Электродвигатель строение. Типы электродвигателей и принципы работы

Электродвигатель строение. Типы электродвигателей и принципы работы

По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные и магнитоэлектрические. У двигателей первой группы вращающий момент создается вследствие гистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.

Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы - на двигатели постоянного тока и двигатели переменного тока (также существуют универсальные двигатели, которые могут питаться обоими видами тока).

Двигатели постоянного тока

Двигатель постоянного тока - электрический двигатель, питание которого осуществляется постоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узла подразделяется на:

  1. коллекторные двигатели;
  2. бесколлекторные двигатели.

Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом.

По типу возбуждения коллекторные двигатели можно разделить на:

  1. двигатели с независимым возбуждением от электромагнитов и постоянных магнитов;
  2. двигатели с самовозбуждением.

Двигатели с самовозбуждением делятся на:

  1. Двигатели с параллельным возбуждением;(обмотка якоря включается параллельно обмотке возбуждения)
  2. Двигатели последовательного возбуждения;(обмотка якоря включается последовательно обмотке возбу ждения)
  3. Двигатели смешанного возбуждения.(обмотка возбуждения включается частично последовательно частично параллельно обмотке якоря)

Бесколлекторные двигатели (вентильные двигатели) - электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора, системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора). Принцип работы данных двигателей аналогичен принципу работы синхронных двигателей.

Двигатель постоянного тока в разрезе. Справа расположен коллектор с щётками


Двигатели переменного тока

Двигатель переменного тока - электрический двигатель, питание которого осуществляется переменным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели. Принципиальное различие состоит в том, что в синхронных машинах первая гармоника магнитодвижущей силы статора движется со скоростью вращения ротора (благодаря чему сам ротор вращается со скоростью вращения магнитного поля в статоре), а у асинхронных - всегда есть разница между скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле вращается быстрее ротора).

Синхронный электродвигатель - электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше).

Существуют синхронные двигатели с дискретным угловым перемещением ротора - шаговые двигатели. У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей - вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.

Асинхронный электродвигатель - электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.

По количеству фаз двигатели переменного тока подразделяются на:

однофазные - запускаются вручную, или имеют пусковую обмотку, или имеют фазосдвигающую цепь;

двухфазные - в том числе конденсаторные;

трёхфазные;

многофазные;



Универсальный коллекторный электродвигатель

Универсальный коллекторный электродвигатель - коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе. Изготавливается только с последовательной обмоткой возбуждения на мощности до 200 Вт. Статор выполняется шихтованным из специальной электротехнической стали. Обмотка возбуждения включается частично при переменном токе и полностью при постоянном. Для переменного тока номинальные напряжения 127,220., для постоянного 110.220. Применяется в бытовых аппаратах, электроинструментах. Двигатели переменного тока с питанием от промышленной сети 50 гц не позволяют получить частоту вращения выше 3000 об/мин. Поэтому для получения высоких частот применяют коллекторный электродвигатель, который к тому же получается легче и меньше двигателя переменного тока той же мощности или применяют специальные передаточные механизмы, изменяющие кинематические параметры механизма до необходимых нам (мультипликаторы). При применении преобразователей частоты или наличии сети повышенной частоты (100, 200, 400 Гц) двигатели переменного тока оказываются легче и меньше коллекторных двигателей (коллекторный узел иногда занимает половину пространства). Ресурс асинхронных двигателей переменного тока гораздо выше, чем у коллекторных, и определяется состоянием подшипников и изоляции обмоток.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.

В статье рассматриваются различные типы электродвигателей, их достоинства и недостатки, перспективы развития.

Типы электродвигателей

Электродвигатели, в настоящее время, это непременная составляющая любого производства. В коммунальном хозяйстве и в быту они тоже применяются очень часто. Например, это вентиляторы, кондиционеры, насосы для отопления и т.д. Поэтому, современному электрику необходимо хорошо разбираться в типах и устройстве этих агрегатов.

Итак, перечислим наиболее часто встречающиеся типы электродвигателей:

1. Электродвигатели постоянного тока, с якорем на постоянных магнитах;

2. Электродвигатели постоянного тока, с якорем, имеющим обмотку возбуждения;

3. Синхронные двигатели переменного тока;

4. Асинхронные двигатели переменного тока;

5. Серводвигатели;

6. Линейные асинхронные двигатели;

7. Мотор-ролики, т.е. ролики, внутри которых расположены электродвигатели с редукторами;

8. Вентильные электродвигатели.

Электродвигатели постоянного тока

Этот тип двигателей ранее применялся очень широко, но в настоящее время он почти полностью вытеснен асинхронными электродвигателями, по причине сравнительной дешевизны применения последних. Новым направлением в развитии двигателей постоянного тока являются вентильные двигатели постоянного тока с якорем на постоянных магнитах.

Синхронные двигатели

Синхронные электродвигатели часто применяются для различных видов привода, работающего с постоянно скоростью, т.е. для вентиляторов, компрессоров, насосов, генераторов постоянного тока и т.д. Это двигатели мощностью 20 - 10000 кВт, для скоростей вращения 125 - 1000 об/мин.

Двигатели отличаются от генераторов конструктивно наличием на роторе, необходимой для асинхронного пуска,дополнительной короткозамкнутой обмотки, а также относительно меньшим зазором между статором и ротором.

У синхронных двигателей к.п.д. выше, а масса на единицу мощности меньше, чем у асинхронных на ту же скорость вращения. Ценной особенностью синхронного двигателя по сравнению с асинхронным является возможность регулирования его , т.е. cosφ за счет изменения тока возбуждения обмотки якоря. Таким образом, можно сделать cosφ близким к единице во всех диапазонах работы и, тем самым, поднять кпд и снизить потери в электросети.

Асинхронные двигатели

В настоящее время, это наиболее часто используемый тип двигателей. Асинхронный двигатель - это двигатель переменного тока, частота вращения ротора которого ниже частоты вращения магнитного поля, создаваемого статором.

Меняя частоту и скважность подводимого к статору напряжения, можно менять скорость вращения и момент на валу двигателя. Наиболее часто используются асинхронные двигатели с короткозамкнутым ротором. Ротор выполняется из алюминия, что снижает его вес и стоимость.

Основные достоинства таких двигателей - это низкая цена и малый вес. Ремонт электродвигателей такого типа относительно прост и дешев.

Основные недостатки - это малый пусковой момент на валу и большой пусковой ток в 3-5 раз превышающий рабочий. Еще один большой недостаток асинхронного двигателя - это низкий кпд в режиме частичных нагрузок. Например, при нагрузке в 30% от номинальной, кпд может падать с 90% до 40-60%!

Основной способ борьбы с недостатками асинхронного двигателя - это применение частотного привода. преобразует напряжение сети 220/380В в импульсное напряжение переменной частоты и скважности. Тем самым удается в широких пределах менять частоту оборотов и момент на валу двигателя и избавиться практически от всех его врожденных недостатков. Единственная «ложка дегтя» в этой «бочке меда», это высокая цена частотного привода, но на практике все затраты окупаются в течение года!

Серводвигатели

Эти двигатели занимают особую нишу, они применяются там, где требуются прецизионные изменения положения и скорости движения. Это космическая техника, роботостроение, станки с ЧПУ и т.д.

Такие двигатели отличаются применением якорей малого диаметра, т.к. малый диаметр это малый вес. За счет малого веса удается добиться максимального ускорения, т.е. быстрых перемещений. Эти двигатели обычно имеют систему датчиков обратной связи, что позволяет увеличить точность движения и реализовать сложные алгоритмы перемещений и взаимодействия различных систем.

Линейные асинхронные двигатели

Линейный асинхронный двигатель создает магнитное поле, которое перемещает пластину в двигателе. Точность перемещения может составлять 0.03 мм на один метр перемещения, что в три раза меньше толщины человеческого волоса! Обычно пластина (ползун) прикрепляется к механизму, который должен передвигаться.

Такие двигатели имеют очень большую скорость перемещения (до 5 м/с), а следовательно высокую производительность. Скорость перемещения и шаг можно менять. Так как в двигателе минимум движущихся частей, он имеет высокую надежность.

Мотор-ролики

Конструкция таких роликов довольно проста: внутри ведущего ролика находится миниатюрный электродвигатель постоянного тока и редуктор. Мотор ролики применяются на различных конвейерах и сортировочных линиях.

Преимущества мотор-роликов - это низкий уровень шума, более высокий кпд по сравнению с внешним приводом, мотор-ролик практически не нуждается в техобслуживании, поскольку он работает только когда нужно переместить конвейер, его ресурс очень большой. Когда такой ролик выйдет из строя, его можно заменить другим за минимальное время.

Вентильные электродвигатели

Вентильным называют любой двигатель, в котором регулирование режимов работы производится с помощью полупроводниковых (вентильных) преобразователей. Как правило, это синхронный двигатель с возбуждением от постоянных магнитов. Статор двигателя управляется при помощи инвертора с микропроцессорным управлением. Двигатель оснащен системой датчиков, для осуществления обратной связи по положению, скорости и ускорению.

Основные достоинства вентильных электродвигателей это:

1. Бесконтактность и отсутствие узлов, требующих обслуживания,

2. Высокий ресурс;

3. Большой пусковой момент и большая перегрузочная способность по моменту в (5 и более раз);

4. Высокое быстродействие по переходным процессам;

5. Огромный диапазон регулировок по частоте вращения 1:10000 и более, что минимум на два порядка выше, чем у асинхронных двигателей;

6. Самые лучшие показатели по КПД и cosφ, их КПД на всех нагрузках превышает 90%. В то время, как у асинхронных двигателей КПД на половинных нагрузках может падать до 40-60%!

7. Минимальные токи холостого тока и пусковые токи;

8. Минимальные массогабаритные показатели;

9. Минимальные сроки окупаемости.

По конструктивным особенностям такие двигатели делятся на два основных типа: бесконтактные двигатели постоянного и переменного токов.

Главным направлением совершенствования вентильных электродвигателей в настоящий момент является разработка адаптивных бездатчиковых алгоритмов управления. Это позволит снизить себестоимость и повысить надежность таких приводов.

В такой маленькой статье, конечно, невозможно отразить все аспекты развития систем электропривода, т.к. это очень интересное и быстроразвивающееся направление в технике. Ежегодные электротехнические выставки наглядно демонстрируют постоянный рост количества фирм, стремящихся освоить это направление. Лидеры этого рынка как всегда Siemens AG, General Electric, Bosch Rexroth AG, Ansaldo, Fanuc и др.

Электрический двигатель - электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую, побочным эффектом при этом является выделение тепла.

  • 1 Принцип действия
    • 1.1 Принцип действия трехфазного асинхронного электродвигателя
  • 2 Классификация электродвигателей
    • 2.1 Двигатели постоянного тока
    • 2.2 Двигатели переменного тока
    • 2.3 Универсальный коллекторный электродвигатель
    • 2.4 Синхронный электродвигатель возвратно-поступательного движения
    • Двигатель Шраге-Рихтера

Принцип действия

В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части - статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части - ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.

Ротор может быть:

  • короткозамкнутым;
  • фазным (с обмоткой) - используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. В большинстве случаев это крановые электродвигатели серии МТКН которые повсеместно используются в крановых установках.

Якорь - это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте). По сути универсальный двигатель - это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление. Поэтому любая «болгарка», если из неё извлечь электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.

Принцип действия трехфазного асинхронного электродвигателя

При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещенный в магнитное поле, действует ЭДС), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов.

Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется cкольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора.

Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с короткозамкнутой обмоткой.

Асинхронные двигатели нашли широкое применение во всех отраслях техники. Особенно это касается простых по конструкции и прочных трехфазных асинхронных двигателей с коротко-замкнутыми роторами, которые надежнее и дешевле всех электрических двигателей и практически не требуют никакого ухода. Название «асинхронный» обусловлено тем, что в таком двигателе ротор вращается не синхронно с вращающимся полем статора. Там, где нет трехфазной сети, асинхронный двигатель может включаться в сеть однофазного тока.

Статор асинхронного электродвигателя состоит, как и в синхронной машине, из пакета, набранного из лакированных листов электротехнической стали толщиной 0,5 мм, в пазах которого уложена обмотка. Три фазы обмотки статора асинхронного трехфазного двигателя, пространственно смещенные на 120°, соединяются друг с другом звездой или треугольником.

Трёхфазный двухполюсный асинхронный двигатель

На рис.1. показана принципиальная схема двухполюсной машины - по четыре паза на каждую фазу. При питании обмоток статора от трехфазной сети получается вращающееся поле, так как токи в фазах обмотки, которые смещены в пространстве на 120° друг относительно друга сдвинуты по фазе друг относительно друга на 120°.

Для синхронной частоты вращения nc поля электродвигателя с р парами полюсов справедливо при частоте тока

При частоте 50 Гц получаем для P=1, 2, 3 (двух-, четырех- и шести-полюсных машин) синхронные частоты вращения поля Nc = 3000, 1500 и 1000 об/мин.

Ротор асинхронного электродвигателя также состоит из листов электротехнической стали и может быть выполнен в виде короткозамкнутого ротора (с «беличьей клеткой») или ротора с контактными кольцами (фазный ротор).

В короткозамкнутом роторе обмотка состоит из металлических стержней (медь, бронза или алюминий), которые расположены в пазах и соединяются на концах закорачивающими кольцами (рис. 1). Соединение осуществляется методом пайки твердым припоем или сваркой. В случае применения алюминия или алюминиевых сплавов стержни ротора и закорачивающие кольца, включая лопасти вентилятора, расположенные на них, изготавливаются методом литья под давлением.

У ротора электродвигателя с контактными кольцами в пазах находится трехфазная обмотка, похожая на обмотку статора, включенную, например, звездой; начала фаз соединяются с тремя контактными кольцами, закрепленными на валу. При пуске двигателя и для регулировки частоты вращения можно подключить к фазам обмотки ротора реостаты (через контактные кольца и щетки). После успешного разбега контактные кольца замыкаются накоротко, так что обмотка ротора двигателя выполняет те же самые функции, что и в случае короткозамкнутого ротора.

Классификация электродвигателей

По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные и магнитоэлектрические . У двигателей первой группы вращающий момент создается вследствие гистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.

Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы - на двигатели постоянного тока и двигатели переменного тока (также существуют универсальные двигатели , которые могут питаться обоими видами тока).

Двигатели постоянного тока

Двигатель постоянного тока в разрезе. Справа расположен коллектор с щётками

Двигатель постоянного тока - электрический двигатель, питание которого осуществляется постоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узла подразделяется на:

  1. Коллекторные двигатели;
  2. Бесколлекторные двигатели.

Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом.

По типу возбуждения коллекторные двигатели можно разделить на:

  1. Двигатели с независимым возбуждением от электромагнитов и постоянных магнитов;
  2. Двигатели с самовозбуждением.

Двигатели с самовозбуждением делятся на:

  1. Двигатели с параллельным возбуждением (обмотка якоря включается параллельно обмотке возбуждения);
  2. Двигатели последовательного возбуждения (обмотка якоря включается последовательно обмотке возбуждения);
  3. Двигатели смешанного возбуждения (часть обмотки возбуждения включается последовательно с якорем, а вторая часть - параллельно обмотке якоря или последовательно соединённым обмотке якоря и первой обмотки возбуждения, в зависимости от требуемой нагрузочной характеристики).

Бесколлекторные двигатели (вентильные двигатели) - электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора, системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора). Принцип работы данных двигателей аналогичен принципу работы синхронных двигателей.

Двигатели переменного тока

Трехфазные асинхронные двигатели

Двигатель переменного тока - электрический двигатель, питание которого осуществляется переменным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели . Принципиальное различие состоит в том, что в синхронных машинах первая гармоника магнитодвижущей силы статора движется со скоростью вращения ротора (благодаря чему сам ротор вращается со скоростью вращения магнитного поля в статоре), а у асинхронных - всегда есть разница между скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле вращается быстрее ротора).

Синхронный электродвигатель - электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полемпитающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше).

Существуют синхронные двигатели с дискретным угловым перемещением ротора - шаговые двигатели . У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей - вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.

Асинхронный электродвигатель - электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.

По количеству фаз двигатели переменного тока подразделяются на:

  • однофазные - запускаются вручную, или имеют пусковую обмотку, или имеют фазосдвигающую цепь;
  • двухфазные - в том числе конденсаторные;
  • трёхфазные;
  • многофазные;
  • Универсальный коллекторный электродвигатель

Универсальный коллекторный электродвигатель - коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе. Изготавливается только с последовательной обмоткой возбуждения на мощности до 200 Вт. Статор выполняется шихтованным из специальной электротехнической стали. Обмотка возбуждения включается частично при переменном токе и полностью при постоянном. Для переменного тока номинальные напряжения 127, 220 В, для постоянного 110, 220 В.

Применяется в бытовых аппаратах, электроинструментах. Двигатели переменного тока с питанием от промышленной сети 50 Гц не позволяют получить частоту вращения выше 3000 об/мин. Поэтому для получения высоких частот применяют коллекторный электродвигатель, который к тому же получается легче и меньше двигателя переменного тока той же мощности или применяют специальные передаточные механизмы, изменяющие кинематические параметры механизма до необходимых нам (мультипликаторы).

При применении преобразователей частоты или наличии сети повышенной частоты (100, 200, 400 Гц) двигатели переменного тока оказываются легче и меньше коллекторных двигателей (коллекторный узел иногда занимает половину пространства). Ресурс асинхронных двигателей переменного тока гораздо выше, чем у коллекторных, и определяется состоянием подшипников и изоляции обмоток.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока. Строго говоря, универсальный коллекторный двигатель является коллекторным электродвигателем постоянного тока с последовательно включенными обмотками возбуждения (статора), оптимизированным для работы на переменном токе бытовой электрической сети.

Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону. Для возможности работы на переменном токе применяется статор из магнитно-мягкого материала, имеющего малый гистерезис (сопротивление перемагничиванию).

Для уменьшения потерь на вихревые токи статор выполняют наборным из изолированных пластин. Особенностью (в большинстве случаев - достоинством) работы такого двигателя именно на переменном токе (а не на постоянном такого же напряжения) является то, что в режиме малых оборотов (пуск и перегрузка) индуктивное сопротивление обмоток статора ограничивает потребляемый ток и соответственно максимальный момент двигателя (оценочно) до 3-5 от номинального (против 5-10 при питании того же двигателя постоянным током).

Для сближения механических характеристик у двигателей общего назначения может применяться секционирование обмоток статора - отдельные выводы (и меньшее число витков обмотки статора) для подключения переменного тока.

Синхронный электродвигатель возвратно-поступательного движения

Принцип его работы заключается в том, что подвижная часть двигателя представляет собой постоянные магниты, закреплённые на штоке. Через неподвижные обмотки пропускается переменный ток и постоянные магниты под действием магнитного поля, создаваемого обмотками, перемещают шток возвратно-поступательным образом

Двигатель Шраге-Рихтера

Трёхфазный коллекторный асинхронный двигатель с питанием со стороны ротора.

Обращенный (питание с ротора) асинхронный двигатель, позволяющий плавно регулировать скорость от минимальной (диапазон определяется обмоточными данными добавочной обмотки, используемой для получения добавочной ЭДС, вводимой с частотой скольжения во вторичную цепь машины) до максимальной, лежащей обычно выше скорости синхронизма. Физически производится изменением раствора двойного комплекта щёток на каждую «фазу» вторичной цепи двигателя.

Таким образом, переставляя при помощи механического устройства (штурвал или иное исполнительное устройство) щёточные траверсы являлось возможным весьма экономично управлять скоростью асинхронного двигателя переменного тока. Идея управления в общем предельно проста и будет реализована впоследствии в так называемых асинхронно-вентильных каскадах, где в цепь фазного ротора включали тиристорный преобразователь, работавший инвертором или в выпрямительном режиме.

Сущность идеи - во вторичную цепь асинхронного двигателя вводится добавочная ЭДС изменяемой амплитуды и фазы с частотой скольжения. Задачу согласования частоты добавочной ЭДС с частотой скольжения ротора выполняет коллектор. Если добавочная ЭДС противонаправлена основной, производится вывод мощности из вторичной цепи двигателя с соответствующим уменьшением скорости машины, ограничение скорости вниз диктуется только условиями охлаждения обмоток).

В точке синхронизма машины частота добавочной ЭДС равна нулю, то есть во вторичную цепь коллектором подаётся постоянный ток. В случае суммирования добавочной ЭДС с основной производится инвертирование добавочной мощности во вторичную цепь машины, и соответственно - разгон выше синхронной частоты вращения. Таким образом, результатом регулирования являлось семейство достаточно жестких характеристик с уменьшением критического момента при снижении скорости, а при разгоне выше синхронной скорости - с его пропорциональным увеличением.

Определенный интерес представляет собой работа машины с несимметричным раствором щеточных траверс. В этом случае векторная диаграмма добавочной э.д.с. двигателя получает так называемую тангенциальную составляющую, делающую возможным работу с ёмкостной реакцией на сеть.

Конструкционно двигатель представляет собой обращенную машину, где на роторе уложены две обмотки: питание с питанием с контактных колец и обмотку, соединяемую посредством двух пар щеток на «фазу» со вторичной обмоткой статора. Фактически, эти две части вторичной обмотки в зависимости от положения щеточных траверс включается то согласно друг другу, то встречно. Так осуществляется регулирование.

ООО "Агрегат-Электропром" занимается ремонтом электродвигателей в Москве с 1995 года и является одним из ведущих предприятий в области ремонта электрических машин, перемотке двигателей и трансформаторов.

Явление электромагнитной индукции стало основой возникновения и развития всех электрических машин. Первооткрывателем этого явления в конце 19 века был Майкл Фарадей, английский учёный — экспериментатор. Он провёл опыты с первыми электрическими машинами. Сейчас без них невозможно представить нашу жизнь. Электродвигатели стали одними из самых распространённых электрических машин.

Для работы электромотора необходимо напряжение, свойства которого определяют его конструкцию. На переменном напряжении и токе работают такие электродвигатели:

на постоянном напряжении и токе работают:

  • коллекторные;
  • униполярные;
  • шаговые.

Синхронные и асинхронные электродвигатели

Синхронные и асинхронные электромоторы имеют общие условия для своей работы. Для этого необходимо магнитное поле, максимальная величина которого перемещается в пространстве. Такое поле может быть создано двумя или большим числом обмоток. Обычные конструкции синхронных и асинхронных электромоторов содержат две или три обмотки.

Они размещаются на массивных ферримагнитных сердечниках, усиливающих магнитное поле. Для трёх обмоток применяется трёхфазное напряжение, для двух обмоток – двухфазное или одна фаза с фазосдвигающим конденсатором. Но с таким конденсатором к однофазной сети можно подключить и трёхфазные двигатели.

Если ротор электромотора создаёт постоянное магнитное поле, либо от постоянных магнитов, либо от встроенного в ротор источника питания постоянного тока, либо от внешнего источника питания постоянного тока через кольца со щётками такой двигатель является синхронным. В нём частота оборотов и частота напряжения источника питания одинаковы. В асинхронных двигателях используется немагнитный ротор без явно выраженных полюсов, колец со щётками, встроенных выпрямителей и комбинированных деталей из различных материалов. Исключением является синхронный гистерезисный двигатель.


Ротор асинхронного двигателя работает как вторичная обмотка трансформатора, которая замкнута накоротко. Но ток в его роторе может возникнуть только при более медленном вращении в сравнении с магнитным полем статора. Такое различие скоростей называется скольжением. Простота конструкции и соответствующая надёжность делают асинхронный электромотор наиболее широко используемым.

Коллекторные машины

Однако у синхронных и асинхронных электромоторов есть один непреодолимый недостаток – частота питающего напряжения. Она определяет скорость вращения магнитного поля и вала в этих двигателях. Никакими конструктивными изменениями в них при заданной частоте питающего напряжения невозможно получить частоту вращения вала большую, чем частота питающего напряжения. При необходимости большего числа оборотов используются коллекторные электромоторы.


В этих двигателях происходит постоянное переключение обмоток ротора коллектором. Каждая обмотка по сути это рамка с током, которая, как известно из опытов Фарадея, поворачивается в магнитном поле. Но одна рамка повернётся и остановится. Поэтому рамок — обмоток сделано несколько и каждой из них соответствует пара пластин в коллекторе. Ток подаётся через щётки, скользящие по коллектору.

Конструкция такого электромотора позволяет работать от источника либо постоянного, либо переменного напряжения, который обеспечивает ток и в статоре и в роторе. При переменном напряжении направление тока в статоре и роторе изменяется одновременно и поэтому направление действия силы вращающей ротор сохраняется. Частота питающего напряжения никак не влияет на частоту вращения ротора. Она зависит только от величины напряжения, питающего электромотор. Скользящий контакт щётки с коллектором ограничивает возможности этих электродвигателей по сроку службы и месту применения, поскольку искрение в щётках довольно быстро разрушает скользящий контакт и недопустимо в условиях повышенной взрывоопасности.

Униполярные и шаговые варианты

Однако есть такие конструкции электромоторов постоянного тока, в которых коллектора нет. Это униполярные электромоторы.


В этих электродвигателях ротор выполнен в виде диска, расположенного между полюсами постоянных магнитов. Щётки расположенные диаметрально противоположно питают током диск – ротор. Под воздействием силы Лоренца диск вращается. Несмотря на привлекательную простоту конструкции, такой электромотор не имеет широкого практического использования, поскольку требует слишком больших значений тока и магнитного поля. Тем не менее, существуют уникальные лабораторные разработки униполярных электромоторов со щётками из жидкого металла, которые развивают обороты немыслимые для иных конструкций двигателей.

Шаговый двигатель это ещё одна конструкция, работающая на постоянном токе.


В целом этот двигатель подобен синхронному электромотору с ротором из постоянных магнитов. Отличие в том, что число обмоток здесь больше, и они управляются ключами, которые подают на каждую обмотку питающее напряжение. В результате ротор меняет своё положение, притягиваясь к подключенной обмотке. Число обмоток определяет минимальный угол поворота ротора, а коммутаторы – скорость вращения ротора. В шаговом двигателе ротор может вращаться почти как угодно, поскольку ключи связаны с электронной схемой управления.

Рассмотренные конструкции электромоторов являются базовыми. На их основе для решения определённых задач создано много специальных разновидностей электромоторов. Но это уже совсем другая история…


Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели.

Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее. Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения.

При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту. Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.

Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.

Электродвигатели постоянного тока

Используются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями. К таким показателям относятся высокая равномерность вращения и перезагрузочная способность. Их используют для комплектации бумагоделательных, красильно-отделочных и подъемно-транспортных машин, для полимерного оборудования, буровых станков и вспомогательных агрегатов экскаваторов. Часто они применяются для оснащения всех видов электротранспорта.

Электродвигатели переменного тока

Пользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста. Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т.д. В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.

Шаговые электродвигатели

Действуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.

Серводвигатели

Относятся к двигателям постоянного тока. Они высокотехнологичны. Их работа осуществляется посредством использования отрицательной обратной связи. Такой двигатель отличается особой мощностью и способен развивать высокую скорость вращения вала, регулировка которого осуществляется с помощью компьютерного обеспечения. Такая функция делает его востребованным при оборудовании поточных линий и в современных промышленных станках.

Линейные электродвигатели

Обладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.

Синхронные двигатели

Являются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.

Асинхронные двигатели

Также, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора. Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.

Электродвигатели незаменимы в современном мире. Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.