«Генетически модифицированные организмы (гмо). Мифы нашего времени: генетически модифицированные организмы

«Генетически модифицированные организмы (гмо). Мифы нашего времени: генетически модифицированные организмы

Определение ГМО

Цели создания ГМО

Методы создания ГМО

Применение ГМО

ГМО - аргументы за и против

Лабораторные исследования ГМО

Последствия употребления ГМ продуктов для здоровья человека

Исследования безопасности ГМО

Как регулируется производство и продажа ГМО в мире?

Заключение

Список использованной литературы


Определение ГМО

Генетически модифицированные организмы – это организмы, в которых генетический материал (ДНК) изменен невозможным в природе способом. ГМО могут содержать фрагменты ДНК из любых других живых организмов.

Цель получения генетически измененных организмов – улучшение полезных характеристик исходного организма-донора (устойчивость к вредителям, морозостойкость, урожайность, калорийность и другие) для снижения себестоимости продуктов. В результате сейчас существует картофель, который содержит гены земляной бактерии, убивающей колорадского жука, стойкая к засухам пшеница, в которую вживили ген скорпиона, помидоры с генами морской камбалы, соя и клубника с генами бактерий.

Трансгенными (генномодифицированными) могут называться те виды растений , в которых успешно функционирует ген (или гены) пересаженные из других видов растений или животных. Делается это для того, чтобы растение реципиент получило новые удобные для человека свойства, повышенную устойчивость к вирусам, к гербицидам, к вредителям и болезням растений. Пищевые продукты, полученные из таких генноизмененных культур, могут иметь улучшенные вкусовые качества, лучше выглядеть и дольше храниться.

Также часто такие растения дают более богатый и стабильный урожай, чем их природные аналоги.

Генетически измененный продукт - это когда выделенный в лаборатории ген одного организма пересаживается в клетку другого. Вот примеры из американской практики: чтобы помидоры и клубника были морозоустойчивее, им "вживляют" гены северных рыб; чтобы кукурузу не пожирали вредители, ей могут "привить" очень активный ген, полученный из яда змеи.

Кстати, не надо путать термины "модифицированный" и «генномодифицированный ». Например, модифицированный крахмал, входящий в состав большинства йогуртов, кетчупов и майонезов, к продуктам с ГМО отношения не имеет. Модифицированные крахмалы - это крахмалы, которые человек усовершенствовал для своих нужд. Это может быть сделано либо физическим (воздействие температуры, давления, влажности, радиации), либо химическим способом. Во втором случае используются химреагенты, которые разрешены Минздравом РФ как пищевые добавки.

Цели создания ГМО

Разработка ГМО некоторыми учеными рассматриваются, как естественное развитие работ по селекции животных и растений. Другие же, напротив, считают генную инженерию полным отходом от классической селекции, так как ГМО это не продукт искусственного отбора, то есть постепенного выведения нового сорта (породы) организмов путем естественного размножения, а фактически искусственно синтезированный в лаборатории новый вид.

Во многих случаях использование трансгенных растений сильно повышает урожайность. Есть мнение, что при нынешнем размере населения планеты только ГМО могут избавить мир от угрозы голода, так как при помощи генной модификации можно увеличивать урожайность и качество пищи.

Противники этого мнения считают, что при современном уровне агротехники и механизации сельскохозяйственного производства уже существующие сейчас, полученные классическим путем, сорта растений и породы животных способны сполна обеспечить население планеты высококачественным продовольствием (проблема же возможного мирового голода вызвана исключительно социально-политическими причинами, а потому и решена может быть не генетиками, а политическими элитами государств.

Виды ГМО

Истоки генной инженерии растений лежат в открытии 1977 года, позволившем использовать почвенный микроорганизм Agrobacterium tumefaciens в качестве орудия введения потенциально полезных чужих генов в другие растения.

Первые полевые испытания генетически модифицированных сельскохозяйственных растений, в результате которых был выведен помидор, устойчивый к вирусным заболеваниям, были проведены в 1987 году.

В 1992 году в Китае начали выращивать табак, который «не боялся» вредных насекомых. В 1993 году генетически измененные продукты были допущены на прилавки магазинов мира. Но начало массовому производству модифицированных продуктов положили в 1994 году, когда в США появились помидоры, которые не портились при перевозке.

На сегодняшний день продукты с ГМО занимают более 80 млн. га сельхозугодий и выращиваются более чем в 20 странах мира.

ГМО объединяют три группы организмов:

oгенетически модифицированные микроорганизмы (ГММ);

oгенетически модифицированные животные (ГМЖ);

oгенетически модифицированные растения (ГМР) – наиболее распространенная группа.

На сегодня в мире существует несколько десятков линий ГМ-культур: сои, картофеля, кукурузы, сахарной свеклы, риса, томатов, рапса, пшеницы, дыни, цикория, папайи, кабачков, хлопка, льна и люцерны. Массово выращиваются ГМ-соя, которая в США уже вытеснила обычную сою, кукуруза, рапс и хлопок. Посевы трансгенных растений постоянно увеличиваются. В 1996 году в мире под посевами трансгенных сортов растений было занято 1,7 млн. га, в 2002 году этот показатель достиг 52,6 млн. га (из которых 35,7 млн. га – в США), в 2005 г ГМО-посевов было уже 91,2 млн. га, в 2006 году – 102 млн. га.

В 2006 году ГМ-культуры выращивали в 22 странах мира, среди которых Аргентина, Австралия, Канада, Китай, Германия, Колумбия, Индия, Индонезия, Мексика, Южная Африка, Испания, США. Основные мировые производители продукции, содержащую ГМО – США (68%), Аргентина (11,8%), Канада (6%), Китай (3%). Более 30% всей выращиваемой в мире сои, более 16% хлопка, 11% канолы (масличное растение) и 7% кукурузы произведены с использованием достижений генной инженерии.

На территории РФ нет ни одного гектара, который был бы засеян трансгенами.

Методы создания ГМО

Основные этапы создания ГМО:

1. Получение изолированного гена.

2. Введение гена в вектор для переноса в организм.

3. Перенос вектора с геном в модифицируемый организм.

4. Преобразование клеток организма.

5. Отбор генетически модифицированных организмов и устранение тех, которые не были успешно модифицированы.

Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды).

Чтобы встроить ген в вектор, используют ферменты - рестриктазы и лигазы. С помощью рестриктаз ген и вектор можно разрезать на кусочки. С помощью лигаз такие кусочки можно «склеивать», соединять в иной комбинации, конструируя новый ген или заключая его в вектор.

Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации. В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами. Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки. Для введения готового гена в наследственный аппарат клеток растений и животных используется процесс трансфекации.

Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование, то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детеныши с изменённым или неизменным генотипом, среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

Применение ГМО

Использование ГМО в научных целях.

В настоящее время генетически модифицированные организмы широко используются в фундаментальных и прикладных научных исследованиях. С помощью ГМО исследуются закономерности развития некоторых заболеваний (болезнь Альцгеймера, рак), процессы старения и регенерации, изучается функционирование нервной системы, решается ряд других актуальных проблем биологии и медицины.

Использование ГМО в медицинских целях.

Генетически модифицированные организмы используются в прикладной медицине с 1982 года. В этом году зарегистрирован в качестве лекарства человеческий инсулин, получаемый с помощью генетически модифицированных бактерий.

Ведутся работы по созданию генетически модифицированных растений, продуцирующих компоненты вакцин и лекарств против опасных инфекций (чумы, ВИЧ). На стадии клинических испытаний находится проинсулин, полученный из генетически модифированного сафлора. Успешно прошло испытания и одобрено к использованию лекарство против тромбозов на основе белка из молока трансгенных коз.

Бурно развивается новая отрасль медицины - генотерапия. В её основе лежат принципы создания ГМО, но в качестве объекта модификации выступает геном соматических клеток человека. В настоящее время генотерапия - один из главных методов лечения некоторых заболеваний. Так, уже в 1999 году каждый четвёртый ребенок, страдающий SCID (severe combined immune deficiency), лечился с помощью генной терапии. Генотерапию, кроме использования в лечении, предлагают также использовать для замедления процессов старения.

Использование ГМО в сельском хозяйстве.

Генная инженерия используется для создания новых сортов растений, устойчивых к неблагоприятным условиям среды и вредителям, обладающих лучшими ростовыми и вкусовыми качествами. Создаваемые новые породы животных отличаются, в частности, ускоренным ростом и продуктивностью. Созданы сорта и породы, продукты из которых обладают высокой питательной ценностью и содержат повышенные количества незаменимых аминокислот и витаминов.

Проходят испытания, генетически модифицированные сорта лесных пород со значительным содержанием целлюлозы в древесине и быстрым ростом.

Другие направления использования.

GloFish, первое генетически модифицированное домашнее животное

Разрабатываются генетически модифицированные бактерии, способные производить экологически чистое топливо

В 2003 году на рынке появилась GloFish - первый генетически модифицированный организм, созданный с эстетическими целями, и первое домашнее животное такого рода. Благодаря генной инженерии популярная аквариумная рыбка Данио рерио получила несколько ярких флуоресцентных цветов.

В 2009 году вышли в продажу ГМ-сорт розы «Applause» с цветами синего цвета. Таким образом, сбылась многовековая мечта селекционеров, безуспешно пытавшихся вывести «синие розы» (подробней см. en:Blue rose).

ГМО – аргументы за и против

Плюсы генномодифицированных организмов

Защитники генетически модифицированных организмов утверждают, что ГМО – единственное спасение человечества от голода. По прогнозам ученых население Земли до 2050 года может достигнуть 9-11 млрд. человек, естественно возникает необходимость удвоения, а то и утроение мирового производства сельскохозяйственной продукции.

Для этой цели генетически модифицированные сорта растений отлично подходят – они устойчивы к болезням и погоде, быстрее созревают и дольше хранятся, умеют самостоятельно вырабатывать инсектициды против вредителей. ГМО-растения способны расти и приносить хороший урожай там, где старые сорта просто не могли выжить из-за определенных погодных условий.

Но интересный факт: ГМО позиционируют как панацею от голода для спасения африканских и азиатских стран. Только вот почему-то страны Африки последние 5 лет не разрешают ввозить на свою территорию продукты с ГМ-компонентами. Не странно ли?

Генная инженерия способна оказать реальную помощь в решении продовольственных проблем и вопросов здравоохранения. Грамотное применение её методов станет прочным фундаментом будущего человечества.

Губительного влияния трансгенных продуктов на организм человека пока не выявлено. Медики всерьёз рассматривают генномодифицированные продукты как основу специальных диет. Питание имеет не последнее значение в лечении и профилактике болезней. Учёные уверяют, генномодифицированные продукты дадут возможность людям с сахарным диабетом, остеопорозом, сердечно-сосудистыми и онкологическими заболеваниями, болезнями печени и кишечника расширить рацион питания.

Производство лекарств методами генной инженерии успешно практикуется во всём мире.

Употребление карри не только не повышает выработку инсулина в крови, но и понижает выработку глюкозы в организме. Если использовать ген карри в медицинских целях, то фармакологи получат дополнительное лекарство для лечения сахарного диабета, а больные смогут побаловать себя сладким.

С помощью синтезированных генов получают интерферон и гормоны. Интерферон – белок, вырабатываемый организмом в ответ на вирусную инфекцию, изучают сейчас как возможное средство лечения рака и СПИДа. Понадобились бы тысячи литров крови человека, чтобы получить такое количество интерферона, какое даёт всего один литр бактериальной культуры. Выигрыш от массового производства этого белка очень велик.

Микробиологическим синтезом получают инсулин, необходимый для лечения диабета. Методами генной инженерии удалось создать ряд вакцин, которые испытываются сейчас для проверки их эффективности против вызывающего СПИД вируса иммунодефицита человека (ВИЧ). С помощью рекомбинантной ДНК получают в достаточных количествах и человеческий гормон роста, единственное лекарство редкой детской болезни – гипофизарной карликовости.

В экспериментальной стадии находится генная терапия. Для борьбы со злокачественными опухолями в организм вводится сконструированная копия гена, кодирующего мощный противоопухолевый фермент. Планируется лечить наследственные нарушения методами генной терапии.

Важное применение найдёт интересное открытие американских генетиков. В организме мышей был обнаружен ген, активизирующийся только при физической нагрузке. Учёные добились его бесперебойной работы. Теперь грызуны бегают в два раза быстрее и дольше своих сородичей. Исследователи утверждают, что такой процесс возможен и в организме человека. Если они правы, то скоро проблема лишнего веса будет решаться на генетическом уровне.

Одним из самых важных направлений генной инженерии является обеспечение больных органами для пересадки. Трансгенная свинья станет выгодным донором печени, почек, сердца, сосудов и кожи для человека. По размерам органов и физиологии она наиболее близка людям. Раньше операции по трансплантации органов свиньи человеку не удавались – организм отторгал чужеродные сахара, вырабатываемые энзимами. Три года назад в штате Вирджиния на свет появились пятеро поросят, из генетического аппарата которых удалили “лишний” ген. Проблема с пересадкой органов свиньи человеку отныне решена.

Генная инженерия открывает перед нами огромные возможности. Безусловно, риск существует всегда. Попав в руки алчущего власти фанатика, она может стать грозным орудием против человечества. Но так было всегда: водородная бомба, компьютерные вирусы, конверты со спорами сибирской язвы, радиоактивные отходы космической деятельности… Умело распорядиться знанием – это искусство. Именно им нужно овладеть в совершенстве, чтобы избежать роковой ошибки.

Опасность генетически модифицированных организмов

Специалисты-противники ГМО утверждают, что они несут три основных угрозы:

o Угроза организму человека – аллергические заболевания, нарушения обмена веществ, появление желудочной микрофлоры, стойкой к антибиотикам, канцерогенный и мутагенный эффекты.

o Угроза окружающей среде – появление вегетирующих сорняков, загрязнение исследовательских участков, химическое загрязнение, уменьшение генетической плазмы и др.

o Глобальные риски – активизация критических вирусов, экономическая безопасность.

Учёные отмечают многочисленные опасности, связанные с продуктами генной инженерии.

1. Пищевой вред

Ослабление иммунитета, возникновение аллергических реакций в результате непосредственного воздействия трансгенных белков. Влияние новых белков, которые продуцируют встроенные гены, неизвестно. Нарушения здоровья, связанные с накоплением в организме гербицидов, так как ГМ-расте-ния имеют свойство их аккумулировать. Возможность отдалённых канцерогенных эффектов (развитие онкологических заболеваний).

2. Экологический вред

Использование генетически модифицированных растений негативно сказывается на сортовом разнообразии. Для генных модификаций берутся один-два сорта, с которыми и работают. Существует опасность вымирания многих видов растений.

Некоторые радикальные экологи предупреждают, что воздействие биотехнологий может превзойти последствия ядерного взрыва: употребление генномодифицированных продуктов ведёт к расшатыванию генофонда, в результате чего возникнут мутантные гены и их носители-мутанты.

Медики считают, что влияние генномодифицированных продуктов на человека станет явным лишь через полвека, когда сменится как минимум одно поколение людей, вскормленных трансгенной едой.

Опасности мнимые

Некоторые радикальные экологи предупреждают, что многие шаги биотехнологии по своему возможному воздействию могут превзойти последствия ядерного взрыва: якобы употребление генномодифицированных продуктов ведет к расшатыванию генофонда, влекущему к появлению мутантных генов и их носителей-мутантов.

Однако, с точки зрения генетики, мы все являемся мутантами. У любых высокоорганизованных организмов определенный процент генов является мутированным. При этом большинство мутаций носит совершенно безопасный характер и никак не отражается на жизненно важных функциях их носителей.

Что же касается опасных мутаций, вызывающих генетически обусловленные заболевания, то они сравнительно хорошо исследованы. К генномодифицированным продуктам эти заболевания никакого отношения не имеют, и большинство из них сопровождает человечество с зари его появления.

Лабораторные исследования ГМО

Результаты опытов на мышах и крысах, употреблявших ГМО, плачевны для животных.

Практически все исследования в области безопасности ГМО финансируются заказчиками – зарубежными корпорациями «Монсанто», «Байер» и др. На основании именно таких исследований лоббисты ГМО утверждают, что ГМ-продукты безопасны для человека.

Однако, по мнению специалистов, исследования последствий употребления ГМ-продуктов, проведенные на нескольких десятках крыс, мышей или кроликов на протяжении нескольких месяцев нельзя считать достаточными. Хотя результаты даже таких испытаний не всегда однозначны.

o Первое предмаркетинговое исследование ГМ-растений на безопасность для человека, проведенное в США в 1994 г. на ГМ-томате, послужило основанием для разрешения не только его продажи в магазинах, но и для «облегченной» проверки последующих ГМ-культур. Однако «положительные» результаты этого исследования критикуются многими независимыми специалистами. Кроме многочисленных нареканий по поводу методики проведения испытаний и полученных результатов, у него есть и такой «изъян» – в течение двух недель после его проведения 7 из 40 подопытных крыс умерли, и причина их смерти неизвестна.

o Согласно внутреннему докладу «Монсанто», обнародованному со скандалом в июне 2005 г., у подопытных крыс, которых кормили ГМ-кукурузой нового сорта MON 863, возникли изменения в кровеносной и иммунной системах.

Особо активно заговорили о небезопасности трансгенных культур с конца 1998 года. Британский иммунолог Арманд Пуцтаи (Armand Putztai) в телевизионном интервью заявил о снижении иммунитета у крыс, которых кормили модифицированным картофелем. Также "благодаря" меню, состоящему из ГМ-продуктов, у подопытных крыс обнаружили уменьшение объема мозга, разрушение печени и подавление иммунитета.

Согласно данным отчета Института питания РАМН 1998 г., у крыс, получавших трансгенный картофель компании «Монсанто», как через месяц, так и через шесть месяцев эксперимента наблюдались: статистически достоверное снижение массы тела, анемия и дистрофические изменения печеночных клеток.

Но не стоит забывать, что тестирование на животных – это только первая ступень, а не альтернатива исследованию на человеке. Если производители ГМ-продуктов утверждают, что они безопасны, это должно быть подтверждено исследованиями на людях-добровольцах с помощью двойного слепого метода испытаний с контролем плацебо, подобно испытанию лекарств.

Судя по отсутствию публикаций в рецензируемой научной литературе, клинических испытаний пищевых ГМ-продуктов на людях никогда не проводилось. Большинство попыток установить безопасность ГМ-продуктов питания являются косвенными, но и они заставляют задуматься.

В 2002 г. в США и в скандинавских странах был проведен сравнительный анализ частоты заболеваний, связанных с качеством продуктов питания. Население сравниваемых стран имеет достаточно высокий уровень жизни, близкую продуктовую корзину, сопоставимые медицинские услуги. Оказалось, что за несколько лет после широкого выхода ГМО на рынок в США было зафиксировано в 3–5 раз больше пищевых заболеваний, чем, в частности, в Швеции .

Единственным существенным отличием в качестве питания является активное употребление в пищу ГМ-продуктов населением США и их практическое отсутствие в рационе шведов.

В 1998 году Международное общество «Врачи и ученые за ответственное применение науки и технологии» (Physiсians and Scientists for Responsible Application of Science and Technology (PSRAST)) приняло Декларацию, в которой говорится о необходимости объявить всемирный мораторий на выпуск в окружающую среду ГМО и продуктов питания из них до тех пор, пока не будет накоплено достаточно знаний, чтобы определить, оправдана ли эксплуатация этой технологии и насколько она безвредна для здоровья и окружающей среды.

По состоянию на июль 2005 г. под документом поставили свои подписи 800 ученых из 82 стран мира. В марте 2005 г. Декларация была широко распространена в виде открытого письма с призывом к мировым правительствам остановить использование ГМО, так как они «несут угрозу и не способствуют экологически устойчивому использованию ресурсов».


Последствия употребления ГМ продуктов для здоровья человека

Ученые выделяют следующие основные риски потребления в пищу генетически модифицированных продуктов:

1. Угнетение иммунитета, аллергические реакции и метаболические расстройства, в результате непосредственного действия трансгенных белков.

Влияние новых белков, которые продуцируют встроенные в ГМО гены, неизвестно. Человек их раньше никогда не употреблял и поэтому не ясно, являются ли они аллергенами.

Показательным примером является попытка скрещивания генов бразильского ореха с генами соевых бобов – задавшись целью повысить питательную ценность последних, было увеличено в них содержание протеина. Однако, как выяснилось впоследствии, комбинация оказалась сильным аллергеном, и ее пришлось изъять из дальнейшего производства.

В Швеции, где трансгены запрещены, болеют аллергией 7% населения, а в США, где они продаются даже без маркировки, - 70,5%.

Также по одной из версий, эпидемия менингита среди английских детей была вызвана ослаблением иммунитета в результате употребления ГМ-содержащих молочного шоколада и вафельных бисквитов.

2. Различные нарушения здоровья в результате появления в ГМО новых, незапланированных белков или токсичных для человека продуктов метаболизма.

Уже существуют убедительные доказательства нарушения стабильности генома растения при встраивании в него чужеродного гена. Все это может послужить причиной изменения химического состава ГМО и возникновения у него неожиданных, в том числе токсических свойств.

Например, для производства пищевой добавки триптофан в США в конце 80-х гг. XX века была создана ГМH-бактерия. Однако вместе с обычным триптофаном, по невыясненной до конца причине, она стала вырабатывать этилен-бис-триптофан. В результате его употребления заболело 5 тысяч человек, из них – 37 человек умерло, 1500 стали инвалидами.

Независимые эксперты утверждают, что генно-модифицированные культуры растений выделяют в 1020 раз больше токсинов, чем обычные организмы.

3. Появление устойчивости патогенной микрофлоры человека к антибиотикам.

При получении ГМО до сих пор используются маркерные гены устойчивости к антибиотикам, которые могут перейти в микрофлору кишечника, что было показано в соответствующих экспериментах, а это, в свою очередь, может привести к медицинским проблемам – невозможности вылечивать многие заболевания.

В ЕС с декабря 2004 г. запрещена продажа ГМО с использованием генов устойчивости к антибиотикам. Всемирная организация здравоохранения (ВОЗ) рекомендует производителям воздержаться от использования этих генов, однако корпорации от них полностью не отказались. Риск таких ГМО, как отмечается в оксфордском Большом энциклопедическом справочнике, достаточно велик и «приходится признать, что генная инженерия не настолько безобидна, как это может показаться на первый взгляд»

4. Нарушения здоровья, связанные с накоплением в организме человека гербицидов.

Большинство известных трансгенных растений не погибают при массовом использовании сельскохозяйственных химикатов и могут их аккумулировать. Есть данные о том, что сахарная свекла, устойчивая к гербициду глифосат, накапливает его токсичные метаболиты.

5. Сокращение поступления в организм необходимых веществ.

По мнению независимых специалистов, до сих пор нельзя точно сказать, например, является ли состав обычных соевых бобов и ГМ-аналогов эквивалентным или нет. При сравнении различных опубликованных научных данных выясняется, что некоторые показатели, в частности, содержание фитоэстрогенов, в значительной степени разнятся.

6. Отдаленные канцерогенный и мутагенный эффекты.

Каждая вставка чужеродного гена в организм – это мутация, она может вызывать в геноме нежелательные последствия, и к чему это приведет – никто не знает, и знать на сегодняшний день не может.

По данным исследований британских ученых в рамках государственного проекта «Оценка риска, связанного с использованием ГМО в продуктах питания для человека» обнародованных в 2002 г., трансгены имеют свойство задерживаться в организме человека и в результате так называемого «горизонтального переноса» встраиваться в генетический аппарат микроорганизмов кишечника человека. Ранее подобная возможность отрицалась.

Исследования безопасности ГМО

Появившаяся в начале 1970-х годов технология рекомбинантных ДНК (en:Recombinant DNA) открыла возможность получения организмов, содержащих инородные гены (генетически модифицированных организмов). Это вызвало обеспокоенность общественности и положило начало дискуссии о безопасности подобных манипуляций.

В 1974 году в США была создана комиссия из ведущих исследователей в области молекулярной биологии для исследования этого вопроса. В трех наиболее известных научных журналах (Science, Nature, Proceedings of the National Academy of Sciences) было опубликовано так называемое «письмо Брега», которое призывало ученых временно воздержаться от экспериментов в этой области.

В 1975 году прошла Асиломарская конференция, на которой биологами обсуждались возможные риски связанные с созданием ГМО.

В 1976 году Национальным институтом здоровья была разработана система правил, строго регламентировавшая проведение работ с рекомбинантными ДНК. К началу 1980-х годов правила были пересмотрены в сторону смягчения.

В начале 1980-х годов в США были получены первые линии ГМО предназначенные для коммерческого использования. Правительственными организациями, такими как NIH (Национальный институт здоровья, en:National Institutes of Health) и FDA (Управление по контролю за качеством пищевых продуктов, медикаментов и косметических средств, en:Food and Drug Administration была проведена всесторонняя проверка этих линий. После того, как была доказана безопасность их применения, эти линии организмов получилии допуск на рынок.

В настоящее время в среде специалистов преобладает мнение об отсутствии повышенной опасности продуктов из генетически модифицированных организмов в сравнении с продуктами полученных из организмов, выведенных традиционными методами (см. дискуссию в журнале Nature Biotechnology).

В РФ Общенациональная Ассоциация генетической безопасности и Управление Делами Президента РФ выступили за «проведения публичного эксперимента с целью получения доказательной базы вредности или безвредности генетически модифицированных организмов для млекопитающих.

Публичный эксперимент будет проходить под наблюдением специально созданного Научного Совета, в который войдут представители различных научных Институтов России и других стран. По результатам отчётов специалистов будет подготовлено Общее Заключение с приложением всех протоколов испытаний».

В дискуссии о безопасности использования трансгенных растений и животных в сельском хозяйстве участвуют правительственные комиссии и неправительственные организации, например «Гринпис».


Как регулируется производство и продажа ГМО в мире?

На сегодня в мире нет точных данных как о безопасности продуктов, содержащих ГМО, так и о вреде их употребления, поскольку длительность наблюдений за последствиями употребления генетически модифицированных продуктов человеком мизерна – массовое производство ГМО началось совсем недавно – в 1994 году. Тем не менее, все больше ученых говорят о существенных рисках употребления ГМ-продуктов.

Поэтому ответственность за последствия решений, касающихся регулирования производства и сбыта генетически измененных продуктов, лежит исключительно на правительствах конкретных стран. К этому вопросу в мире подходят по-разному. Но, независимо от географии, наблюдается интересная закономерность: чем меньше в стране производителей ГМ-продукции, тем лучше защищены права потребителей в данном вопросе.

Две трети всех ГМ культур в мире выращиваются в США, поэтому не удивительно, что в этой стране самые либеральные законы в отношении ГМО. Трансгены в США признаны безопасными, приравнены к обычным продуктам, а маркировка продуктов, содержащих ГМО – необязательна. Подобная ситуация и в Канаде – третьей по объемам производства ГМ-продуктов в мире. В Японии продукты, содержащие ГМО, подлежат обязательной маркировке. В Китае ГМО-продукты производятся нелегально, и осуществляется их сбыт в другие страны. А вот страны Африки последние 5 лет не допускают на свою территорию ввоза продуктов с ГМ компонентами. В странах Евросоюза, к которому мы так стремимся, запрещено производство и ввоз на территорию детского питания, содержащего ГМО, и продажа продуктов с генами, устойчивыми к антибиотикам. В 2004 году был снят мораторий на выращивание ГМ культур, но в то же время разрешение на выращивание было выдано только на один сорт трансгенных растений. При этом у каждой страны ЕС сегодня осталось право вводить запрет на тот или иной вид трансгена. В некоторых странах ЕС действует мораторий на ввоз генетически модифицированной продукции.

Любой продукт, содержащий ГМО, прежде чем попасть на рынок Евросоюза, должен пройти единый для всего ЕС порядок допуска. Он состоит, по существу, из двух ступеней: научная оценка безопасности Европейским ведомством по безопасности продуктов питания (EFSA) и его независимыми экспертными органами.

Если продукт содержит ГМ ДНК или белок, об этом граждан ЕС должно информировать специальное обозначение на этикетке. Надписи «этот продукт содержит ГМО» или «ГМ-продукт такой-то» должны быть как на этикетке продукции, продающейся в упаковке, так и для неупакованной продукции в непосредственной близости к ней на витрине магазина. Правила предписывают указывать сведения о наличии трансгенов даже в ресторанных меню. Продукт не маркируется только в том случае, если содержание в нем ГМО не более 0,9% и соответствующий производитель может объяснить, что речь идет о случайных, технически неизбежных примесях ГМО.

В России выращивать ГМ-растения в промышленных масштабах запрещено, но некоторые импортные ГМО прошли государственную регистрацию в РФ и официально разрешены для употребления – это несколько линий сои, кукурузы, картофеля, линия риса и линия сахарной свеклы. Все остальные ГМО, существующие в мире (около 100 линий), в России запрещены. Разрешенные в России ГМО могут применяться в любом продукте (в том числе и в детском питании) без ограничений. Но если производитель добавляет в продукт ГМО-компоненты.

Список международных производителей, замеченных в использовании ГМО

"Greenpeace" обнародовал список компаний, которые используют в своей продукции ГМО. Интересно, что в разных странах эти компании ведут себя по-разному, в зависимости от законодательства конкретной страны. Например, в США, где производство и продажа продукции с ГМ-компонентами никак не ограничены, эти компании в своей продукции ГМО используют, а вот, к примеру, в Австрии, являющейся членом Евросоюза, где действуют довольно суровые законы по отношению к ГМО, – нет.

Список иностранных компаний, замеченных в использовании ГМО:

Kellogg’s (Келлогс) - производство готовых завтраков, в том числе кукурузных хлопьев.

Nestle (Нестле) - производство шоколада, кофе, кофейных напитков, детского питания.

Unilever (Юнилевер) - производство детского питания, майонезов, соусов и т.д.

Heinz Foods (Хайенц Фудс) - производство кетчупов, соусов.

Hershey’s (Хёршис) - производство шоколада, безалкогольных напитков.

Coca-Cola (Кока-Кола) - производство напитков Кока-Кола, Спрайт, Фанта, тоник «Кинли».

McDonald’s (Макдональдс) - «рестораны» быстрого питания.

Danon (Данон) - производство йогуртов, кефира, творога, детского питания.

Similac (Симилак) - производство детского питания.

Cadbury (Кэдбери) - производство шоколада, какао.

Mars (Марс) - производство шоколада Марс, Сникерс, Твикс.

PepsiCo (Пепси-Кола) - напитки Пепси, Миринда, Севен-Ап.

Продукты, содержащие ГМО

Генномодифицированные растения Спектр применения ГМО в продуктах питания довольно обширный. Это могут быть мясные и кондитерские изделия, в состав которых входит соевый текстурат и соевый лецитин, также плодоовощная продукция, например консервированная кукуруза. Основной поток генетически модифицированных культур составляют ввозимые из-за рубежа соя, кукуруза, картофель, рапс. Они попадают к нам на стол или в чистом виде, или в качестве добавок в мясных, рыбных, хлебобулочных и кондитерских изделиях, а также в детском питании.

Например, если в состав продукта входит растительный белок, то это, скорее всего, соя, и существует большая вероятность, что генетически модифицированная.

К сожалению, на вкус и на запах присутствие ГМ-ингредиентов определить невозможно – выявить ГМО в продуктах питания позволяют только современные методы лабораторной диагностики.

Самые распространенные ГМ сельскохозяйственные растения:

Соя, кукуруза, рапс (канола), помидоры, картошка, сахарная свекла, клубника, кабачки, папайя, цикорий, пшеница.

Соответственно существует большая вероятность встретить ГМО в продуктах, которые производят с применением этих растений.

Черный список продуктов, в которых используют ГМО чаще всего

ГМ соя может входить в состав хлеба, печенья, детского питания, маргарина, супов, пиццы, еды быстрого приготовления, мясных продуктов (например, вареной колбасы, сосисок, паштетов), муки, конфет, мороженого, чипсов, шоколада, соусов, соевого молока и т.д.ГМ кукуруза (маис) может быть в таких продуктах как еда быстрого приготовления, супы, соусы, приправы, чипсы, жвачка, смеси для пирожных.

ГМ крахмал может содержаться в очень большем спектре продуктов, в том числе и в тех, которые любят дети, например, в йогуртах.

70% популярных марок детского питания содержат ГМО.

Около 30% кофе - генетически модифицировано. Та же ситуация с чаем.

Генетически модифицированные пищевые добавки и ароматизаторы

Е101 и Е101А (В2, рибофлавин) – добавляется в каши, безалкогольные напитки, детское питание, продукты для похудения; Е150 (карамель); Е153 (карбонат); Е160а (бета-каротин, провитамин А, ретинол); Е160b (аннатто); Е160d (ликопин); Е234 (низин); Е235 (натамицин); Е270 (молочная кислота); Е300 (витамин С – аскорбиновая кислота); с Е301 по Е304 (аскорбаты); с Е306 по Е309 (токоферол / витамин Е); Е320 (ВНА); Е321 (ВНТ);Е322 (лецитин); с Е325 по Е327 (лактаты); Е330 (лимонная кислота); Е415 (ксантин); Е459 (бета-циклодекстрин); с Е460 по Е469 (целлюлоза); Е470 и Е570 (соли и жирные кислоты); эфиры жирных кислот (Е471, Е472a&b, Е473, Е475, Е476, Е479b); Е481 (стеароил-2-лактилат натрия); с Е620 по Е633 (глютаминовая кислота и глютоматы); с Е626 по Е629 (гуаниловая кислота и гуанилаты); с Е630 по Е633 (инозиновая кислота та инозинаты); Е951 (аспартам); Е953 (изомальтит); Е957 (тауматин); Е965 (малтинол).

применение генетика модификация организм


Заключение

Когда речь заходит о генетически модифицированных продуктах, воображение тут же рисует грозных мутантов. Легенды об агрессивных, вытесняющих из природы своих ородичей трансгенных растениях, которые Америка забрасывает в доверчивую Россию, неискоренимы. Но, может быть, нам просто не хватает информации?

Во-первых, многие просто не знают, какие продукты являются генетически модифицированными, или, по-иному, трансгенными. Во-вторых, путают их с пищевыми добавками, витаминами и гибридами, полученными в результате селекции. А почему употребление трансгенных продуктов вызывает такой брезгливый ужас у многих людей?

Трансгенные продукты произведены на базе растений, в которых искусственным путем были заменены в молекуле ДНК один или несколько генов. ДНК - носитель генной информации - точно воспроизводится при делении клеток, что обеспечивает в ряду поколений клеток и организмов передачу наследственных признаков и специфических форм обмена веществ.

Генетически модифицированные продукты - большой и перспективный бизнес. В мире уже сейчас 60 миллионов гектаров занято под трансгенные культуры. Их выращивают в США, Канаде, Франции, Китае, Южной Африке, Аргентине (в России пока их нет, только на экспериментальных участках). Однако продукты из вышеперечисленных стран к нам ввозятся - та же соя, соевая мука, кукуруза, картофель и другие.

По объективным причинам. Население земли растет год от года. Некоторые ученые считают, что через 20 лет нам придется кормить на два миллиарда человек больше, чем сейчас. А уже сегодня хронически голодают 750 миллионов.

Сторонники употребления генетически модифицированных продуктов считают, что они безвредны для человека и даже имеют преимущества. Главный аргумент, который приводят в защиту ученые эксперты всего мира, гласит: “ДНК из генетически модифицированных организмов так же безопасна, как и любая ДНК, присутствующая в пище. Ежедневно вместе с едой мы употребляем чужеродные ДНК, и пока механизмы защиты нашего генетического материала не позволяют в существенной степени влиять на нас”.

По мнению директора центра “Биоинженерия” РАН академика К. Скрябина, для специалистов, занимающихся проблемой генной инженерии растений, вопрос безопасности генно-модифицированных продуктов не существует. А трансгенную продукцию лично он предпочитает любой другой хотя бы потому, что ее более тщательно проверяют. Возможность непредсказуемых последствий вставки одного гена теоретически предполагается. Чтобы исключить ее, подобная продукция проходит жесткий контроль, причем, как утверждают сторонники, результаты такой проверки вполне надежны. Наконец нет ни одного доказанного факта вреда трансгенной продукции. Никто от этого не заболел и не умер.

Всевозможные экологические организации (например, "Гринпис"), объединение “Врачи и ученые против генетически модифицированных источников питания” считают, что рано или поздно “пожинать плоды” придется. Причем, возможно, не нам, а нашим детям и даже внукам. Как "чужие", не свойственные традиционным культурам гены повлияют на здоровье и развитие человека? В 1983 году США получили первый трансгенный табак, а широко и активно использовать в пищевой промышленности генно-модифицированное сырье начали всего какие-нибудь пять-шесть лет назад. Что будет через 50 лет, сегодня никто предсказать не в состоянии. Вряд ли мы превратимся в, например, "людей-свиней". Но есть и более логичные доводы. Скажем, новые медицинские и биологические препараты разрешаются к использованию на людях только после многолетних проверок на животных. Трансгенные продукты поступают в свободную продажу и уже охватывают несколько сотен наименований, хотя созданы они были всего несколько лет назад. Противники трансгенов подвергают сомнению и методы оценки таких продуктов на безопасность. В общем, вопросов больше, чем ответов.

Сейчас 90 процентов экспорта трансгенных пищевых продуктов составляют кукуруза и соя. Что это значит применительно к России? То, что попкорн, которым повсеместно торгуют на улицах, стопроцентно изготовлен из генетически модифицированной кукурузы, и маркировки на ней до сих пор не было. Если вы закупаете соевые продукты из Северной Америки или Аргентины, то на 80 процентов это генетически измененная продукция. Отразится ли массовое потребление таких продуктов на человеке через десятки лет, на следующем поколении? Пока нет железных аргументов ни "за", ни "против". Но наука не стоит на месте, и будущее - за генной инженерией. Если генетически измененная продукция повышает урожайность, решает проблему нехватки продовольствия, то почему бы и не применять ее? Но в любых экспериментах нужно соблюдать предельную осторожность. Генетически модифицированные продукты имеют право на существование. Абсурдно считать, что российские врачи и ученые разрешили бы к широкой продаже продукты, наносящие вред здоровью. Но и потребитель имеет право выбора: покупать ли генетически модифицированные помидоры из Голландии или дождаться, когда на рынке появятся местные томаты. После долгих дискуссий сторонников и противников трансгенных продуктов было принято соломоново решение: любой человек должен выбрать сам, согласен он есть генетически модифицированную пищу или нет. В России давно ведутся исследования по генной инженерии растений. Проблемами биотехнологий занимаются несколько научно-исследовательских институтов, в том числе Институт общей генетики РАН. В Подмосковье на экспериментальных площадках выращивают трансгенную картошку и пшеницу. Однако хотя вопрос об указании на генетически измененные организмы и обсуждается в Минздраве РФ (этим занимается ведомство главного санитарного врача России Геннадия Онищенко), до законодательного оформления ему еще далеко.


Список использованной литературы

1. Клещенко Е. «ГМ-продукты: битва мифа и реальности» - журнал «Химия и жизнь»

2.http://ru.wikipedia.org/wiki/Исследования_безопасности_генетически_модифицированных_продуктов_и_организмов

3. http://www.tovary.biz/ne_est/


Существует множество заблуждений относительно опасности использования в пищу генетически модифицированных продуктов. И большинство из этих заблуждений имеет под собой нравственно-этическую и религиозную основу. Долг учёных – разъяснять в доступной для обывателей форме все плюсы и минусы использования генно-модифицированных источников пищевой продукции (далее ГМИ) с целью предотвращения необоснованно отрицательного восприятия достижений генной инженерии и предоставления возможности каждому производить осознанный выбор продуктов питания, необходимых для жизнедеятельности.

Организмы, подвергшиеся генетической трансформации, называются трансгенными. Но не все трансгенные организмы могут стать ГМИ пищевой продукции. Если такие организмы способны к воспроизводству и передаче новой генетической информации, то они являются генно-модифицированными (далее ГМО).

Рассмотрим предпосылки создания ГМО. Увеличение численности населения Земли приводит к потребности в организмах с заданными свойствами: устойчивостью к засухе, холоду, вредителям, проч.; высокой урожайностью; крупными плодами; др. Кроме того, развитие биологической науки и технологий создали условия для реализации этих целей.

Трансгенные растения в зависимости от признаков, контролируемых перенесёнными генами, делятся на:

Устойчивые к гербицидам;
- устойчивые к насекомым-вредителям;
- устойчивые к гербицидам и насекомым вредителям;
- устойчивые к вирусам, бактериальной и грибной инфекции;
- устойчивые к абиотическим факторам (холоду, жаре, засухе, проч);
- растения для пищевой и фармацевтической промышленности;
- растения для очистки почв, вод и т.д.

Выведение организмов, обладающих этими свойствами, возможно с использованием традиционной селекции и генной инженерии.

Традиционная селекция растений в течение длительного периода времени отбирает из поколений растений организмы с желаемыми свойствами и путём их скрещивания усиливает проявление этих свойств.

Генная инженерия, используя технику и технологию современной молекулярной биологии, внедряет в гены участки, отвечающие за те или иные свойства, вызывая тем самым проявление этих свойств у новых поколений растений.

При этом генная инженерия использует следующие основные методики трансформации растений:

использование особых ферментов, способных распознавать участки ДНК, расщеплять их на участки и сшивать в другой последовательности. Данная методика была использована на заре развития генной инженерии;

метод биологической баллистики: внедряемые в ДНК гены наносятся на вольфрамовые или золотые частица, а особые биологические пушки выстреливают этими частицами по направлению к хромосомам – молекулам-мишеням. Сегодня это самая распространённая методика.

Любые продовольственное сырьё или продукт питания можно исследовать на предмет выявления присутствия в них ГМИ. "Для обнаружения специфических участков нуклеиновых кислот используются два основных направления: непосредственное выявление искомой молекулы-мишени с использованием меченых гибридизационных систем и детекция молекул-мишеней после предварительного увеличения их количества".

Какие потенциальные опасности рассматриваются при использовании генно-модифицированных культур? Если допустить бесконтрольное использование трансгенных организмов в хозяйственной деятельности и их распространение природе, то возможны следующие последствия:

Нежелательные гены путём свободного скрещивания будут перенесены в дикорастущие виды, и дикорастущие виды станут терпимыми к гербицидам, вирусам и насекомым, проч. (биологическая опасность использования ГМИ);

Пищевые растения изменят биологическую и пищевую ценность, будут вызывать мутации, аллергии, станут токсичными для животных и человека (пищевая опасность ГМИ).

С целью снижения или исключения потенциального риска для живой природы и здоровья человека от применения ГМИ пищи необходимо осуществлять:

Контроль за генно-инженерной деятельностью, производством, выпуском и реализацией ГМО;

Медико-генетическую, технологическую и медико-биологичес-кую оценку ГМИ;

Мониторинговые мероприятия.

С целью контроля биобезопасности ГМИ производят следующее. Сначала изучают встроенную в ген конструкцию и сравнивают её с заявленной. Потом выясняют, так ли встроенный ген влияет на свойства растения, как заявлено. Обращают особое внимание на перенос генов бесполым и половым путём. Изучают подверженность трансгенных организмов болезням, а так же, что может произойти, если внедрённые гены попадут в другие культуры путём свободного скрещивания, как изменится восприимчивость последних к болезням и вредителям, как генетический продукт повлияет на другие виды растений и животных.

Экспертизу пищевой продукции из ГМИ осуществляют по следующим направлениям.

Последовательно производят медико-генетическую оценку (изучение заявленного внедрённого гена на молекулярном и клеточном уровне и его влияния на растение, другие растения, животных, человека), технологическую оценку (изучение органолептических, потребительских и технологических свойств продукта из ГМИ) и медико-биологическую оценку. По результатам медико-биологической оценки проходят клинические испытания, выдаётся заключение о качестве и безопасности продукции из ГМИ. Когда первая продукция из нового ГМИ была апробирована, производят гигиенический мониторинг, и, если его результаты положительны, то даётся разрешение на широкое применение ГМИ для пищевых целей.

Медико-биологическая оценка включает:

Изучение химического состава,
- оценку биологической ценности и усвояемости на лабораторных животных,
- токсикологические исследования на лабораторных животных (5-6 мес),
- оценка алергенных, мутагенных свойств и воздействия на репродуктивные функции лабораторных животных.

В настоящее время в России прошли полный цикл всех необходимых исследований и разрешены для использования в пищевой промышленности и реализации населению 11 видов пищевой продукции растительного происхождения, полученных с применением трансгенных технологий: 3 линии сои, устойчивые к пестицидам; 3 линии кукурузы, устойчивые к пестицидам; 2 линии кукурузы, устойчивые к вредителям; 2 сорта картофеля, устойчивых к колорадскому жуку, и 1 линия сахарной свеклы, устойчивой к глифосату.

В соответствии с Постановлением главного государственного санитарного врача РФ №149 от 16.09. 2003 г. "О проведении микробиологической и молекулярно-генетической экспертизы генетически модифицированных микроорганизмов, используемых в производстве пищевых продуктов" санитарно-эпидемиологической экспертизе в ГУ НИИ питания РАМН и ГУ НИИЭМ им. Н.Ф. Гамалеи РАМН также подлежит следующая продукция, полученная с использованием генетически модифицированных микроорганизмов.

1. Сыры, полученные с использованием дрожжевых затравок, экспрессирующих рекомбинантный химозин.

2. Пиво, полученное с использованием генетически модифицированных дрожжей.

3. Молочная продукция, полученная с использованием "стар-терных" культур.

4. Копченые колбасы, полученные с использованием "стартер-ных" культур.

5. Пищевые продукты, технология приготовления которых предусматривает использование кисломолочных бактерий-продуцентов ферментов.

6. Пробиотики, содержащие генетически модифицированные штаммы.

В странах ЕС пищевая продукция, содержащая ГМИ, снабжена специальными этикетками. В США специальная маркировка не требуется, если продукция и так признана безопасной.

В России на упаковку наносится информация: Генетически модифицированная продукция, полученная из генетически модифицированных источников, содержит компоненты, полученные из генетически модифицированных источников.

Обязательной маркировке подлежат следующие продукты из ГМИ:

Из сои – концентрат белковый соевый, соевая мука, соевое молоко и т.д.;
- из кукурузы – кукурузная мука, попкорн, кукуруза консервированная и т.д.;
- из картофеля – картофель для непосредственного употребления в пищу, пюре картофельное сухое, картофельные чипсы и т.д.;
- из томатов – томатная паста, пюре, кетчупы и т.д.;
- из сахарной свёклы – меласса, пищевые волокна.

безопасность применения пищевых, технологических и биологически активных добавок

Пища, необходимая для нормального функционирования человеческого организма, состоит из основных пищевых веществ – органических и неорганических соединений, которые требуются для нормального роста, поддержания и восстановления тканей, а также для размножения. Пищевые вещества представлены макронутриентами (белками, жирами, углеводами и макроэлементами) и микронутриентами (витаминами и микроэлементами).

Однако продукты питания, изготавливаемые человеком, кроме уже названных составляющих могут включать чужеродные вещества – загрязнители продовольственного сырья и продуктов питания – уже рассмотренные нами ксенобиотики, а также специально вносимые человеком в пищу вещества – так называемые добавки.

В зависимости от своей природы, свойств и целей использования добавки подразделяются на пищевые, технологические и биологически активные, рассмотрению вопросов безопасного использования которых будет посвящена эта глава.

Пищевые добавки – это непищевые природные, идентичные природным или искусственные (синтетические) вещества, преднамеренно вводимые в пищевое сырьё, полуфабрикаты или готовые продукты с целью увеличения сроков их хранения или придания им заданных свойств.

Пищевые добавки делятся на:

Добавки, обеспечивающие органолептические свойства продуктов – улучшители консистенции, красители, ароматизаторы, вкусовые вещества;

Консерванты – антимикробные средства, антиокислители.

Токсиколого-гигиеническая оценка пищевых добавок, в процессе которой осуществляют всестороннее изучение заявленной пищевой добавки и установление её полной безопасности для потребителя, проходит в четыре этапа.

Проведение предварительной токсиколого-гигиенической оценки. В ходе этого этапа определяют химический состав и свойства пищевой добавки, определяют её назначение, методы обнаружения и утилизации, метаболизм, дают название веществу, разрабатывают технологию получения добавки, в ходе острого эксперимента рассчитывают летальную дозу.

Самый продолжительный этап токсиколого-гигиенической оценки пищевой добавки. Изучают генетическую, репродуктивную, тератогенную, субхроническую и хроническую токсичность пищевой добавки в ходе хронического эксперимента.

Генетическая токсичность вещества – это способность оказывать вредное воздействие на наследственность потребителя, т.е. вызывать нежелательные мутации. Репродуктивная токсичность вещества – это способность оказывать вредное воздействие на мужскую и женскую плодовитость и общую способность к продолжению рода. Тератогенная токсичность вещества – это способность вызывать появление уродств у эмбрионов. Хроническая токсичность вещества – это токсическое действие вещества на организм человека, которое можно выявить после потребления исследуемого вещества в течение 2-х и более лет.

Обнаружение проявления любого из названных видов токсичности у лабораторных животных требует отказа от применения заявленной пищевой добавки. Дальнейшее исследование вещества прекращается за отсутствием необходимости.

На этом этапе обобщаются результаты проведённых исследований и рассчитывают ДСП исследуемого вещества и ПДК пищевой добавки в продуктах. Данные вносятся в гигиенические нормативы.

Заключительный этап предусматривает наблюдение за пищевой добавкой для подтверждения её безопасности, внесение поправок в гигиенические нормативы.

Технологические добавки – это любые вещества или материалы, которые, не являясь пищевыми ингредиентами, преднамеренно используются при переработке сырья и получении пищевой продукции с целью улучшения технологии. В готовой пищевой продукции их должно оставаться как можно меньше – в рамках ПДК.

В пищевом производстве используется широкий спектр технологических добавок на самых разнообразных этапах технологического процесса. Рассмотрим некоторые группы:

Ускорители технологических процессов – ферменты животных, растений, микроорганизмов, синтетические. Во многих случаях нет необходимости удалять их из готового продукта;

Фиксаторы миоглобина – вещества, обеспечивающие стойкий розовый цвет мясным и рыбным изделиям;

Вещества для отбеливания муки, которые по химическим свойствам являются сильные окислители;

Улучшители качества хлеба, среди которых можно выделить: улучшители окислительного действия, повышающие газоудерживающую способность теста; улучшители восстановительного действия, увеличивающие объёмный выход хлеба; модифицированные крахмалы, улучшающие структурно-механические свойства хлеба, и т.д.;

Полирующие средства. Обработка ими карамели и драже препятствует слипанию изделий. Как полирующие средства используются вазелиновое медицинское масло, воски, жиры, парафин, тальк;

Растворители, которые используются для обезжиривания, извлечения из твёрдых тел каких-либо веществ; проч.

Многие вспомогательные материаламы пищевого производства (экстрагенты, адсорбенты, абсорбенты, др.) тоже считаются технологическими добавками. В норме, вспомогательные материалы не должны содержаться в готовых изделиях. После исполнения своего технологического назначения эти материалы выводятся из среды, в которой осуществляется процесс.

Видео: Вы едите ГМО? Узнайте что с вами будет.



Определение ГМО

Цели создания ГМО

Методы создания ГМО

Применение ГМО

ГМО - аргументы за и против

Плюсы генномодифицированных организмов

Опасность генетически модифицированных организмов

Лабораторные исследования ГМО

Последствия употребления ГМ продуктов для здоровья человека

Исследования безопасности ГМО

Как регулируется производство и продажа ГМО в мире?

Список международных производителей, замеченных в использовании ГМО

Генетически модифицированные пищевые добавки и ароматизаторы

Заключение

Список использованной литературы


Определение ГМО

Генетически модифицированные организмы – это организмы, в которых генетический материал (ДНК) изменен невозможным в природе способом. ГМО могут содержать фрагменты ДНК из любых других живых организмов.

Цель получения генетически измененных организмов – улучшение полезных характеристик исходного организма-донора (устойчивость к вредителям, морозостойкость, урожайность, калорийность и другие) для снижения себестоимости продуктов. В результате сейчас существует картофель, который содержит гены земляной бактерии, убивающей колорадского жука, стойкая к засухам пшеница, в которую вживили ген скорпиона, помидоры с генами морской камбалы, соя и клубника с генами бактерий.

Трансгенными (генномодифицированными) могут называться те виды растений , в которых успешно функционирует ген (или гены) пересаженные из других видов растений или животных. Делается это для того, чтобы растение реципиент получило новые удобные для человека свойства, повышенную устойчивость к вирусам, к гербицидам, к вредителям и болезням растений. Пищевые продукты, полученные из таких генноизмененных культур, могут иметь улучшенные вкусовые качества, лучше выглядеть и дольше храниться.

Также часто такие растения дают более богатый и стабильный урожай, чем их природные аналоги.

Генетически измененный продукт - это когда выделенный в лаборатории ген одного организма пересаживается в клетку другого. Вот примеры из американской практики: чтобы помидоры и клубника были морозоустойчивее, им "вживляют" гены северных рыб; чтобы кукурузу не пожирали вредители, ей могут "привить" очень активный ген, полученный из яда змеи.

Кстати, не надо путать термины "модифицированный" и «генномодифицированный ». Например, модифицированный крахмал, входящий в состав большинства йогуртов, кетчупов и майонезов, к продуктам с ГМО отношения не имеет. Модифицированные крахмалы - это крахмалы, которые человек усовершенствовал для своих нужд. Это может быть сделано либо физическим (воздействие температуры, давления, влажности, радиации), либо химическим способом. Во втором случае используются химреагенты, которые разрешены Минздравом РФ как пищевые добавки.

Цели создания ГМО

Разработка ГМО некоторыми учеными рассматриваются, как естественное развитие работ по селекции животных и растений. Другие же, напротив, считают генную инженерию полным отходом от классической селекции, так как ГМО это не продукт искусственного отбора, то есть постепенного выведения нового сорта (породы) организмов путем естественного размножения, а фактически искусственно синтезированный в лаборатории новый вид.

Во многих случаях использование трансгенных растений сильно повышает урожайность. Есть мнение, что при нынешнем размере населения планеты только ГМО могут избавить мир от угрозы голода, так как при помощи генной модификации можно увеличивать урожайность и качество пищи.

Противники этого мнения считают, что при современном уровне агротехники и механизации сельскохозяйственного производства уже существующие сейчас, полученные классическим путем, сорта растений и породы животных способны сполна обеспечить население планеты высококачественным продовольствием (проблема же возможного мирового голода вызвана исключительно социально-политическими причинами, а потому и решена может быть не генетиками, а политическими элитами государств.

Виды ГМО

Истоки генной инженерии растений лежат в открытии 1977 года, позволившем использовать почвенный микроорганизм Agrobacterium tumefaciens в качестве орудия введения потенциально полезных чужих генов в другие растения.

Первые полевые испытания генетически модифицированных сельскохозяйственных растений, в результате которых был выведен помидор, устойчивый к вирусным заболеваниям, были проведены в 1987 году.

В 1992 году в Китае начали выращивать табак, который «не боялся» вредных насекомых. В 1993 году генетически измененные продукты были допущены на прилавки магазинов мира. Но начало массовому производству модифицированных продуктов положили в 1994 году, когда в США появились помидоры, которые не портились при перевозке.

На сегодняшний день продукты с ГМО занимают более 80 млн. га сельхозугодий и выращиваются более чем в 20 странах мира.

ГМО объединяют три группы организмов:

oгенетически модифицированные микроорганизмы (ГММ);

oгенетически модифицированные животные (ГМЖ);

oгенетически модифицированные растения (ГМР) – наиболее распространенная группа.

На сегодня в мире существует несколько десятков линий ГМ-культур: сои, картофеля, кукурузы, сахарной свеклы, риса, томатов, рапса, пшеницы, дыни, цикория, папайи, кабачков, хлопка, льна и люцерны. Массово выращиваются ГМ-соя, которая в США уже вытеснила обычную сою, кукуруза, рапс и хлопок. Посевы трансгенных растений постоянно увеличиваются. В 1996 году в мире под посевами трансгенных сортов растений было занято 1,7 млн. га, в 2002 году этот показатель достиг 52,6 млн. га (из которых 35,7 млн. га – в США), в 2005 г ГМО-посевов было уже 91,2 млн. га, в 2006 году – 102 млн. га.

В 2006 году ГМ-культуры выращивали в 22 странах мира, среди которых Аргентина, Австралия, Канада, Китай, Германия, Колумбия, Индия, Индонезия, Мексика, Южная Африка, Испания, США. Основные мировые производители продукции, содержащую ГМО – США (68%), Аргентина (11,8%), Канада (6%), Китай (3%). Более 30% всей выращиваемой в мире сои, более 16% хлопка, 11% канолы (масличное растение) и 7% кукурузы произведены с использованием достижений генной инженерии.

На территории РФ нет ни одного гектара, который был бы засеян трансгенами.

Методы создания ГМО

Основные этапы создания ГМО:

1. Получение изолированного гена.

2. Введение гена в вектор для переноса в организм.

3. Перенос вектора с геном в модифицируемый организм.

4. Преобразование клеток организма.

5. Отбор генетически модифицированных организмов и устранение тех, которые не были успешно модифицированы.

Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды).

Чтобы встроить ген в вектор, используют ферменты - рестриктазы и лигазы. С помощью рестриктаз ген и вектор можно разрезать на кусочки. С помощью лигаз такие кусочки можно «склеивать», соединять в иной комбинации, конструируя новый ген или заключая его в вектор.

Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации. В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами. Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки. Для введения готового гена в наследственный аппарат клеток растений и животных используется процесс трансфекации.

Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование, то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детеныши с изменённым или неизменным генотипом, среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

Применение ГМО

Использование ГМО в научных целях.

В настоящее время генетически модифицированные организмы широко используются в фундаментальных и прикладных научных исследованиях. С помощью ГМО исследуются закономерности развития некоторых заболеваний (болезнь Альцгеймера, рак), процессы старения и регенерации, изучается функционирование нервной системы, решается ряд других актуальных проблем биологии и медицины.

Использование ГМО в медицинских целях.

Генетически модифицированные организмы используются в прикладной медицине с 1982 года. В этом году зарегистрирован в качестве лекарства человеческий инсулин, получаемый с помощью генетически модифицированных бактерий.

Ведутся работы по созданию генетически модифицированных растений, продуцирующих компоненты вакцин и лекарств против опасных инфекций (чумы, ВИЧ). На стадии клинических испытаний находится проинсулин, полученный из генетически модифированного сафлора. Успешно прошло испытания и одобрено к использованию лекарство против тромбозов на основе белка из молока трансгенных коз.

Бурно развивается новая отрасль медицины - генотерапия. В её основе лежат принципы создания ГМО, но в качестве объекта модификации выступает геном соматических клеток человека. В настоящее время генотерапия - один из главных методов лечения некоторых заболеваний. Так, уже в 1999 году каждый четвёртый ребенок, страдающий SCID (severe combined immune deficiency), лечился с помощью генной терапии. Генотерапию, кроме использования в лечении, предлагают также использовать для замедления процессов старения.

Генетически модифицированные организмы


Сегодня уже трудно найти человека, никогда не слышавшего слов «генетически модифицированные организмы» и «трансгеника». Из научных статей и инженерных проектов трансгенн ые организмы уже перекочевали в карикатуры и анекдоты. Но и по сей день мало кто знает, какие фундаментальные и технические проблемы понадобилось решить для их создания и какие новые проблемы они создают.

У каждого вида живых существ свой уникальный набор генов. В них записаны все врожденные черты несущего их организма: форма листа или цвет перьев, число щупалец или размер ягод. Записаны в виде последовательности определенных молекул - нуклеотидов, играющих роль букв. Это кажется странным - но не более, чем, скажем, цифровое изображение, точно так же записанное в виде некоторого текста на специальном языке.

Однако в разных компьютерах используются разные коды. А вот генетический код одинаков для всех без исключения живых существ. Гены разных видов - это разные тексты, написанные на одном и том же языке, не знающем ни диалектов, ни даже разных шрифтов. Если ген каким-то образом попадет внутрь чужой клетки, ее аппарат уверенно считает с него никогда прежде не виданный белок. Например, наши клетки, зараженные вирусом гриппа, усердно вырабатывают записанные в его генах белки - скажем, нейраминидазу, вызывающую у нас тошноту и головную боль.

Сеанс игры вслепую

Сразу, как только это выяснилось, у ученых возник соблазн поиграть в генетический конструктор: взять ген из одного организма и перенести в другой. Но легко сказать «взять и перенести» - каждая «буква», которыми записан генетический текст, состоит всего из нескольких атомов. Объекты такого размера нельзя увидеть ни в какой микроскоп - их размер намного меньше длины световой волны. А ведь нужно было не только опознать в клетке определенный ген, но и аккуратно вырезать его, перенести внутрь другой клетки, вставить в одну из ее хромосом. И еще сделать так, чтобы он там попал в «считывающее устройство» - ведь в каждый момент в клетке работают лишь немногие из имеющихся в ней генов, и мы до сих пор не вполне понимаем, как она выбирает, какие гены считывать. На обзаведение инструментами, позволяющими хотя бы приступить к решению этих задач, у молекулярной биологии ушло почти двадцать лет.

Первый шаг к созданию трансгенн ого организма - это определение «донорского» гена. Само по себе это не так уж просто: если, скажем, нас интересует производство какого-нибудь вещества - ну, например, аминокислоты триптофана, - нужно выделить и очистить фермент , который его делает, определить его аминокислотную последовательность, «вычислить» по ней последовательность нуклеотидов в соответствующем гене (что не так-то просто: одну аминокислоту могут кодировать несколько сочетаний нуклеотидов) и найти этот ген. Впрочем, соответствие между интересующим разработчика продуктом и ответственным за него геном можно установить и другими путями, и множество генов было идентифи цировано еще до возникновения трансгеники. Что до их расшифровки, то с этой задачей, за решение которой в 70-е годы давали Нобелевские премии, сегодня успешно справляется автоматика.

Но вот нужный ген опознан, прочитан, установлено его место в геном е донора. Теперь надо его вырезать. С этого и начинается собственно генная инженерия . Ножницами для вырезания нужного гена служат специальные ферменты- рестриктазы . Вообще-то ферментов, умеющих разрезать нить ДНК, очень много, но рестриктазы рассекают ее по строго определенному сочетанию букв-нуклеотидов - своему для каждой рестриктазы (а их известно сейчас более сотни). Конечно, никто не гарантирует, что границы интересующего нас участка будут отмечены каким-либо из этих ключевых сочетаний, но, зная текст искомого гена, можно так выбрать рестриктазы, чтобы среди нарезанных ими кусочков были и те, что содержат его целиком. Кроме него в состав этих фрагментов будут, вероятно, входить обрезки соседних участков ДНК, но их можно убрать экзонуклеазами - ферментами, откусывающими по одному нуклеотиду с конца нити ДНК.

Впрочем, в последнее время появился способ скопировать нужный участок, не вырезая его, - полимеразная цепная реакция. Для нее достаточно иметь лишь затравку - маленький кусочек ДНК, соответствующий началу нужного гена. При определенных условиях эта затравка может послужить сигналом для фермента полимеразы - снять копию с гена, начинающегося этим фрагментом. Мало того - когда копия будет готова, полимеразы примутся снимать копии и с нее, и с участка, послужившего ей образцом. Копии начнут множиться лавинообразно, пока в системе не исчерпается запас свободных нуклеотидов. Это выглядит примерно как если бы в собрание сочинений Пушкина подкинули россыпь печатных букв и клочок бумаги с единственной строчкой «У лукоморья дуб зеленый...» - а через короткое время получили бы несколько сот экземпляров полного текста пролога к «Руслану и Людмиле»!

Но вот нужный ген так или иначе выделен. Теперь надо его упаковать в конверт, который доставит его внутрь чужой клетки. Обычно для этого используются природные переносчики генетической информации - вирусы и плазмиды . Последние представляют собой небольшие кольцевые молекулы ДНК, существующие в бактериальных клетках отдельно от их основного геном а. Они способны проникать из одной клетки в другую и служат бактериям чем-то вроде почтовых вирусов, позволяя им передавать друг другу полезные признаки - например, устойчивость к тому или иному антибиотику. Именно эта способность переносить гены из клетки в клетку и сделала плазмиды излюбленным инструментом генной инженерии.

Особенно удобны так называемые Ti-плазмиды, получаемые из микроорганизма Agrobacterium tumefaciens . Эта бактерия поражает стебли и листья некоторых растений, причем ее Ti-плазмиды умеют встраивать часть своей ДНК - несколько генов - в хромосому растительной клетки. Получив такой подарок, клетки начинают бурно делиться, превращаясь в разрастание рыхлой ткани (корончатый галл), и вырабатывать ряд экзотических веществ, которыми и питаются трансформировавшие их бактерии (для прочих почвенных микроорганизмов эти вещества несъедобны). По сути дела, бактерия выступает здесь как биотехнолог, вводя в геном растения гены полезных для себя признаков. Для человека же Ti-плазмиды особенно ценны именно тем, что умеют не просто доставлять нужные гены в растительную клетку, но и встраивать их внутрь ее родных хромосом.

Однако вирусы и плазмиды почти никогда не используются в биотехнологии в своем натуральном виде. Например, Ti-плазмида содержит гены растительных гормонов, заставляющих клетки растения разрастаться в рыхлую опухоль и не дающих им специализироваться - в то время как разработчики должны вырастить из генно-модифицированной клетки целое растение. Другие гены Ti-плазмиды кодируют ферменты, синтезирующие бактериальную еду - если их оставить, часть ресурсов будущего трансгенн ого растения будет уходить на производство этих ненужных человеку веществ. Кроме того, все эти гены занимают место, а оно в генетических «конвертах» дорого - увеличение размера участка ДНК, который надо доставить в клетку-мишень, резко снижает вероятность успеха. Так что перед использованием из Ti-плазмиды (как и из любого другого генетического переносчика) уже знакомыми нам инструментами вырезается всё лишнее - остаются только гены, обеспечивающие доставку «груза» по назначеннию.Такие искусственные конструкции для переноса генов на биотехнологическом жаргоне называются «векторами». Иногда, впрочем, в процессе превращения плазмиды или вируса в вектор в них кое-что и добавляют. Так, например, в векторы, созданные на основе Ti-плазмиды, добавлены регуляторные участки, позволяющие им размножаться в клетках кишечной палочки, выращивать которую в лаборатории куда проще, чем Agrobacterium tumefaciens , питающийся редкими аминокислотами.

Векторы, созданные из природных переносчиков генетической информации, решают за конструкторов еще одну задачу. Как уже говорилось, мало перенести нужный ген в другую клетку - надо еще, чтобы он там начал работать. У каждого организма есть тонкая и сложная система регуляции активности генов, следящая за тем, чтобы работали лишь те гены, продукт которых необходим в данный момент. Продукт же чужого гена клетке не нужен по определению, и никаких резонов считывать этот ген у нее нет.

С той же проблемой столкнулись когда-то и вирусы, для которых это вопрос жизни и смерти: не убедив клетку немедленно начать их считывать, они не смогут размножиться. Поэтому структурные гены вируса снабжены промотором - участком ДНК, который ферментными системами клетки воспринимается как команда начать считывание. Промотор - обычный элемент любого генетического аппарата, свои промоторы есть и у клетки-хозяина, которая регулирует активность генов, открывая и закрывая их промоторы для считывающих ферментов. Однако вирусные промоторы не подчиняются клеточным регуляторам и всегда открыты для ферментов. Так же ведут себя промоторы вышеупомянутой Ti-плазмиды. При этом один промотор заставляет клетку считывать целый ряд примыкающих к нему генов. Вектор с таким промотором не только вставляет нужные генетические тексты в геном клетки-мишени, но и заставляет ее немедленно приступить к их чтению.

Закладка «письма» в «конверт» происходит так: вектор, физически представляющий собой кольцевую молекулу ДНК, разрезают в нужном месте рестриктазами, приводят в контакт с копией выделенного гена и добавляют сшивающий фермент - лигазу. Она соединяет два отрезка ДНК - ген и вектор - снова в колечко. Теперь остается только внедрить полученную рекомбинантную ДНК в клетку-мишень. Как мы уже знаем, векторы умеют делать это сами, но им можно помочь, повысив проницаемость клеточной мембраны с помощью некоторых солей или электрического тока. Если мишенью является бактерия, то не обязательно даже встраивать нужный ген в основной геном - он может работать и в плазмиде-векторе...

Тут возникает очередная трудность: молекулярные конструкторы работают сразу с большим количеством объектов - генов, векторов, клеток-мишеней. Понятно, что каждая операция имеет не стопроцентный выход, и в итоге далеко не все клетки-мишени получают донорский ген. Трансгенн ые клетки нужно отделить от неизмененных. Для этого еще при создании рекомбинантной ДНК в вектор вместе с нужным геном встраивают ген устойчивости к какому-нибудь антибиотику. А после воздействия таких векторов клетки-мишени высевают на питательную среду, содержащую этот антибиотик. Тогда все клетки, в которые вектор не внедрился или не работает, погибнут, и останутся только трансгенн ые.

Если объектом работы были микроорганизмы, то задача выполнена: создана популяция трансгенн ых клеток, которые теперь нужно только размножить. С растениями сложнее: из культур ы клеток надо вырастить целостный организм. Но делать это растениеводы научились задолго до появления генной инженерии. Сложнее всего с животными: у них генной модификации приходится подвергать оплодотворенные яйцеклетки, причем при работе с млекопитающими их еще надо потом имплантировать суррогатной матери. Именно поэтому трансгенн ых животных создано во много раз меньше, чем растений и микробов. А до массового коммерческого разведения пока не дошло ни одно. Впрочем, последнее обстоятельство, возможно, имеет и другие причины.

Доверяй, но проверяй

Доводы против трансгенн ых организмов и продуктов в огромной степени состоят из «черного пиара», порожденного конкурентной борьбой агропромышленных корпораций, а также принципиально не проверяемых религиозно-идеологических утверждений (вроде тезиса о «вмешательстве в божественный замысел») и обычных бытовых страхов перед неизвестным. Но помимо этой информационной грязи в дискуссиях о безопасности ГМО можно разглядеть и реальные проблемы.

Самая серьезная из них - это угроза естественному биоразнообразию. Пыльца с ГМ-растений может попадать на цветы их диких предков, выпуская тем самым чужой ген в свободное плавание по дикой популяции. Если этот ген обеспечивает своим обладателям какое-нибудь жизненное преимущество (а ГМ-сорта часто отличаются от традиционных именно устойчивостью к засухе, морозу, вредителям и т. д.), то он очень быстро распространится в дикой популяции, полностью вытеснив дикую форму, - и мы, по сути дела, потеряем один из видов живых существ, восстановить который потом будет невозможно никакими мерами. То, что на месте утраченного вида будут расти его трансгенн ые родственники, дела не меняет: домашние лошади и коровы не могут заменить нам своих истребленных предков - тарпана и тура .

Впрочем, культур ные растения часто могут скрещиваться не только со своими прямыми предками, но и с близкородственными видами, многие из которых - злостные сорняки. Если к ним попадет, скажем, ген устойчивости к гербициду (а более половины всех промышленно выращиваемых в мире ГМ-растений - это сорта, устойчивые к препарату «раундап»), получится «суперсорняк», бороться с которым будет очень сложно.

Реальный способ предотвращения этих эффектов был предложен еще в 1998 году, когда лидер трансгенн ых технологий в растениеводстве компания Monsanto разработала сорт ГМ-пшеницы, который помимо устойчивости к вредителям обладал также специальным геном -терминатором: содержащие его зерна по вкусовым и питательным свойствам ничем не отличались от обычных, но при высевании не прорастали. Бесплодными были и гибриды этого сорта с традиционными пшеницами, что исключало бесконтрольное распространение трансгенн ого наследственного материала. Компанию тут же обвинили в попытке «подсадить» фермеров на ежегодные закупки семян, и на следующий год она заявила об отказе от вывода на рынок технологии гена-терминатора. Однако биотехнологи не оставили эту многообещающую идею: в нескольких лабораториях созданы хитрые генетические механизмы, позволяющие ГМ-растениям успешно скрещиваться между собой, но делающие бесплодными семена, у которых только один из родителей был трансгенн ым.

Еще острее проблема предотвращения выхода сконструированных генотипов в окружающую среду стоит, если трансгенн ые технологии применяются к животным. Рыбоводы знают: если рыбное хозяйство использует естественный водоем, то как его ни ограждай, а рано или поздно тот вид, который в нем выращивают, будет встречаться по всей реке. Между тем сейчас из уже созданных ГМ-животных ближе всего к коммерческому использованию быстрорастущий трансгенн ый лосось компании Aqua Bounty. С самого начала в его геном е было изменено число хромосом. Это позволяет исключить его скрещивание с рыбами из природных популяций - но не размножение его в природных водоемах, если он в них попадет.

Пока, однако, прецедентов генетического загрязнения окружающей среды не зафиксировано - известны только случаи появления трансгенн ых растений на полях, засеянных обычными сортами (обычно за счет переноса пыльцы). Хотя масштабы разведения трансгенн ых организмов уже сейчас огромны (помимо сельского хозяйства ГМО широко применяются в фармацевтической промышленности - в развитых странах многие препараты белковой природы, в том числе такие важнейшие, как интерферон и инсулин, производятся микроорганизмами, которым вставлены соответствующие человеческие гены), и наблюдения за ними были тщательными, а порой и пристрастными (стоит заметить, что в России пока не принят закон, разрешающий выращивать ГМ-культур ы, однако можно использовать импортные трансгенн ые культур ы; для этого продукт должен пройти медико-биологическую, медико-генетическую и технологическую экспертизы. - Ред. ). Не подтвердились и другие теор етические опасения, высказывавшиеся специалистами на заре «трансгенн ой эры». Предполагалось, например, что внедренный ген в чуждом для себя окружении может оказаться неустойчивым, склонным покидать «новую родину» и посредством вирусов распространяться по другим организмам. Вообще-то такое происходит и с «родными» генами, но ожидалось, что донорские гены будут делать это гораздо чаще. Однако прямые исследования интенсивности «горизонтального переноса» (так генетики называют обмен генетическим материалом между организмами разных видов) не выявили каких-либо отличий трансгенн ых сортов и штаммов от обычных.

Немало подозрений вызвало и то, что большинство трансгенн ых организмов несет в себе гены устойчивости к антибиотикам. Само собой напрашивалось предположение, что при поедании продуктов из таких ГМО эти гены могут быть переданы бактериям, находящимся в теле человека. Пусть даже не болезнетворным, а симбиотическим, вроде кишечной палочки, - бывает, что обычная микрофлора человеческого организма вдруг становится патогенной, и если мятежные бактерии окажутся устойчивыми к антибиотику, это сильно затруднит лечение. В начале 90-х даже появились работы, в которых сообщалось о том, что у людей, употреблявших ГМ-продукты, устойчивость патогенных микроорганизмов к антибиотикам обнаруживается чаще. Однако более тщательные исследования не подтвердили этого эффекта. Вообще до сих пор все сообщения о вреде, нанесенном людям или животным употреблением ГМ-пищи, оказывались либо выдумкой, либо неверной интерпретацией фактов. Скажем, в выступлениях против использования ГМО до сих пор встречаются ссылки на канцерогенность популярного производителя аспартама, производимого при помощи трансгенн ых бактерий. На самом деле аспартам первоначально производился двумя способами: биотехнологическим и чисто химическим. К настоящему времени второй способ полностью вытеснил первый, и весь производимый сегодня в мире аспартам - синтетический. Его канцерогенность от этого, естественно, никуда не делась, но она, как и следовало ожидать, связана со свойствами самого вещества. А не со способом его получения и уж тем более - не с трансгенн остью производящих его бактерий.

Другое дело, когда объектом генно-инженерных манипуляций становится сам человек. В последние годы большие надежды медиков были связаны с генной терапией, позволяющей исправлять генетические дефекты в клетках человеческого тела. Такое лечение уже применялось при некоторых заболеваниях - в частности, при комбинированном врожденном иммунодефиците. Эта болезнь исключает развитие у ребенка иммунной системы, обрекая его на смерть от первой попавшейся инфекции. До появления генной терапии медицина ничем не могла помочь таким младенцам.

Однако программа генно-терапевтического лечения этой болезни была закрыта в 2002 году, когда у двух из проходивших ее 11 детей была обнаружена лейкемия. Видимо, это не было случайным совпадением. Вектор с доставляемыми генами может внедриться в любой участок геном а, и у пострадавших малышей он оказался соседом гена LMO2, о котором давно известно, что его избыточная активность (которую вполне может обеспечить входящий в состав вектора мощный вирусный промотор) приводит к лейкемии. Конечно, вероятность того, что вектор внедрится именно рядом с LMO2 или другим протоонкогеном , весьма мала. Но каждому пациенту вводили примерно миллион «генетически отремонтированных» клеток, а для развития лейкемии может хватить и одного рокового попадания.

Этой истории оказалось достаточно, чтобы скомпрометировать применение в медицине вирусных векторов - но не саму идею генной терапии. Сегодня медики рассматривают возможность безвирусной доставки в клетку нужных генов. В биотехнологии такие методы давно известны: например, использование липосом (жировых пузырьков-капсул, способных проникать через клеточную мембрану) или «генной пушки» - прямого обстрела клеток микрочастицами золота с зафиксированными на их поверхности генами. Правда, эти пути свободны не только от опасностей, но и от удобств векторного переноса: вероятность встраивания переносимого таким образом гена в хромосому клетки-мишени намного меньше и при этом нет никаких гарантий, что даже в случае успешного попадания он начнет там работать. Тем не менее, по единодушному мнению медицинского сообщества, через 10-15 лет «генетический ремонт» превратится в массовую процедуру.

Конечно, никто не может сказать, что ему известны все последствия использования трансгенн ых технологий и что они ни при каких условиях не могут принести вреда. Но ведь любое из великих изобретений, легших в основу человеческой цивилизации, - огонь, топор, домашние животные, колесо, лодка - никогда не было абсолютно безопасным, и никто не мог предвидеть всех последствий его применения.

Верстовые столбы

1944 - Эвери, Мак-Леод и Маккарти показали, что «вещество наследственности» - это ДНК.

1953 - Джеймс Уотсон и Фрэнсис Крик определили структуру молекулы ДНК - двойную спираль.

1961-1966 - расшифрован генетический код - принцип записи в ДНК и РНК последовательности аминокислот в белках.

1970 - выделена первая рестриктаза.

1973 - Гобинда Корана синтезировал полноразмерный ген; Герберт Бойер и Стэнли Коэн предложили стратегию создания рекомбинантных ДНК.

1976-1977 - разработаны методы определения нуклеотидных последовательностей (секвенирования) любых ДНК.

1978 - фирма Genentech выпустила рекомбинантный инсулин, производимый человеческим геном , введенным в бактериальную клетку.

1980 - Верховный суд США вынес вердикт о законности патентования трансгенн ых микроорганизмов.

1981 - поступили в продажу автоматические синтезаторы ДНК.

1982 - в США впервые поданы заявки на проведение полевых испытаний трансгенн ых организмов; в Европе разрешена первая вакцина для животных, полученная методами генной инженерии.

1983 - для трансформации растений применены гибридные Ti-плазмиды; компания Monsanto начала создание трансгенн ых растений.

1985-1988 - разработан метод полимеразной цепной реакции (ПЦР).

1990 - в США утвержден план испытаний генной терапии с использованием человеческих клеток; официально начаты работы над всемирным проектом «Геном человека» (завершен в 2000 году).

1994 - получено первое разрешение на возделывание трансгенн ого растения (помидора сорта FlavrSavr).

1996 - началось массовое выращивание трансгенн ых растений.

1998 - Европейский Союз ввел мораторий на регистрацию новых ГМ-культур , действовавший до 2002 года.

2000 - принят Картахенский протокол по биобезопасности (вступил в силу в 2003 году), установивший наиболее общие международные нормы обращения с трансгенн ыми организмами.

Человеку давно свойственно интересоваться окружающим миром и находить объяснения тому окружающим вещам и событиям. Собственно, без этого человек не стал бы человеком. На базе верований, мифов развивалась сначала религия, а потом - и современная наука, которая уже весьма успешно объясняет окружающий мир от очень малых до впечатляющих масштабов. Но всегда оставались люди, которые противились прогрессу и распространяли устоявшиеся мифы, уверяя, что они отвечают на все вопросы и незачем двигаться дальше. Гром гремит - это Перун-громовержец злится; кто-то заболел - это Бог его наказывает, вот тебе объяснения, отстань, не задавай вопросов, а лучше помолись.
Современные мифы более глубоки и обычно связаны с наукой. Причины понятна - наука развилась (особенно в последнее время) до такой степени, что часто нужен колоссальный объем знаний, чтобы просто понять, о чем вообще идет речь. У многих людей этого объема нет или безвозвратно потерян, что и снижает их сопротивляемость к разного рода мифам нашего времени. Миф про вредность пищевых добавок Exxx; миф про полезность натурального и вредность «химии»; миф про врачей-убийц, травящих людей прививками; миф про настолько страшное ГМО, что наклейки с надписью «без ГМО» надо клеить даже на салфетки и на пачки с солью.

Что такое ГМО? Зачем они нужны? Как велика опасность и польза от их использования? Есть ли доказательства безопасности этих организмов?

Disclaimer: автор статьи не имеет отношения к биологии - не является ни биологом, ни биохимиком, ни генетиком и не обладает хоть сколько-то родственной профессией. Эта статья - всего лишь попытка разобраться с ворохом информации и реальности об одной из угроз современного мира. Так что если вы ближе к биологии и генетике, заранее предупреждаю, вы можете пострадать при чтении статьи, например, лопнуть от смеха. Фактически данная статья является компиляцией статей по теме ГМО (ссылки приведены в тексте).

Что такое ген и генотип

С самого начала определимся, о чем пойдет речь. Для начала - что такое ген? Как известно, носителем наследственной информации (генома) является ДНК - длиннющая молекула, выглядящая как двойная спираль, которая содержится в каждой клетке организма и хранит полную информацию об организме. В редких случаях (у вирусов) носителем наследственной информации является РНК.

На картинке - ДНК, обрабатываемая ДНК-лигазой (картинка из Википедии)
ДНК - колоссальная по размерам молекула, если ее спираль просто развернуть, эта линия будет длиной в несколько сантиметров. ДНК содержит последовательность генов (геном), которые вместе с условиями окружающей среды (условиями роста) и определяет фенотип - внешний вид организма (да и внутренний тоже), его особенности, особенности внутренних процессов. Каждый ген кодирует производство какого-то белка или функциональной РНК, которые впоследствии и участвуют в биохимических процессах организма.


Различных белков огромное множество с различным назначением, например, в человеческом организме есть белок гемоглобин, который используется организмом для обеспечения внутренних органов кислородом, есть инсулин, который регулирует уровень глюкозы в крови, и множество других.

Инсулин. За его производство в организме отвечает один из генов 11-ой хромосомы.
Очевидно, что у разных людей разные ДНК, ведь люди не похожи друг на друга (и не у людей тоже - фактически каждый организм, за исключением разве что самых простейших, обладает своей собственной уникальной ДНК). ДНК постоянно меняется - под воздействием внешних факторов (радиации, ультрафиолета и прочего) в ДНК возникают мутации - изменения генов, «выключение/включение» генов и прочие трансформации. По теории эволюции, наиболее удачные мутации закрепляются, особи с неудачными мутациями отсеиваются. Мутации ДНК происходят чаще, чем принято думать. Человеческое тело ежесекундно пронзается сотнями высокоэнергетических космических частиц, естественно, многие из этих частиц попадают в ДНК и вызывают в нем изменения. Многие из этих изменений исправляются самим организмом (см. выше картинку с ДНК-лигазой, которая как раз и занимается репарацией ДНК), но некоторые оказываются устойчивыми и приводят к различным мутациям. Мутации могут быть вредными (например, в клетке «ломается» механизм внутреннего контроля размножения и получается раковая клетка), могут быть нейтральными и полезными - полезные закрепляются в процессе эволюции. Отметим, что по теории эволюции закрепляются положительные мутации, то есть те, которые позволяют виду выживать в текущих условиях. Человек же закрепляет то изменение растений (и животных), которое выгодно ему, а не окружающей среде - более сочные и крупные яблоки, более дойные коровы и так далее. Для этого существует селекция и генетическая модификация.

Традиционная селекция

Поскольку ГМО сравнивается часто именно с традиционной селекцией (кстати, часто создается впечатление, что противники ГМО не знают о ее методах вообще ничего), надо обязательно упомянуть о методах традиционной селекции.
На самом деле традиционная селекция целью ставит то же самое - изменение генотипа определенного вида (в основном растений), чтобы достичь нужных человеку результатов. Селекция на растениях проста еще и тем, что растения очень склонны к изменению генотипа в зависимости от внешних условий - у них это один из методов защиты от животных и прочих вредителей, выработавшийся в процессе эволюции. Упомянем некоторые методы селекции:
  • Отбор. Самый древний и самый простой метод селекции. Сеем овощи/фрукты, собираем, оставляем только те, которые нам нужны (например, с самыми крупными плодами), опять сеем, опять растим и отбираем и так далее. Так выведена, например, антоновка. Он же очевидно и самый медленный метод селекции.
  • Полиплоидия. Дублирование хромосом в растении, что приводит к увеличению размеров клеток и всего растения. Цитата отсюда:
    В настоящее время применяют методы искусственного получения полиплоидов, воздействуя на растения разными мутагенами (в основном колхицином), разрушающими веретено деления клетки. Таким образом из диплоидных (2n) можно получить тетраплоидные (4n) формы.
    Колхицин - токсичное вещество. Его планировали для борьбы против рака из-за высокой токсичности по отношению к раковым клеткам, но запретили, когда обнаружили, что и для обычных клеток оно тоже токсично.
  • Мутагенез. Спонтанное или индуцированное получение мутантов (изменение генокода). Опять уступим место цитатам:
    http://sbio.info/page.php?id=40 :
    Индуцированные рентгеновыми лучами мутанты были выделены у многих злаков (ячменя, пшеницы, ржи и др.). Они отличаются не только повышенной урожайностью, но и укороченным побегом. Такие растения устойчивы к полеганию и имеют заметные преимущества при машинной уборке.

    http://vodospad.kiev.ua/books/book18/dubinin_16.html
    В настоящее время на базе громадного развития ядерной физики, давшей новые доступные источники излучений в виде гамма-лучей от Со60, нейтронов в ядерных реакторах и т. д., мощное влияние радиации используется в практических целях по селекции растений и микроорганизмов.Создание новых методов радиационной селекции было связано с развитием ряда научных положений в области генетики, и в первую очередь с разработкой вопроса о природе материальных основ наследственности, знание которых позволило вскрыть физическую и химическую природу воздействия радиации на наследственные структуры в клетке.

    При введении в промышленное использование исходного штамма пеницилла (штамм 1951В25) его активность составляла всего лишь около 50 единиц. Продажная стоимость пенициллина в то время была громадной. За десять лет работы методами радиационной селекции, к 1960 г., были получены штаммы с активностью до 5000 единиц. При этом получены штаммы, не выделяющие золотисто-желтого пигмента, что резко облегчило химическую очистку пенициллина. В результате пенициллин стал дешевым, общедоступным лечебным средством. То же произошло со стрептомицином. Активность исходных штаммов составляла около 200 единиц, сейчас радиационные штаммы выделяют 2000 и более единиц.
Может, подобные методы селекции уже не применяются? Пожалуйста - современный метод селекции TILLING . Зародыши пшеницы обрабатываются сильным мутагенным и канцерогенным веществом Ethyl methanesulfonate , что приводит к мутациям около половины генов растения. После чего сканированием определяется растение, в котором изменен конкретный нужный нам ген, и путем постепенного скрещивания c нормальным видом добиваются получения более-менее вменяемого растения с нужным модифицированным геном. И, скорее всего, с кучей других модифицированных генов, которые никак не проявили себя на контроле.

Таким образом, традиционная селекция широко использует такие методы: как облучение рентгеном, облучение радиацией, использование токсических веществ. Очевидно, что при этом меняется солидная часть генокода, причем никто не контролирует, что именно изменилось в коде и какие последствия эти изменения могут вызвать.

В общем, фактически единственное отличие традиционной селекции от генетической модификации в том, что в генной модификации мы знаем, что меняем, знаем, что хотим получить и целенаправленно. В традиционной - не знаем , просто смотрим, нужный получился или нет.

Аргументы за

Аргументы «за» легко найти у производителей генетически модифицированных организмов, а также просмотреть в базе данных генетических модификаций . Это и повышенная урожайность, и наличие определенных веществ (например «золотой рис» - рис с повышенным содержанием витамина A, подробнее чуть дальше), устойчивость к гербицидам, позволяющим изменять механизмы опрыскивания гербицидами посевов, выработка определенных токсинов против вредителей (например, картошка с устойчивостью к колорадскому жуку), что позволяет сократить использование тех же пестицидов, и так далее.
Страхи против ГМО обычно связаны именно с ГМО, употребляемыми в пищу. Но этим их область употребления не ограничивается. При помощи генной модификации, например, выведены: кошки, светящиеся в темноте , кошки , которые не вызывают аллергию, бактерии, вырабатывающие определенные лекарственные средства, и много других .

Аргументы против

Разберем аргументы «против», которые употребляют противники ГМО. Аргументы приведены в порядке убывания бредовости. Ниже даны комментарии по поводу.

Добавят в помидоры гены камбалы, а человек будет это есть и у него жабры вырастут

Для среднего обывателя, может, и необязательно знать, что ген и генотип - это разные вещи. И что не бывает гена помидора или гена камбалы. И что при модификации меняется не генотип, а отдельные гены, причем не искусственные, а вполне себе обычные гены (могут быть из растений или животных, а могут быть просто «включенные» гены самого растения). Но вот почему те же самые гены, съеденные отдельно в виде обычной камбалы и обычного помидора, не приводят к вырастанию жабр, а объединенные в один организм приводят - лично для меня загадка.
Кстати, шутка про помидор с геном камбалы весьма старая и является всего лишь шуткой. Самый известный генетически модифицированный помидор - это сорт Flavr Savr , модификацией которого пытались избавиться от «невкусности» магазинных помидоров - в нем просто «отключили» ген, ответственный за «слом» клеточных стенок при созревании помидора (то есть никаких новых генов не добавляли, просто сделали недействующим один из существующих, ответственный за выработку пектина). Первоначально линия была довольно популярной, но из-за истории с опытами Пуштаи (см. дальше) и начавшейся всеобщей истерии по поводу ГМО ветку закрыли, больше ГМО-помидоры на рынок не поступали никогда.

А откуда знать, что они там изменили?

Многие люди не в курсе, что все ГМО подлежат обязательной регистрации, и есть открытая база данных всех ныне существующих ГМО-организмов:http://www.isaaa.org/gmapprovaldatabase/default.asp . Как минимум указывается описание изменения.Кроме того, опять-таки стоит сравнить с традиционной селекцией, где уже точно неизвестно, какие именно части изменились в геноме.

Проблема в том, что плохая «лежкость» помидора является следствием его вкуса - главные составляющие вкуса помидора (глютамат и прочее) при высоком содержании (во вкусных зрелых помидорах) приводят к «слому» клеточных стенок из-за высокого содержания пектина, и сам помидор становится очень уязвимым - обычный садовый помидор очень трудно довезти до полок магазина, он мягкий, мнется и портится. Поэтому селекцией вывели помидор, в котором такого слома не происходит, сам помидор крепче, но вот вкус в итоге пострадал, поскольку со сломом выработки пектина в ходе традиционной селекции поломалась и выработка глютамата и прочих вкусняшек.

Надо есть только натуральную, проверенную веками пищу

Здесь объединяются два очень распространенных мифа:
  1. Иррациональная вера в «натуральное» и то, что оно обязательно лучше «искусственного». Базируется на нелепой уверенности в том, что природа создала яблоки, бананы, кукурузу, сою и так далее исключительно для потребления человеком и в них содержится идеально сбалансированный для человека набор витаминов, белков, жиров и всего прочего.
  2. Убежденность в том, что все не-ГМО продукты, продающиеся на рынках и в магазинах - неизменные в течении веков сорта, которые люди едят и выращивают уже очень давно.
Полезно знать, что практически 100% сортов продуктов, являющихся основными кормовыми для людей и животных (картошка, кукуруза, соя и так далее) насчитывают максимум несколько десятков лет истории - большинство выведены селекцией в 20-м веке и не имеют аналогов в живой природе (и в дикой природе, кстати, не выживают). Дикие яблоки выглядят как сильно уменьшенные копии своих собратьев на полках магазинов, а дикую кукурузу в природе и не встретишь уже.
Данный аргумент также удивительно слышать от людей, у которых картошка является одним из основных продуктов питания. А ведь еще каких-то 200 лет назад попытка заставить крестьян выращивать картошку вызывало неприятие вплоть до «картофельных бунтов». Место цитате :
При Екатерине II “земляная груша”, “тартуфель” начал внедряться в России как средство борьбы с голодом. 8 февраля 1765 года указом императрицы все губернаторы обязывались лично заботиться о разведении продукта. Но сельские власти отнеслись к делу формально и тихо саботировали. В отписках в Петербург сообщалось: “Оных яблоков ноне в появе не было”, “по Божескому изволению ни единого того яблока урожаю не оказалось”, “яблоко то мирянам не показалося”, “не только приплоду, но и что посажено в земле не оказалося”.
или отсюда :
Распоряжение о посеве картофеля, не имевшее принудительного характера, было сделано еще в 1837-1838 годах и не вызвало в народе никаких толков. Впоследствии же, когда волнение уже вспыхнуло, народ ухватился и за него, отыскивая в нем доказательств его убеждения в продаже крестьян какому-то господину. Награды, обещанные за посевы картофеля, были непонятны крестьянам, и они старались найти в действиях начальства какой-то особенный, тайный смысл. Будучи обеспечены в хлебе, они видели в картофеле такой же не нужных для них овощ, как и всякий другой. Награды эти могли иметь значение в губерния не хлебородных, в которых картофель мог заменить собой недостаток в хлебе.
То есть картошка, «проверенная временем», в целом не насчитывает и пары веков использования, а современные сорта - даже нескольких десятков лет (например, популярный сорт «Невский» внесен в реестр Украины только в 1984 году).
И это картошка, один из основных продуктов питания. В тему можно упомянуть весьма любимые многими мандарины, апельсины и прочие экзотические фрукты, которые массово здесь есть не могли всего-то сотню лет назад.

Любителям «натурального» можно задавать простые вопросы - зачем природа создала кучу ядовитых ягод, растений и животных, которые человеку есть нельзя? Аргумент «проверенные временем» тоже не проходит - есть пример проверенного временем и давно используемого растения, которое вызывает рак (подчеркиваю, не служит стимулирующим фактором, не сопутствующим признаком, а именно напрямую вызывает рак мочевыводящих путей).

ГМО недостаточно исследованы и нет исследований, доказывающих их полную безопасность

Читатели, которые знакомы с формальной логикой и приемами ведения дискуссий, моментально должны раскусить нелепый прием во фразе «не доказана полная безопасность». Для тех, кто не понял - гуглим «чайник Рассела». Если кратко - формально невозможно доказать полную безопасность чего-либо, по той простой причине, что принципиально невозможно доказать отсутствие чего-либо.
А существует ли и доказана ли опасность ГМО? Безусловно, существует - например, при помощи ГМО вполне можно вывести, например, помидоры с цианидом и они будут смертельно опасны. И тут читателю предоставляется очередное упражнение в логике - значит ли это, что все ГМО априори опасны и их производство и исследования следует запретить?
Более того, абсолютно безопасных продуктов не бывает. Даже банальный дигидрогена монооксид смертельно ядовит при разовом применении в объемах от 10 литров. Поэтому вопрос стоит ставить так - являются ли коммерческие ГМО-продукты более опасными, чем традиционные не-ГМО продукты. Результаты экспериментов показывают, что нет, не более опасны. И даже если предположить теоретическую опасность, то реальные положительные эффекты от применения ГМО намного превосходят гипотетический вред от него же.
И опять стоит напомнить, что продукты традиционной селекции проверяются на добровольных основаниях. То есть, как правило, не проверяются никем.

Научные исследования подтверждают вредность ГМО

Часто упоминаются в споре. Что ГМО вызывают рак; что ГМО приводит к бесплодию в третьем поколении; что ГМО вызывают желудочные проблемы. Общее у этих исследований одно - невоспроизводимость результатов. Рассмотрим некоторые исследования:

ГМО насчитывает уже более 20 лет исследований. И нет ни одного построенного по правилам научного исследования, которое бы показало опасность таких организмов именно вследствие использования генной модификации.

Greenpeace против ГМО

Да, популярная «общественная» организация Greenpeace является ярым противником ГМО и всячески протестует против его применения и исследования. Доходит вплоть до того, что самые ярые активисты уничтожают экспериментальные посевы ГМ-пшеницы - результаты пятилетней работы ученых.
Кто такие Greenpeace? Теоретически - борцы за экологию, с засильем корпораций, которые отравляют планету и так далее. Практически же это давным-давно организация, сделавшая себе имя на мифической «защите природы» и зарабатывающая деньги экологическим рэкетом. Недавно я наткнулся на эмоциональную, но любопытную статью по теме Greenpeace, факты в которой говорят сами за себя .
Но, может, Greenpeace приводит разумные аргументы против ГМО? Почитаем . Видим те же популистские лозунги про «неиследованность», а также повторение старого анекдота про помидоры с геном камбалы. (Организация, борящаяся против ГМО и при этом не отличающая ген от генома - это весьма показательно, я считаю. Подчеркиваю, это официальный сайт). Но даже они подтверждают, что ГМО исследуется уже более 20 лет.

ГМО-растение может скреститься с диким и уйти в дикую природу

ГМО-семена специально делают бесплодными, чтобы фермеры были вынуждены покупать их каждый год

Оба мифа сведены вместе, чтобы продемонстрировать, что творится в головах отдельных людей. Да-да, многие противники ГМО употребляют оба этих аргумента одновременно.
Сначала появился первый аргумент - что ГМО-растения могут взаимно оплодотворяться с дикими и уйти в дикую природу. В самом «продвинутом» варианте - что ГМО-растения сами отрастят себе ноги и сами уйдут. Всерьез рассматривать последнее не будем, но для рассмотрения самой возможности «ухода в дикую природу» должны выполняться несколько условий: наличие рядом с полями близкородственных растений, способных к взаимному опылению с гм-растениями, сам факт такого опыления и главное - что получившийся гибрид действительно выживет в дикой природе (то есть будет обладать свойствами, позволяющими ему активно бороться с сорняками и прочими растениями, которые уже занимают некультивированные земли). Поскольку ни целью селекции, ни целью гм-модификации почти никогда не является получение растения, способного выжить в дикой природе - то данную опасность следует признать серьезно преувеличенной.
Тем не менее, некоторые семена производители делают стерильными (в основном из-за обвинений предыдущего пункта). Это дало плод для спекуляций вроде «производители ГМО подсадят фермеров на свой продукт и заставят его покупать каждый год». Почему у фермеров при этом отшибет память и они забудут, как выращивать неГМО-растения и почему фермерам в данном случае будет запрещено покупать обычный селекционный (неГМО) материал - обычно не уточняется.
Так вот, фермеры, как правило, уже закупают семенной материал каждый год. Дело в том, что выращивание семенного материала и выращивание собственно продукта, который дальше идет на продажу (в хлеб, на корм скоту,...) - это разные занятия и фермерам удобнее покупать готовый семенной материал, чем выделять земли для выращивания семенного материала, тщательно контролировать его рост, обеспечивать хранение семенного материала и так далее.
Кроме того, закупка семенного материала фермерами проводится регулярно также из-за того, что гибридные (мутантные) версии растений, которые они выращивают, при семенном скрещивании с обычными (переопылении) теряют свои гибридные свойства уже во втором-третьем поколении (вырождаются) - см. закон расщепления по Менделю. Чтобы не терять свойства гибридов, их надо скрещивать исключительно между собой, то есть выделять специальные поля для этого, следить за стерильностью этих полей от негибридных вариантов - в общем, всем этим фермерам, как правило, заниматься не очень хочется, для этого есть отдельные специальные производители семенного материала.

Правительство не стало бы запрещать ГМО, если бы оно было безвредным

Данным аргумент базируется на странной уверенности, что правительство первоначальной целью ставит пользу от своего служения обществу. В большинстве же случаев (особенно в наших странах, в данном контексте я имею в виду Россию и Украину) основная цель правительства - удержание своего места, если надо будет - любой ценой. Если большинство населения не будет любить, например, самолеты - будте уверены, правительство их тоже запретит.
Да, градус истерии достиг таких высот, что правительство, например, Украины, выпустило постановление об обязательном уведомлении покупателя, содержит ли или не содержит ГМО отдельные продукты, что по букве закона ведет к таким парадоксам, как необходимость маркировки «без ГМО» даже на соли, воде и салфетках.

Здравый смысл все-таки возобладал и в Украине и в Росии подобную маркировку отменяют, а взамен вводят обязательную маркировку, если продут содержит более 0,9% ГМО .

В Индии наблюдается череда самоубийств фермеров из-за ГМО

Миф утверждает, что из-за большого распространения ГМО в Индии наблюдается череда самоубийств фермеров, которые их выращивали. На самом деле прямой связи между ГМО и самоубийствами индийских фермеров не обнаружено. Подробности .

Монополист Монсанто травит людей

ГМО-технологии это лишь орудие в монополизации мирового сельхоз. производства американским химическим концерном Монсанто. Смысл внедрения этих биотехнологий лишь в повышении прибыли любой ценой, Монсанто плевать на безопасность потребителей и природы. Они в основном выпускают на мировой рынок семена растений, генетически модифицированных для устойчивости к ими же производимым пестицидам, чтобы продавать свою канцерогенную отраву в удесятеренных дозах. Отсюда .
И вообще, Монсанто - крупный монополист, задумавший уничтожить все живое и капиталистическая организация, которая ни перед чем не остановится .
Монсанто (очень крупный производитель ГМ-модифицированных семян растений, а по совместительству - крупнейший производитель популярного гербицида Roundup - коммерческое название глифосата) регулярно обвиняется в своем монопольном положении в области ГМО. Сразу разберемся с монополизмом. Благодаря опять-таки всеобщей истерии по поводу ГМО, процедура допуска ГМО-продуктов на рынки стала такой , что коммерчески выгодно этим заниматься только крупным производителям. Мелкая биолаборатория просто не потянет такие расходы. Но тем не менее Монсанто не является единственным производителем ГМ-семян, в чем легко убедиться, если посмотреть вышеупомянутую базу данных.
Источник мифа происходит от фактического незнания процедуры применения удобрений. Почему-то утверждается, что поливать растения, устойчивые к гербициду, надо в 10 раз больше. Утверждается также, что глифосат может провоцировать рак. Последнее - правда определенные взаимосвязи обнаруживались, что, в принципе, не особо удивительно для гербицида - вещества, призванного уничтожать живые организмы (глифосат способен уничтожать растения, бактерии, но практически не действует на людей и животных, поскольку у них отсутствуют те ферменты, которые блокирует данное вещество).
Теперь факты:
  • Глифосат является самым популярным гербицидом, потому что уничтожает очень широкий спектр сорняков. Другие гербициды действуют более выборочно и их, как правило, нужно применять в комплексе.
  • Глифосат полностью уничтожает многие виды растений, попадая к ним через листву и стебли. На семена в почве не действует, в почве распадается. Постепенно также распадается и в растениях, если попал внутрь.
  • Патент Монсанто на глифосат закончился в 2000 году. Теперь его производят куча производителей, включая российских. Хотя Монсанто и остается самым крупным его производителем, монополистом она отнюдь не является.
  • Глифосат не нужно лить в удесятеренных дозах для повышения эффективности. Более того, в большинстве цивилизованных стран для превышения допусков по поливу пестицидами фермерам надо обращаться за специальным разрешением и серьезно его аргументировать.
  • Устойчивые к глифосату ГМО-растения можно полить глифосатом более обильно, но один раз и причем сделать это за несколько недель до уборки, дав глифосату время распасться. Обычные менее устойчивые растения надо поливать несколько раз и вероятность того, что глифосат попадет в созревшие плоды, выше для не генетически модифицированных сортов.
  • «Устойчивость к глифосату» также обозначает, что глифосат не попадает внутрь растения.
  • И насчет, почему устойчивость именно к глифосату. Пока что глифосат - единственный гербицид, устойчивость к которому кодируется одним геном. Поиск похожих веществ ведется, но пока без успехов.
Выводы предлагаю сделать самостоятельно.

ГМ соя с генами арахиса может вызывать у людей аллергию

Самый разумный аргумент из рассматриваемых. Действительно, если модифицированная соя будет производить белок, который есть в арахисе, то возможны негативные эффекты у людей с аллергией на арахис.
Но для ГМ обычно точно известно, что именно менялось и какой именно новый белок будет производиться, то есть случаи аллергенности можно проверить уже на этапе предварительных исследований. И в данном случае нужна не маркировка «содержит ГМО», а маркировка, какие именно белки содержит данное ГМО (видели на шоколаде надпись «может содержать арахис»? Вот нечто в таком стиле), против которой, собственно, никто и не возражает. А если человек добровольно кушает продукты, на которых написано, что у данного человека данный конкретный продукт может вызвать аллергию - то в этом виновато отнюдь не ГМО.

Уже упоминаемый инсулин для больных диабетом производится генетически модифицированными бактериями. Модификация позволила создать бактерий, производящих инсулин, полностью аналогичный человеческому, который легче усваивается в отличие от свиного инсулина (отличается от человеческого на одну аминокислоту) и от инсулина от крупного рогатого скота (отличается от человеческого на три аминокислоты).

И что?

Слово Капитану Очевидность: полный запрет ГМО приведет к серьезному падению качества инсулина для больных диабетом.


Почти вся папайя, которая сейчас выращивается в мире - это ГМ-сорта. «Натуральная» папайя была уничтожена вредителем, к которому ГМ-папайя устойчива. Так что если не хотите кушать ГМ-организмы - никогда не покупайте папайю.

Благодаря Greenpeace и прочим экологам на поля Китая только сейчас поступил «золотой рис» с повышенным содержанием витамина A. Потребовалось дополнительно 12 лет исследований, чтобы данные экологи все-таки угомонились. По приблизительным оценкам, за это время в Китае около 8 миллионов детей умерли или серьезно заболели от нехватки витамина A .

Вместо заключения

Лично я после оценки всех «за» и «против» считаю ГМО прогрессивной научной технологией, позволяющей человечеству решить некоторые актуальные проблемы, а страшилки по их поводу считаю либо очень сильно преувеличенными, либо полностью выдуманными. Подавляющее большинство предубеждений против ГМО разбиваются о тот простой факт, что в магазинах полно продуктов, полученных в результате радиационного, рентгеновского и химического мутагенеза, и это почему-то никого не смущает. Некоторые аргументов «за» и «против» ГМО рассмотрены в статье и, надеюсь, послужат поводом для дополнительных рассуждений. Более подробную информацию по теме можно собрать по приведенным ссылкам.
  1. Елена Клещенко. ГМО: городские мифы. «Химия и жизнь» №7, 2012 http://elementy.ru/lib/431731
  2. Леонид Каганов. RAZGOVOR.ORG: Хочу питаться генетически модифицированными продуктами.http://lleo.me/dnevnik/2008/02/26.html

Только зарегистрированные пользователи могут участвовать в опросе. , пожалуйста.