть имеются предметы n различных типов. Сколько соединений по m элементов можно из них сделать, если не принимать во внимание порядок элементов. Расположим в каждом сочетании элементы по типам (сначала все элементы 1-го типа, потом 2-го и т. д.). После этого перенумеруем все элементы в сочетании, но к номерам элементов второ- го типа прибавим 1, третьего типа – 2 и т. д. Тогда из каждого сочетания с повторениями получится сочетание без повторений, состоящее из чисел 1, 2,..., n + m – 1, причем в каждое сочетание входит m элементов.

Отсюда следует, что

Задача . В технической библиотеке имеются книги по ма- тематике, физике, химии и т. д., всего по 16 разделам науки.

Поступили очередные 4 заказа на литературу. Сколько сущест- вует вариантов такого заказа?

Решение. Так как 4 заказанные книги могут быть и из одно- го раздела науки, и из разных разделов, при этом порядок выбора разделов не важен, то число вариантов заказа определяется чис- лом сочетаний с повторениями из 16 элементов по 4, т. е.

Задача . В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?

Решение . Очевидно, что порядок, в котором выбираются пирожные, не существен, причем в комбинации могут входить повторяющиеся элементы (например, можно купить 7 эклеров). Следовательно, число способов покупки 7 пирожных определяется числом сочетаний с повторениями из 4 элементов по 7, т. е

7. Комбинаторика разбиений

Рассмотрим в этом классе задач две следующие задачи:

1. Даны n различных предметов и k различных групп. Сколькими способами можно распределить n различных предметов по k различным группам, если допускаются пустые группы. Ниже покажем, что число способов равно k^n .

2. Даны n различных предметов и k различных групп. Сколькими способами можно распределить n различных пред- метов по k группам, если в первой группе n1 предметов, во второй – n2 , в k-й – nk , где n1 + n2 +... + nk = n . Ниже покажем, что число способов равно

Рассмотрим решение первой задачи. Пусть генеральной совокупностью будет k различных групп {1, 2,..., k}. Можно считать, что опыт состоит в n-кратном выборе с возвращением номера группы для каждого предмета. Заметим, что поскольку предметы разные, то важно не только, какие группы выбираются для предметов, но и в каком порядке выбираются эти группы. Таким образом, число способов раз- бить n различных предметов на k групп определяется числом размещений с повторениями и k элементов по n:

Рассмотрим решение второй задачи.

Разбиение n предметов по k группам можно выполнить следующим образом. Сначала положим все n предметов в ряд. После этого возьмем первые n1 предметов и поместим их в первую группу, вторые n2 предмета – во вторую группу, ..., последние nk предметов в k-ю группу. Ясно, что меняя положение предметов в ряду, можно получить всевозможные разбиения предметов. Так как число перестановок из n элементов равно n!, то число расположения предметов в ряд равно n! При этом заметим, что любая перестановка первых n1 предметов ничего не меняет, так же как и вторых n2, ..., и последних nk. В силу правила произведения получим n1!n2!...nk! перестановок предметов, не меняющих результата раздела. Таким образом, число способов разбиения на группы равно

Формула совпадает с формулой для числа перестановок с повторениями. К этому же результату можно прийти иначе. Первые n1 предметов выбираем из n предметов. Так как порядок выбранных предметов безразличен, то имеет выборов. После этого следующие n2 предмета выбираем из оставшихся n – n1. Это можно сделать способами, и т. д.

Наконец, последние nk предметов выбираем из оставшихся nk. Это можно сделать , т. е. единственным способом. По правилу произведения получаем, что число способов разбиения на группы равно

Как видим, задачи о разбиениях привели к уже известным формулам комбинаторики.

Задача. 7 одинаковых шариков случайным образом рас- сыпаются по 4 лункам (в одну лунку может поместиться любое число шаров). Сколько существует различных способов распре- деления 7 шариков по 4 лункам?

Решение. Мы имеем 7 шариков, которые распределяем по 4 лункам (лунки могут быть пустые), т. е. это соответствует первой задаче о разбиениях, число способов равно 4^7 = 16348

Задача. При игре в домино 4 игрока делят поровну 28 костей. Сколькими способами они могут это сделать?

Решение. Это задача о разделе 28 костей между 4 игрока- ми по 7 костей. Используя полученную выше формулу для числа способов такого раздела (задача 2), имеем

8. Рекомендации по решению задач
Решение комбинаторных задач представляет известную трудность для начинающих. Причин много, но одна из них очевидна – при изложении комбинаторики используется своя специфическая терминология (генеральная совокупность, выборка, правила выбора). В задаче же этих терминов, как правило, нет –сформулирована она на обычном литературном языке и комби-

наторные понятия присутствуют в ней в неявной форме. Поэтому после усвоения содержания задачи нужно ее «перевести»
на математический язык.
Для этого необходимо выяснить,
1) что является генеральной совокупностью - она всегда будет присутствовать в задаче, т. е. комбинаторные задачи свя-
заны с выбором объектов, а этот выбор из чего-то (генеральной совокупности) производится; каков объем генеральной сово-
купности;
2) одна или несколько генеральных совокупностей;
3) что является выборкой и каков объем выборки;
4) правила выбора: допустимы или нет повторы, важен ли порядок выбираемых элементов, возможно ли изменение состава.
После этого полезно для себя переформулировать задачу на языке генеральных совокупностей и выборок. В зависимости
от ситуации выбрать нужную формулу (см. таблицу). Иногда в более сложных задачах приходится использовать совместно не-
сколько формул.

В заключение приведем основные свойства чисел .

Прежде всего, построим таблицу таких чисел, используя формулу (3.11).

Таблица чисел имеет треугольную форму и называется треугольником Паскаля по имени математика Блеза Паскаля (1623-1662). Анализируя треугольник Паскаля, легко видеть основные свойства чисел .

Свойства 1 – 2 вытекают из определения сочетания как подмножества, содержащего m элементов множества, имеющего n элементов.

Свойства 3 – 5 доказываются методом математической индукции.

В силу свойства 4 треугольник Паскаля легко продолжить вниз на любое число шагов.

рис 3.2 схема определения вида расстановок и выбора формул