Правильное сочетание процессов умягчения воды. Специальные методы для улучшения качества воды

Правильное сочетание процессов умягчения воды. Специальные методы для улучшения качества воды

Статья № 118

Процессы для умягчения воды


Процессы для умягчения воды


Большое количество информации порождает бессмыслицу и запутанность. Проблема, вместо того, чтобы быть решенной перерастает в дилемму. Это утверждение особенно справедливо для ситуации, сложившейся с жесткой водой и в тот момент, когда нужно определить процессы для умягчения воды . Что делать: проводить удаление накипи в котле или жесткая вода все-таки может быть использована? Наверное, ответ будет положительным и средство от накипи применять нужно. Ведь доказано, что известковый налет и отложения часто наносят сильный вред санитарной и бытовой технике.
С другой стороны есть информация о том, что, мол, даже вода из родников потому и вкусная, что там содержатся ионы кальция и магния (именно они, как вы помните, являются главной причиной образования накипи). Также многие врачи заявляют, что в нашей стране у каждого человека наблюдается недостаток кальция и магния в организме, что пагубно для здоровья и ведет к нарушениям в костной системе. Известно также, что именно вода, насыщенная «накипными» солями, является основным источником, из которого можно получить необходимые человеку вещества. Но, при этом, процессы для умягчения воды всё же необходимы.
С одной стороны умягчение воды будто бы не требуется, а с другой – как же тогда уберечь бытовую технику? Между тем, примеров удивительных свойств применения мягкой воды огромное множество: только из мягкой воды готовят чешское пиво лучших сортов, а чай и кофе становятся более ароматными и вкусными. Если вы были в турецком отеле, то наверняка помните, насколько ваша кожа была приятна на ощупь после посещения душа. Это происходит потому, что там используется умягчитель воды для котла и труб .
Перейдем от теории к практике. В России один человек в среднем расходует на себя около 300-400 литров воды, из которых основная часть приходится на бытовые нужды, и только около 5-10 литров мы тратим на приготовление пищи. Что касается питья, то здесь цифры еще меньше – мы выпиваем всего 1-2 литра.
В связи с этим напрашивается будто бы единственное правильное решение – для питьевой воды приобретать жесткую воду (покупать в бутылках), а для техники использовать умягчитель воды. Пожалуй, это самое лучший способ, который позволит избежать постоянных технических поломок, облегчит и разгрузит систему водоснабжения от заторов и позволит сэкономить на моющих средствах. Но сделать это не так легко, как кажется, особенно в нашей стране. Процессы для умягчения воды бывают разными.
Конечно, коммунальные службы делают все возможное для того, чтобы предварительно очистить воду, но, по сути, от них мало что зависит, их умягчение воды лишь поверхностное. Жесткая вода поступает в квартиры граждан практически напрямую, не проходя необходимой очистки. Ни одно средство от накипи при этом не используется.
Совсем другая ситуация сложилась в зарубежных странах, где процесс поступления воды и очистка от накипи очень хорошо организованы. На Западе водоподготовка продумана до мелочей, ведь там действительно очищают воду, но далеко не всю. Разводка коммуникаций проектируется таким способом, что мягкая вода подается лишь в систему горячего водоснабжения. Это позволяет увеличить срок службы котла и минимизирует производимые затраты.
Очистка от накипи котла и теплообменника , этот процесс умягчения воды происходит благодаря тому, что в котловый контур поступает умягченная вода. При этом вода, находящаяся в системе холодного водоснабжения, не подвергается обработке – жесткая вода подается в первозданном виде. Но здесь есть одна хитрость. Дело в том, что поступающая горячая вода смешивается с холодной и дает на выходе 1,5-2 мг-экв/л. Однако такое средство от накипи используется не всегда. К примеру, для воды в сливных бочках унитаза, а также воды, предназначенной для полива газонов, обработка не применяется.
Итак, с теорией и заграничной практикой по проведению процессов для умягчения воды и комплекса таких действий, как водоподготовка, мы знакомы. Что же делать нам, в наших российских условиях для того, чтобы как можно более эффективно и без особых затрат добиться, чтобы происходило естественное удаление накипи и снижение жёсткости воды ?

Сочетание процессов для умягчения воды

Для этого, в первую очередь, желательно быть в курсе того, какова жесткость именно вашей воды. Если хотите узнать, то сделать это так просто не получится – придется отнести анализ воды на пробу в специальную лабораторию, где определяют пригодность воды. Существует классификация, согласно которой, вода с жесткостью 1,5-3 мг-экв/л считается мягкой, с показателями в 3-6 мг-экв/л – умеренно жесткой. Действительно жесткая вода содержит от 6 до 9 мг-экв/л катионов солей. В соответствии с ГОСТ – вода, которая поступает из крана, должна содержать 7 мг-экв/л катионов солей. Сочетание процессов для умягчения воды позволит максимально снизить жёсткость.
Следует заметить, что этот параметр – 7 мг-экв/л выводился без учета потребностей людей, исходя из времени выхода из строя труб. Трубопроводная система изнашивается гораздо быстрее при воде с жесткостью выше 7 мг-экв/л. Получается, что все существующие нормы были введены, во избежание зарастания известью и предупреждения скорого вывода трубопровода из строя.
Однако чтобы не мучить себя, нужен ли вам умягчитель воды, можно определить уровень содержания солей на глаз. Однако, это не так эффективно, как сочетание процессов для умягчения воды, например с разными средствами от накипи. От жесткой воды на душевом рассеивателе остается известковый налет, а кожа после водных процедур часто сохнет, шелушится, становясь при этом грубой. Количество накипи, которая остается после кипячения воды в чайнике, ни о чем не говорит, поскольку она остается даже при использовании умягченной воды.
Возвращаемся к поставленной проблеме: как же решить ее наиболее эффективным образом – так, чтобы сэкономить финансы и уберечь технику?
На данный момент существует множество способов по проведению такой процедуры, как водоподготовка. Самым простым из них всегда было и остается обычное кипячение. Такое умягчение воды эффективно при карбонатной жесткости (временная жесткость). Гидрокарбонат при термическом воздействии выпадает в осадок, выделяется углекислый газ. Данный метод используют не только в быту, но и в промышленности. Он особенно результативен при наличии дарового тепла.
Помимо этого, иногда используются реагентные методы. В процессе умягчения воды и воздействия химвеществ соли кальция переводятся в нерастворимые соединения, которые впоследствии образуют осадок. Сфера применения – станции муниципальной подготовки воды. Удаление накипи происходит при добавлении гашеной извести и соды. Это устраняет мутные взвеси, а также способствует умягчению воды.
Однако, сочетание процессов для умягчения воды и воздействие реагентами имеет весомые недостатки, которые не позволяют использовать этот метод в домашних условиях. Во-первых, нужна точная дозировка веществ. Во-вторых, их надо где-то хранить. В-третьих, очистка от накипи оставляет большое количество твердых отходов.
В древности воду смягчали, добавляя в нее печную золу. Не менее эффективный способ – добавление соды, в пропорциях 1-2 чайные ложки на ведро воды. Это, конечно, решает проблему, но не в таких масштабах, в каких нам нужно. Плюс ко всему, это требует времени и наличия необходимых элементов. Мы же выяснили, что человек потребляет около 300 литров воды в день – а это много для того, чтобы каждый раз добавлять в воду соду, кипятить ее или смешивать с золой.
Следующими способами являются электродиализ и обратный осмос. Методы используются при обессоливании, смягчении и подготовке воды к питью. Довольно широко используется способ умягчения воды, основанный на ионообменных смолах, в ходе которого происходит обмен «жестких» ионов на ионы натрия смолы. Регенерация смолы, полученной в ходе ионного обмена, осуществляется при использовании раствора поваренной соли. Импортные смягчители изготовлены в виде напорного бака, имеющего высокую прочность. Ионообменная смола находится внутри такого баллона.
Сейчас существует множество различного оборудования, предназначенного для умягчения воды. Однако наиболее мобильным, эффективным и практически безотходным являются электромагнитные умягчители. По сравнению с теми же процессами для умягчения воды и осмосными и ионообменными установками, они гораздо дешевле, компактнее и не создают никакого шума, а также не имеют побочных эффектов. Важный параметр – это время очистки и объем воды, который может быть очищен за определенный промежуток времени. По сравнению с существующими аналогами, электромагнитный умягчитель и здесь показывает самые лучшие результаты. Сочетание процесса для умягчения воды с другими процессами, даёт наилучший результат.

Высокий уровень жесткости провоцирует образование накипи, ухудшает эффективность моющих средств. В таких неблагоприятных условиях возрастает риск повреждения функциональных компонентов отопительного оборудования, иной техники. Увеличиваются эксплуатационные расходы, затраты на выполнение санитарно-гигиенических правил.

Современные производители предлагают разные способы умягчения воды и соответствующие комплекты оборудования. Выбрать оптимальный вариант будет не сложно после ознакомления с данной публикацией. Здесь есть полезные данные, которые помогут недорого и быстро реализовать проект.

Основные определения

Общий уровень жесткости определяется, как сумма постоянной и временной компоненты. Как правило, первая часть имеет небольшое практическое значение, поэтому ее можно исключить из обзора. Вторая определяется концентрацией катионов магния и кальция. Эти химические вещества при нагреве преобразуются в нерастворимый осадок – накипь.

Именно они засоряют технические протоки, что сопровождается ухудшением производительности котлов. Такие образования отличаются пористостью, низкой теплопроводностью. При накоплении на поверхности ТЭНа этот слой блокирует нормальный отвод тепла. Если не применить эффективный способ умягчения жесткой воды, стиральная машина или другая техника с нагревательным элементом будет выведена из строя из-за накипи.

На практике решают вопросы уменьшения уровня жесткости, либо полное устранение вредных явлений. Второй вариант лучше! Он предполагает надежную защиту дорогих изделий, эффективную профилактику с предотвращением аварийных ситуаций.

Способ 1: Нагрев

Принцип действия этих способов умягчения воды понятен из общего определения. Каждый человек знает, что при кипячении (нагреве) на стенках чайника активно формируется слой накипи. После завершения процедуры жесткость будет снижена.

Теоретическая простота способа является единственным преимуществом. Детальное изучение вопроса позволяет выявить следующие недостатки:

  • длительность процесса;
  • небольшое количество жидкости, которое можно обработать в бытовых условиях;
  • значительные затраты на электроэнергию, газ, другие виды топлива.

Следует не забывать, что на финишном этапе приходится удалять прочную накипь. Это – трудоемкие рабочие операции, которые способны испортить рабочую емкость.

Способ 2: Обработка электромагнитным полем

Из приведенных описаний можно сделать промежуточный вывод. Для удаления вредных соединений с применением химических средств, ионным обменом, кипячением и мембранной фильтрацией приходится решать сложные инженерные задачи. Об этом будет написано ниже. Соответствующим образом увеличиваются затраты. Полифосфатные соединения действуют эффективнее. Они стоят недорого, но надежно блокируют негативный процесс. Метод можно признать идеальным, если бы не загрязнение жидкости.

В технологии электромагнитной обработки нет перечисленных недостатков. Воздействие сильным полем изменяет форму частиц накипи. Созданные игольчатые выступы не позволяют им соединятся в крупные фракции. Этим блокируется процесс образования накипи.

Чтобы получить поле оптимальной мощности и конфигурации применяют высокочастотный генератор электромагнитных колебаний. Он работает по специальному алгоритму, который не вызывает эффект «привыкания». Снижение положительного воздействия наблюдается при работе с постоянными магнитами.

В ходе изучения актуальных предложений рынка следует обратить внимание на современные качественные модели устройств электромагнитной обработки воды:

  • выполняют свои функции с минимальным потреблением электроэнергии (5-20 Вт/час).
  • Катушку создают из нескольких витков провода. Прибор включают в сеть. Дополнительная настройка не нужна.
  • Дальность действия достигает 2 км, чего достаточно для защиты объекта в целом.
  • Долговечность устройств превышает 20 лет.

В любом случае надо выбирать производителя, который обладает солидным опытом в профильной области деятельности!

Химические способы умягчения воды

Хорошо известная профильным специалистам методика – добавление в раствор гашеной извести. Химические реакции связывают молекулы кальция и магния с последующим образованием нерастворимого осадка. По мере накопления на дне рабочего резервуара его удаляют. Мелкие взвешенные частицы задерживают через фосфатный способ. Аналогичную технологию применяют для снижения некарбонатной составляющей с помощью соды.

Главным недостатком этого и других способов данной категории является загрязнение жидкости химикатами. Чтобы такая обработка была безопасной, приходится точно соблюдать оптимальные дозировки, тщательно контролировать все важные этапы. Качественное воспроизведение технологии в домашних условиях не представляется возможным без чрезмерных трудностей и затрат. Ее используют на муниципальных и коллективных станциях водоподготовки профессиональной категории.

Впрочем, одна «химическая» методика стала популярной именно в быту. Исследователи обнаружили, что полифосфатные соединения образуют оболочки вокруг мельчайших нерастворимых фракций. Они препятствуют объединению в крупные частицы, присоединению к стенкам труб и внешним поверхностям нагревательных приборов.

Этим полезным свойством пользуются производители фосфатных стиральных порошков. Также применяют специализированные проточные емкости, в которые помещают полифосфатные соли. Устройства монтируют на входном патрубке перед котлами и стиральными машинами. Способ не подходит для приготовления питьевой воды.

Фильтрация

Нужный эффект можно получить, если уменьшить размеры ячеек до величины молекул. Такие микроскопические протоки создают в мембранах обратного осмоса. Они способны пропускать только чистую воду. Загрязненная жидкость скапливается перед преградой, удаляется в дренаж.

Задача решена? Не следует делать поспешные выводы. Методика фильтрации действительно хороша, но только для обработки 180-220 литров/сутки. Такова производительность серийных с разумной стоимостью. Этого количества не хватит для однократного приема душа, удовлетворения других бытовых потребностей.

Чтобы увеличить производительность несколько мембран устанавливают параллельно. Для функционирования комплекта приходится поднимать давление специальной насосной станцией. Подобное оборудование для фильтрации воды стоит дорого, занимает много места.

Умягчение воды ионообменным способом

Снижают первичные и эксплуатационные расходы с помощью техники этой категории. Применяют особую засыпку, которая задерживает ионы кальция и магния. Одновременно происходит заполнение жидкости безвредными соединениями натрия.

Преимущества приведены в следующем списке:

  • Кроме солоноватого привкуса не меняются в худшую сторону исходные характеристики воды.
  • После обработки определенного количества жидкости полезные функции засыпки восстанавливают промывкой и регенерацией.
  • Эти процедуры выполняются неоднократно в автоматическом режиме, без тщательного контроля и вмешательства со стороны пользователя.
  • При соблюдении правил эксплуатации засыпка из смол сохраняет работоспособность более шести лет.

Необходимо подчеркнуть доступность регенерационной смеси. Это – недорогой раствор обычной поваренной соли (хорошей очистки).

Как и ранее, приведем нюансы, которые заслуживают упоминания для полноценного анализа умягчения воды ионообменным способом:

  • Ионообменный способ умягчения воды прерывает снабжение объекта при регенерации (длительность более часа). Чтобы устранить такой недостаток устанавливают параллельно две функциональные емкости.
  • Комплект с высокой производительностью для семьи из 2-3 человек занимает несколько кв. метров площади.
  • Работа издает сильный шум в процессе промывки, поэтому нужна эффективная звуковая изоляция помещения.
  • Каждое существенное изменение уровня жесткости необходимо корректировать ручной настройкой.
  • Хорошо оснащенный набор с блоком автоматики и несколькими рабочими баками стоит дорого.

Ультразвуковое воздействие

Обработку колебаниями соответствующего диапазона частот применяют для снижения уровня жесткости. Одновременно разрушается слой старой накипи, что пригодится для очистки труб без агрессивных химических соединений.

Ультразвук с профессиональными предосторожностями применяют для очистки и защиты промышленного оборудования. Крупные элементы этих конструкций и резьбовые соединения обладают лучшей устойчивостью к сильным вибрационным воздействиям.

Какие способы умягчения воды подходят для разных объектов недвижимости?

Оптимальную методику выбирают с учетом реальных условий будущей эксплуатации. Опытные специалисты советуют создавать общий проект с механическими и другими фильтрами для точного согласования всех функциональных компонентов.

В городской квартире можно рассчитывать на поддержание приемлемого качества жесткой воды. Соответствующие обязательства указаны в договоре со снабжающей организацией. Однако в домашних условиях не исключены аварии на магистральных трассах, броски давления. Для защиты от этих негативных воздействий на входе устанавливают фосфатный или механический фильтр с регулятором напора и контрольными манометрами. Надо подчеркнуть преимущества электромагнитного преобразователя с учетом особенностей объектов данной категории:

  • компактность;
  • небольшой вес;
  • отсутствие шумов;
  • симпатичный внешний вид.

Для автономного загородного водоснабжения расчетливые собственники предпочитают пользоваться артезианской скважиной. Такой источник обеспечивает высокую степень очистки природной фильтрацией. Но на большой глубине увеличивается концентрация примесей, вымытых из горных пород. Среди них – соединения солей в достаточно большой концентрации.

В частном доме проще найти свободное место для технологического оборудования. Здесь можно устанавливать комплекты для умягчения воды ионообменным способом. В помещение проводят необходимые инженерные сети. Надо не забывать о хорошей изоляции. Необходимо поддерживать установленный производителем температурный режим. Следует удалить хлорные и другие химические соединения, способные повредить действующую засыпку.

» и перейти дальше, осталось разобраться с одним-единственным оставшимся способом умягчения воды как такового. Он называется «термический способ умягчения воды «. Естественно, останутся другие технологии, например, технология обратного осмоса или нанофильтрации, которые также работают с жёсткостью воды. Но именно на специфических способах борьбы именно с жёсткой водой мы закончим подраздел .

Термический способ умягчения воды — это способ, при котором из воды удаляетя временная жёсткость (подробнее про временную жёсткость — в статьях «Жёсткая вода » и « «) с помощью нагрева воды. То есть, для умягчения применяются именно те процессы, которые приводят к образованию накипи в обычных условиях. Другими словами, образование накипи тут — желательное явление.

На самом деле термическим способом умягчения воды вы пользуетесь почти что с детства — как раз с того возраста, когда вы научились ставить чайник на огонь. Другими словами, когда вы кипятите воду в чайнике, вы делаете так, чтобы часть солей жёсткости выпадала в осадок в виде накипи на чайнике. В результате вы пьёте чай с более мягкой водой, чем течёт из крана.

Соответственно, может возникнуть вопрос: «А сколько нужно времени кипятить воду, чтобы достичь нужного уровня мягкости воды?» Для того, чтобы ответить на него, нужно немного подумать.

Так, растворимость солей жёсткости падает с ростом температуры. Соответственно, чем выше температура, тем быстрее они выпадут в осадок. И чем дольше происходит обработка, тем полнее будет термическое умягчение воды. Соли жёсткости выпадают в осадок при нагревании по реакции (на примере гидрокарбоната кальция):

С точки зрения химического равновесия, чем быстрее будет улетучиваться углекислый газ, тем быстрее будут выпадать в осадок соли жёсткости. То есть, первый практический совет:

При термическом способе умячгения воды не полностью закрывайте крышку чайника (кастрюли), чтобы углекислый газ мог свободно улетучиваться.

Соответственно, если вы оставляете крышку закрытой, то углекислый газ не может свободно улетучиваться и замедляет скорость выпадения солей жёсткости в осадок. С другой стороны, полностью открытая ёмкость при кипячении приведёт к быстрому испарению воды, что не очень хорошо, поскольку при этом растёт общее содержание солей и вкус воды ухудшается.

Таким образом, нужно найти оптимальное положение крышки на чайнике для вашей собственной жёсткой воды.

Далее, второе следствие из реакции термического осаждения солей жёсткости с точки зрения химического равновесия — чем больше солей жёсткости (т.е. чем выше жёсткость воды), тем быстрее будет происходить выпадение в осадок. То есть, практический вывод таков:

если у ваша вода имеет жёсткость меньше 4 мг-экв/л (4 ммоль/л), то термически умягчать такую воду не стоит.

Всё потому, что осаждение солей жёсткости будет происходить слишком медленно, и испариться слишком много воды, отчего вкус её может ухудшиться (что для себя определяет каждый отдельно взятый человек, поскольку на вкус и цвет товарища нет).

Конечно, мы обещали назвать точное время, за которое все соли жёсткости выпадут в осадок. К сожалению, так просто называть это время нельзя, потому что очень сложно учесть все параметры — и температуру воды, и жёсткость воды, и то, насколько открыта крышка, и как много в воде углекислого газа и т.д.

Кстати, помимо этих химических параметров важен ещё один — площадь поверхности .

Так, чем больше площадь поверхности, на которой может образовываться накипь, тем полнее произойдёт термическое умягчение воды.

И, если вы пользуетесь чайником, и площадь его стенок и дна, контактирующая с водой, составляет 30 квадратных сантиметров, то вы получите минимально возможное при остальных усовиях умягчение. Но если вы увеличите площадь поверхности, контактирующей с водой, вдвое — примерно так же вырастет эффективность умягчения воды, а, значит, и времени обработки.

Также нужно учитывать, что если вы только начали умягчать воду термически в новом чайнике, то за счёт того, что на гладкой поверхности солям жёсткости менее «удобно» кристаллизоваться, то по-началу умягчение будет происходить не так эффективно, как в последствии, когда на стенках образуется хороший слой накипи.

Мы можем назвать примерное время термического умягчения воды для жёсткости в районе 7 мг-экв/л. Это время составляет 2-3 минуты (без учёта дополнительной площади поверхности и с толстым слоем накипи).

Соответственно, должен возникнуть вопрос: «А как можно самостоятельно определить, сколько нужно кипятить воду для её умягчения?» Ответ на этот вопрос прост:

для определения длительности термического умягчения воды нужно провести эксперимент.

Эксперимент будет состоять в том, что вы одинаковый обЪём воды (например, стакан) будете кипятить разное время (в чайнике с примерно одинаковым слоем накипи и площадью поверхности). И оценивать вкус получившейся кипячёной и охлаждённой воды. Охладить воду до комнатной температуры перед пробой нужно обязательно, поскольку вкус горячей воды человек распознаёт очень плохо.

Также нужно учесть, что кипевшая определённое время вода, разлитая в последствии по ёмкостям для охлаждения, должна быть закрыта! Иначе в воде растворится кислород, что изменит вкус воды — будет ощущаться вкус кислорода (сладковатый), а не собственно мягкой воды.

При дегустации нужно иметь контрольный стакан — с исходной, некипячёной водой. Воду глотать необязательно, достаточно её подержать во рту, а потом выплюнуть. После каждой пробы воды полощите рот исходной, термически не умягчённой водой. Свои ощущения записывайте — разница может быть настолько тонка, что будет теряться после нескольких повторов.

Например, процедура дегустации воды после термического умягчения для определения оптимального времени воздействия такова:

  1. Попробовать воду из одного стакана и записать баллы вкуса для этого стакана.
  2. Прополоскать рот исходной неумягчённой термически водой.
  3. Попробовать второй стакан и записать баллы вкуса для него.
  4. Прополоскать рот неумягчённой водой

И т.д., сделав минимум по три повтора. В итоге каждая умягчённая проба будет иметь минимум по три оценки. Выводится среднее значение и выбирается оптимальное время!

Определение времени термического умягчения воды можно сделать более точным. Для этого понадобится прибор — TDS-метр, или солемер. Этот прибор измеряет, каково общее содержание солей в воде (в том числе солей жёсткости). Соотвественно, если после термического способа умягчения воды соли жёсткости частично выпали в осадок, то прибор покажет уменьшение общего содержания солей.

Кроме того, поскольку прибор меряет не жёсткость воды, а именно общее содержание солей, то можно определить тот момент, когда кипячение не сколько убирает временную жёсткость воды, сколько увеличивает общее содержание солей за счёт испарения воды.

Естественно, показания прибора лучше всего проверить на вкус — а то мало ли что он показывает 🙂

При покупке солемера нужно приобретать прибор с температурным компенсатором. Иначе в воде разной температуры, но одинакового содержания солей он будет давать разные значения. Ну и вообще солемер — это полезный прибор, им можно определять не только эффективность термического умягчения воды, но и эффективность работы для воды вообще.

Кстати, важное замечание: если вы пользуетесь фильтром для питься с ионообменной смолой или фильтром, работающим по технологии нанофильтрации или обратного осмоса, или дистиллятором или ещё каким-нибудь фильтром, значительно уменьшающим общее содержание солей или жёсткость воды, то в термическом способе умягчения воды нет необходимости.

Итак, термический способ умягчения воды доступен каждому — остаётся лишь выбрать оптимальную длительность умягчения.

Жёсткость воды - совокупность химических и физических свойств воды, связанных с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния. Вода с большим содержанием таких солей называется жёсткой, с малым содержанием - мягкой. Различают временную жёсткость, образованную гидрокарбонатами и постоянную жёсткость, вызванную присутствием других солей.

Известно, что важнейшей характеристикой пресной воды является её жесткость. Под жесткостью понимают количество миллиграмм-эквивалентов ионов кальция или магния в 1 л воды. 1 мг÷экв/л жесткости соответствует содержанию 20,04 мг Са2+ или 12,16 мг Mg2+. По степени жесткости питьевую воду делят на очень мягкую (0–1,5 мг÷экв/л), мягкую (1,5–3 мг÷экв/л), средней жесткости (3–6 мг÷экв/л), жесткую (6–9 мг÷экв/л) и очень жесткую (более 9 мг÷экв/л). Наилучшие вкусовые свойства имеет вода с жесткостью 1,6–3,0 мг÷экв/л, а, согласно СанПиН 2.1.4.1116–02, физиологически полноценная вода должна содержать солей жесткости на уровне 1,5–7 мг÷экв/л. Однако при жесткости воды выше 4,5 мг÷экв/л происходит интенсивное накопление осадка в системе водоснабжения и на сантехнике, нарушается работа бытовых приборов. Обычно умягчение проводят до остаточной жесткости 1,0–1,5 мг÷экв/л, что соответствует зарубежным нормативам по эксплуатации бытовой техники. Вода, имеющая жесткость ниже 0,5 мг÷экв/л является коррозионно-активной по отношению к трубам и котлам, способна вымывать отложения в трубах, накапливающиеся при долгом застаивании воды в системе водоснабжения. Это влечет за собой появление неприятных запаха и вкуса воды.

осуществляют методами: термическим, основанным на нагревании воды, её дистилляции или вымораживании; реагентными, при которых находящиеся в воде ионы Са (II) и Mg (II) связывают различными реагентами в практически нерастворимые соединения; ионного обмена, основанного на фильтровании умягчаемой воды через специальные материалы, обменивающие входящие в их состав ионы Na (I) или Н (I) на ионы Са (II) и Mg (II), содержащиеся в воде; диализа; комбинированным, представляющим собой различные сочетания перечисленных методов.

Выбор метода умягчения определяется качеством воды, необходимой глубиной умягчения и технико-экономическими соображениями, представленными в таблице снизу.

натрий-катионирование - процесс извлечения из воды ионов жесткости - кальция и магния и замена их на ионы натрия.
Кальций и магний составляют жесткость воды, следовательно, после их извлечения вода умягчается.
Ионы натрия находятся непосредственно в смоле (засыпке). В процессе работы установки происходит обмен ионами, натрий поступает в воду, а кальций и магний - в смолу. По истечении некоторого времени смолу необходимо регенерировать, т.е. восстановить ее свойства. Для этого через нее пропускают раствор поваренной соли, и происходит обратный процесс - натрий насыщает смолу, а кальций и магний поступают в раствор, который после сливается.

При пропуске воды сверху вниз через слой катионита происходит её умягчение, заканчивающееся на некоторой глубине. Слой катионита, умягчающий воду, называют работающим слоем или зоной умягчения. При дальнейшем фильтровании воды верхние слои катионита истощаются и теряют обменную способность. В ионный обмен вступают нижние слои катионита и зона умягчения постепенно опускается. Через некоторое время наблюдаются три зоны: работающего, истощенного и свежего катионита. Жесткость фильтрата будет постоянной до момента совмещения нижней границы зоны умягчения с нижним слоем катионита. В момент совмещения начинается «проскок» катионов Са+2 и Мg+2 и увеличение остаточной жесткости, пока она не станет равной жесткости исходной воды, что свидетельствует о полном истощении катионита. Рабочую обменную емкость фильтра Ер г÷экв/ м3, можно выразить так: Ер = QЖи; Ер = ер Vк.

Объем загруженного в фильтр катионита в набухшем состоянии Vк = аhк.

Формула для определения рабочей обменной емкости катионита, г÷экв/ м3: ер = QЖи /аhк; где Жи - жесткость исходной воды, г÷экв/ м3; Q - количество умягченной воды, м3; а - площадь катионитового фильтра, м2; hк - высота слоя катионита, м.Обозначив скорость фильтрования воды в катионитовом фильтре vк, количество умягченной воды можно найти по формуле: Q = vк aTk = ераhк /Жи; откуда длительность работы катионитового фильтра (межрегенерационный период) находим по формуле: Tk = ерhк /vк Жи.

По исчерпании рабочей обменной способности катионита его подвергают регенерации, т.е. восстановлению обменной емкости истощенного ионообменника путем пропуска раствора поваренной соли.

Ионообменные смолы нашли широкое применение во всем мире в устройствах по водоочистке. Это мелкие шарики из полимерных материалов, насыщенных ионами, способные изымть из воды различные ионы, взамен отдавая свои; их для удобства назвали "ионообменными смолами", хотя правильное научное название их - "иониты". По структуре иониты подразделяются на гелевые способные к ионообмену только в набухшем состоянии, макропористые и промежуточной структуры. Если иониты обменивают анионы - это аниониты, если катионы - катиониты.

Аниониты классифицируются как сильноосновные (обмен анионов происходит при любых значениях рН), слабоосновные (обмен анионов из кислот - рН 1-6), смешанной активности. Катионоты бывают сильной кислотности, способные к ионообмену при любых значениях рН, и слабокислотные при рН больше 7.

Приведем характеристики некоторых катионоообменников. Среди сильнокислотных катионообменников отечественного производства, разрешенных к применению для хозяйственно-питьевого водоснабжения, можно выделить КУ-2–8чС. Получают его сульфированием гранульного сополимера стирола с 8% дивинилбензола. КУ–2–8чС по структуре и свойствам близок к следующим зарубежным сульфокатионитам особой степени чистоты: амберлайту IRN-77 (США), зеролиту 325 NG (Англия), дауэксу HCR-S-Н (США), дуолайту ARC-351 (Франция), вофатиту RH (Германия). По внешнему виду - сферические зерна от желтого до коричневого цвета, размером 0,4–1,25 мм, удельный объем не более 2,7 см3/г. Полная статическая обменная емкость не менее 1,8 г÷экв/л, мин, динамическая обменная емкость с полной регенерацией не менее 1,6 г÷экв/л.

В настоящее время нашли широкое применение сильнокислотные катиониты фирмы Пьюролайт: C100, С100Е, С120Е (аналоги отечественных смол КУ-2–8, КУ–2–8чС). Применяется ионообменная смола фирмы Пьюролайт С100Е Аg (обменная емкость 1,9 г÷экв/л, насыпная масса 800–840 г/л), представляющая собой серебросодержащий катионит для водоумягчения, обладающий бактерицидным действием. Существует отечественный аналог КУ-23С - макропористый катионит бактерицидного действия (статическая обменная емкость 1,25 г÷экв/л, насыпная масса 830–930 г/л).

Применяется для умягчения питьевой воды как в промышленности, так и в быту катионит Пьюрофайн С100ЕF - он имеет ряд преимуществ по сравнению с общепринятыми смолами для водоумягчения. Обладает намного большей рабочей емкостью при обычных скоростях потока, повышенной рабочей емкостью при высоких скоростях потока, при меняющемся и прерывающемся потоке. Минимальная общая обменная емкость 2,0 г÷экв/л. Особенность катионита С100ЕF состоит в том, что он требует меньшего объема и количества регенеранта (NaCl).

Применяется сильнокислотный катионит IONAС/С 249 для умягчения воды бытового и муниципального применения. Обменная емкость 1,9 г÷экв/л.

Умягчение воды натрий-катионитовым методом на указанных смолах (жесткость воды снижается при одноступенчатом натрий-катионировании до 0,05...0,1, при двухступенчатом - до 0,01 мг÷экв/л) описывается следующими реакциями обмена:
(cм. печатную версию)

После истощения рабочей обменной емкости катионита он теряет способность умягчать воду и его необходимо регенерировать. Процесс умягчения воды на катионитовых фильтрах слагается из следующих последовательных операций: фильтрование воды через слой катионита до момента достижения предельно допускаемой жесткости в фильтрате (скорость фильтрования в пределах 10...25 м/ч); взрыхление слоя катионита восходящим потоком умягченной воды, отработанного регенерата или отмывных вод (интенсивность потока 3...4 л/(см2); спуска водяной подушки во избежание разбавления регенерирующего раствора; регенерации катионита посредством фильтрования соответствующего раствора (скорость фильтрования 8...10 м/ч). На регенерацию обычно затрачивают около 2ч, из них на взрыхление - 10...15, на фильтрование регенерирующего раствора - 25...40, на отмывку - 30...60 мин.

Технологические схемы и конструктивные элементы установок реагентного умягчения воды

Термохимический метод умягчения воды

Умягчение воды диализом

Магнитная обработка воды

Литература

Теоретические основы умягчения воды, классификация методов

Под умягчением воды подразумевается процесс удаления из нее катионов жесткости, т.е. кальция и магния. В соответствии с ГОСТ 2874-82 "Вода питьевая" жесткость воды не должна превышать 7 мг-экв/л. Отдельные виды производств к технологической воде предъявляют требования глубокого ее умягчения, т.е. до 0,05.0,01 мг-экв/л. Обычно используемые водоисточники имеют жесткость, отвечающую нормам хозяйственно-питьевых вод, и в умягчении не нуждаются. Умягчение воды производят в основном при ее подготовке для технических целей. Так, жесткость воды для питания барабанных котлов не должна превышать 0,005 мг-экв/л. Умягчение воды осуществляют методами: термическим, основанным на нагревании воды, ее дистилляции или вымораживании; реагентными, при которых находящиеся в воде ионы Ca ( II ) и Mg ( II ) связывают различными реагентами в практически нерастворимые соединения; ионного обмена, основанного на фильтровании умягчаемой воды через специальные материалы, обменивающие входящие в их состав ионы Na ( I) или Н (1) на ионы Са (II) и Mg ( II ), содержащиеся в воде диализа; комбинированным, представляющим собой различные сочетания перечисленных методов.

Выбор метода умягчения воды определяется ее качеством, необходимой глубиной умягчения и технико-экономическими соображениями. В соответствии с рекомендациями СНиПа при умягчении подземных вод следует применять ионообменные методы; при умягчении поверхностных вод, когда одновременно требуется и осветление воды, - известковый или известково-содовый метод, а при глубоком умягчении воды - последующее катионирование. Основные характеристики и условия применения методов умягчения воды приведены в табл. 20.1.

умягчение вода диализ термический

Для получения воды для хозяйственно-питьевых нужд обычно умягчают лишь ее некоторую часть с последующим смешением с исходной водой, при этом количество умягчаемой воды Q y определяют по формуле

(20.1)

где Ж о. и. - общая жесткость исходной воды, мг-экв/л; Ж 0. с. - общая жесткость воды, поступающей в сеть, мг-экв/л; Ж 0. у. - жесткость умягченной воды, мг-экв/л.

Методы умягчення воды

Показатель термический реагентный ионообменный диализа
Характеристика процесса Воду нагревают до температуры выше 100°С, при этом удаляется карбонатная и некарбонатная жесткости (в виде карбоната кальция, гидрокси-. да магния и гипса) В воду добавляют известь, устраняющую карбонатную и магниевую жесткость, а также соду, устраняющую некарбонат - иую жесткость Умягчаемая вода пропускается через катионито - вые фильтры Исходная вода фильтруется через полупроницаемую мембрану
Назначение метода Устранение карбонатной жесткости из воды, употребляемой для питания котлов низкого н среднего давления Неглубокое умягчение при одновременном осветлении воды от взвешенных веществ Глубокое умягчение воды, содержащей незначительное количество взвешенных веществ Глубокое умягчение воды
Расход воды на собственные нужды - Не более 10% До 30% и более пропорционально жесткости исходной воды 10
Условия эффективного применения: мутность исходной воды, мг/л До 50 До 500 Не более 8 До 2,0
Жесткость воды, мг-экв/л Карбонатная жесткость с преобладанием Са (НС03) 2, некарбонатная жесткость в виде гипса 5.30 Не выше 15 До 10,0
Остаточная жесткость воды, мг-экв/л Карбонатная жесткость до 0,035, CaS04 до 0,70 До 0,70 0,03.0,05 прн одноступенчатом и до 0,01 при двухступенчатом ка - тионировании 0,01 и ниже
Температура воды,°С До 270 До 90 До 30 (глауконит), до 60 (сульфоугли) До 60

Термический метод умягчения воды

Термический метод умягчения воды целесообразно применять при использовании карбонатных вод, идущих на питание котлов низкого давления, а также в сочетании с реагентными методами умягчения воды. Он основан на смещении углекислотного равновесия при ее нагревании в сторону образования карбоната кальция, что описывается реакцией

Са (НС0 3) 2 - > СаСО 3 + С0 2 + Н 2 0.

Равновесие смещается за счет понижения растворимости оксида углерода (IV), вызываемого повышением температуры и давления. Кипячением можно полностью удалить оксид углерода (IV) и тем самым значительно снизить карбонатную кальциевую жесткость. Однако, полностью устранить указанную жесткость не удается, поскольку карбонат кальция хотя и незначительно (13 мг/л при температуре 18°С), но все же растворим в воде.

При наличии в воде гидрокарбоната магния процесс его осаждения происходит следующим образом: вначале образуется сравнительно хорошо растворимый (110 мг/л при температуре 18° С) карбонат магния

Mg (НСО 3) → MgC0 3 + С0 2 + Н 2 0,

который при продолжительном кипячении гидролизуется, в результате чего выпадает осадок малорастворимого (8,4 мг/л). гидроксида магния

MgC0 3 +H 2 0 → Mg (0H) 2 +C0 2 .

Следовательно, при кипячении воды жесткость, обусловливаемая гидрокарбонатами кальция и магния, снижается. При кипячении воды снижается также жесткость, определяемая сульфатом кальция, растворимость которого падает до 0,65 г/л.

На рис. 1 показан термоумягчитель конструкции Копьева, отличающийся относительной простотой устройства и надежностью работы. Предварительно подогретая в аппарате обрабатываемая вода поступает через эжектор на розетку пленочного подогревателя и разбрызгивается над вертикально размещенными трубами, и по ним стекает вниз навстречу горячему пару. Затем совместно с продувочной водой от котлов она по центрально подающей трубе через дырчатое днище поступает в осветлитель со взвешенным осадком.

Выделяющиеся при этом из воды углекислота и кислород вместе с избытком пара сбрасываются в атмосферу. Образующиеся в процессе нагревания воды соли кальция и магния задерживаются во взвешенном слое. Пройдя через взвешенный слой, умягченная вода поступает в сборник и отводится за пределы аппарата.

Время пребывания воды в термоумягчителе составляет 30.45 мин, скорость ее восходящего движения во взвешенном слое 7.10 м/ч, а в отверстиях ложного дна 0,1.0,25 м/с.

Рис. 1. Термоумягчитель конструкции Копьева.

15 - сброс дренажной воды; 12 - центральная подающая труба; 13 - ложные перфорированные днища; 11 - взвешенный слой; 14 - сброс шлама; 9 - сборник умягченной воды; 1, 10 - подача исходной и отвод умягченной воды; 2 - продувка котлов; 3 - эжектор; 4 - выпар; 5 - пленочный подогреватель; 6 - сброс пара; 7 - кольцевой перфорированный трубопровод отвода воды к эжектору; 8 - наклонные сепарирующие перегородки

Реагентные методы умягчения воды

Умягчение воды реагентными методами основано на обработке ее реагентами, образующими с кальцием и магнием малорастворимые соединения: Mg (OH) 2 , СаС0 3 , Са 3 (Р0 4) 2 , Mg 3 (P0 4) 2 и другие с последующим их отделением в осветлителях, тонкослойных отстойниках и осветлительных фильтрах. В качестве реагентов используют известь, кальцинированную соду, гидроксиды натрия и бария и другие вещества.

Умягчение воды известкованием применяют при ее высокой карбонатной и низкой некарботаной жесткости, а также в случае, когда не требуется удалять из воды соли некарбонатной жесткости. В качестве реагента используют известь, которую вводят в виде раствора или суспензии (молока) в предварительно подогретую обрабатываемую воду. Растворяясь, известь обогащает воду ионами ОН - и Са 2+ , что приводит к связыванию растворенного в воде свободного оксида углерода (IV) с образованием карбонатных ионов и переходу гидрокарбонатных ионов в карбонатные:

С0 2 + 20Н - → СО 3 + Н 2 0,НСО 3 - + ОН - → СО 3 - + Н 2 О.

Повышение в обрабатываемой воде концентрации ионов С0 3 2 - и присутствие в ней ионов Са 2+ с учетом введенных с известью приводит к повышению произведения растворимости и осаждению малорастворимого карбоната кальция:

Са 2+ + С0 3 - → СаС0 3 .

При избытке извести в осадок выпадает и гидроксид магния

Mg 2+ + 20Н - → Mg (ОН) 2

Для ускорения удаления дисперсных и коллоидных примесей и снижения щелочности воды одновременно с известкованием применяют коагуляцию этих примесей сульфатом железа (II) т.е. FeS0 4 *7 Н 2 0. Остаточная жесткость умягченной воды при декарбонизации может быть получена на 0,4.0,8 мг-экв/л больше некарбонатной жесткости, а щелочность 0,8.1,2 мг-экв/л. Доза извести определяется соотношением концентрации в воде ионов кальция и карбонатной жесткости: а) при соотношении [Са 2+ ] /20<Ж к,

(20.2б)

б) при соотношении [Са 2+ ] /20 > Ж к,

(20.3)

где [СО 2 ] - концентрация в воде свободного оксида углерода (IV), мг/л; [Са 2+ ] - концентрация ионов кальция, мг/л; Ж к - карбонатная жесткость воды, мг-экв/л; Д к - доза коагулянта (FeS0 4 или FeCl 3 в пересчете на безводные продукты), мг/л; е к - эквивалентная масса активного вещества коагулянта, мг/мг-экв (для FeS0 4 е к = 76, для FeCl 3 е к = 54); 0,5 и 0,3 - избыток извести для обеспечения большей полноты реакции, мг-экв/л.