Батареи гальванические. Гальванические элементы: принцип действия и разновидности

Батареи гальванические. Гальванические элементы: принцип действия и разновидности

В первых опытах ученых в емкость с кислотой опускали две металлические пластины: медную и цинковую. Пластины соединяли проводником, после чего на медной пластине появлялись газовые пузырьки, а цинковая пластина стала растворяться. Было доказано, что по проводнику проходит электрический ток. Это исследование начинал итальянский ученый Гальвани, от него и получили название гальванические элементы.

После этого ученый Вольта разработал цилиндрическую форму этого элемента в виде вертикального столбика, включающего в себя набор колец меди, цинка и сукна, соединенных друг с другом, и пропитанных кислотой. Разработанный Вольтом вертикальный элемент полуметровой высоты вырабатывал напряжение, которое мог почувствовать человек.

Гальванические элементы — это источники электрической энергии, вырабатывающие электрический ток методом химического взаимодействия двух металлов в электролите. Химическая энергия в гальванических элементах преобразуется в электрический ток.

Принцип работы

Действие гальванических элементов основано на том, что два разных металла в среде электролита взаимодействуют между собой, в результате чего во внешней цепи образуется электрический ток.

Такие химические элементы сегодня называют батарейками. Величина напряжения батарейки зависит от применяемых видов металлов и от числа элементов, находящихся в ней. Все устройство батарейки расположено в металлическом цилиндре. Электроды представляют собой металлические сетки с напылением восстановителя и окислителя.

Батарейки не могут восстанавливать утраченные свойства, так как в них осуществляется прямое преобразование химической энергии окислителя и восстановителя в электрическую. Химические реагенты при функционировании батарейки постепенно расходуются, а электрический ток уменьшается.

Отрицательный вывод батарейки выполнен из цинка или лития, он теряет электроны и является восстановителем. Другой положительный вывод играет роль окислителя, его изготавливают из оксида магния или солей металлов. Состав электролита в обычных условиях не пропускает через себя электрический ток. При замыкании электрической цепи начинается распад электролита на ионы, что обуславливает появление его электрической проводимости. Электролит состоит чаще всего из раствора кислоты или солей натрия и калия.

Виды и особенности устройства

Батарейки широко используются для питания разных электронных устройств, приборов, цифровой техники и делятся на три вида:

  1. Щелочные.
  2. Солевые.
  3. Литиевые.
Солевые гальванические элементы

Такие батарейки относятся к марганцево-цинковым элементам питания, и являются наиболее применяемыми в настоящее время.

Достоинствами солевых батареек являются:

  • Приемлемые электрические параметры для многих областей использования.
  • Удобство применения.
  • Малая цена ввиду небольших расходов на изготовление.
  • Простая технология изготовления.
  • Дешевое и доступное сырье.

Длительное время этот вид батареек является наиболее популярным, благодаря соотношению качества и цены. Однако в последние годы заводы изготовители уменьшают производство солевых гальванических элементов, и даже отказываются от выпуска, так как требования к источникам питания повышаются производителями электронной техники.

Недостатками солевых батареек являются:

  • Малый срок хранения, не более 2-х лет.
  • Резкое падение свойств при снижении температуры.
  • Резкое уменьшение емкости при повышении рабочего тока до эксплуатационных значений современных потребителей.
  • Быстрое уменьшение напряжения во время работы.

Солевые гальванические элементы в конце своего разряда могут потечь, что связано с вытеканием электролита из-за увеличения объема положительного электрода, который выдавливает электролит. Активная масса плюсового электрода состоит из диоксида марганца и электролита. Сажа и графит, добавленный в активную смесь, повышают электропроводность активной смеси. Их доля равна от 8 до 20% в зависимости от марки батарейки. Для увеличения срока работы окислителя активную смесь насыщают электролитом.

Минусовой электрод изготавливают из очищенного цинка, устойчивого к коррозии. В нем остается небольшая доля кадмия или свинца, являющегося ингибиторами коррозии. Раньше в батарейках в качестве электролита использовали хлорид аммония. Он участвует в реакции образования тока, создает проходимость ионов. Но такой электролит не показал хороших результатов, и его заменили хлоридом цинка с примесями хлорида кальция. Марганцево-кислые элементы работают дольше, и показывают лучшие результаты при пониженных температурах.

В солевых гальванических элементах отрицательным полюсом является цинковый корпус 7. Плюсовой электрод 6 изготовлен из активной прессованной массы, пропитанной электролитом. По центру этой массы находится угольный стержень 5, обработанный парафином для удержания влаги в электролите. Верхняя часть стержня закрыта металлическим колпаком. В сепараторе 4 находится густой электролит. В газовую камеру 1 поступают газы, образованные при работе батарейки. Сверху батарейку закрывают прокладкой 3. Весь гальванический элемент заключают в футляр 2, выполненный из картона или фольги.

Щелочные батарейки

Щелочные элементы питания появились в середине прошлого века. В них в качестве окислителя выступает диоксид марганца, а в качестве восстановителя порошковый цинк. Это дает возможность увеличить поверхность. Для предохранения от коррозии раньше применялось амальгамирование. Но после запрета на ртуть используют очищенные цинковые порошки с добавлением других металлов и ингибиторов коррозии.

Активным веществом анода щелочной (алкалиновой ) батарейки стал очищенный цинк в виде порошка с добавлением алюминия, индия или свинца. Активная смесь катода включает в себя диоксид марганца, ацетиленовую сажу или графит. Электролит алкалиновых батареек состоит из едкого натра или калия с добавлением оксида цинка.

Порошковый анод позволяет значительно повысить использование активной смеси, в отличие от солевых батареек. Алкалиновые батарейки обладают значительно большей емкостью, чем солевые, при равных габаритных размерах. Они хорошо себя показали в работе на морозе.

Особенностью устройства алкалиновых элементов является порошковый цинк, поэтому вместо цинкового стакана используют стальной корпус для положительного вывода. Активная смесь положительного электрода находится возле внутренней стенки стального корпуса. В алкалиновой батарейке есть возможность разместить больше активной смеси положительного электрода, в отличие от солевой.

В активную смесь вставляется целлофановый сепаратор, смоченный электролитом. По центру батарейки проходит латунный отрицательный электрод. Остальной объем между сепаратором и отрицательным токоотводом заполняется анодной пастой в виде порошкового цинка, пропитанного густым электролитом. Обычно в качестве электролита используют щелочь, насыщенную специальными соединениями цинка. Это дает возможность предотвратить потребление щелочи в начале работы элемента, и снизить коррозию. Масса щелочных батареек выше солевых из-за стального корпуса и большей плотности активной смеси.

По многим основным параметрам алкалиновые гальванические элементы превосходят солевые элементы. Поэтому в настоящее время увеличивается объем производства щелочных батареек.

Литиевые элементы питания

Литиевые гальванические элементы применяются в различных современных устройствах. Они выпускаются различных типоразмеров и видов.

Существуют литиевые батарейки и , имеющие между собой большие отличия. Батарейки имеют в составе твердый органический электролит, в отличие от других видов элементов. Литиевые элементы используются в местах, где требуются средние и малые токи разряда, стабильное рабочее напряжение. Литиевый аккумулятор можно перезаряжать определенное количество раз, а батарейки не предназначены для этого, и используются только один раз. Их запрещается вскрывать или перезаряжать.

Основные требования к производству
  • Надежная герметизация корпуса. Нельзя допускать утечки электролита и проникновения внутрь других веществ из внешней среды. Нарушение герметичности приводит к их возгоранию, так как литий является высоко активным элементом. Гальванические элементы с нарушенной герметичностью не годятся для эксплуатации.
  • Изготовление должно проходить в герметичных помещениях с аргоновой атмосферой и контролем влажности.

Форма литиевых аккумуляторов бывает цилиндрической, дисковой или призматической. Габариты практически не отличаются от других видов батареек.

Область использования

Литиевые гальванические элементы обладают более длительным сроком работы, по сравнению с другими элементами. Область применения очень широка:

  • Космическая промышленность.
  • Авиационное производство.
  • Оборонная промышленность.
  • Детские игрушки.
  • Медицинская техника.
  • Компьютеры.
  • Фото- и видеокамеры.

Преимущества

  • Широкий интервал рабочих температур.
  • Компактные размеры и масса.
  • Длительная эксплуатация.
  • Стабильные параметры в различных условиях.
  • Большая емкость.

Гальванические элементы и батареи

Г. элементом, или гальванической парой, называется прибор, состоящий из двух металлических пластинок (одна из которых может быть заменена коксовой), погружаемых в одну или две различные жидкости, и служащий источником гальванического тока. Некоторое число Г. элементов, соединенных между собой известным образом, составляет гальваническую батарею. Простейший по устройству Г. элемент состоит из двух пластинок, погружаемых в глиняный или стеклянный стакан, в котором налита жидкость, соответствующая роду пластинок; пластинки не должны иметь металлического соприкосновения в жидкости. Г. элементы называются первичными, если они суть самостоятельные источники тока, и вторичными, если они становятся действующими лишь после более или менее продолжительного действия на них источников электричества, их заряжающих. Рассматривая происхождение Г. элементов, нужно начать с вольтова столба, родоначальника всех последующих гальванических батарей, или с чашечной батареи Вольта.

Вольтов столб. Для составления его Вольта брал пары разнородных металлических кружков, сложенных или даже спаянных по основанию, и картонные или суконные кружки, смоченные водой или раствором едкого кали. Первоначально употреблялись серебряные и медные кружки, а потом обычно цинковые и медные. Из них составлялся столб, как показано на черт. 1, а именно: сперва кладется медная и на нее цинковая пластинка (или наоборот), на которую накладывается смоченный картонный кружок; это составляло одну пару, на которую накладывалась вторая, составленная опять из медного, цинкового и картонных кружков, наложенных друг на друга в таком же порядке, как и в первой паре.

Продолжая накладывать в таком же порядке последующие пары можно составить столб; столб, изображенный на черт. 1, слева состоит из 11 вольтовых пар. Если столб установлен на пластинке изолирующего, т. е. не проводящего электричество, вещества, например, на стеклянной, то, начиная от середины его, одна половина столба (нижняя на нашем чертеже) окажется заряженной положительным электричеством, а другая (верхняя по чертежу) - отрицательным. Напряженность электричества, неощутимая посередине, растет по мере приближения к концам, на которых она наибольшая. К самой нижней и самой верхней пластинкам припаиваются проволоки; приведение в соприкосновение свободных концов проволок дает начало движению положительного электричества от нижнего конца столба через проволоку к верхнему и движению отрицательного электричества по противоположному направлению; образуется электрический, или гальванический, ток (см. это слово). Вольта считал парой две пластинки разнородных металлов, а жидкости приписывал только способность проводить электричество (см. Гальванизм); но по взгляду, установившемуся позднее, пара состоит из двух разнородных пластинок и жидкого слоя между ними; поэтому самая верхняя и самая нижняя пластинки столба (черт. 1 справа) могут быть сняты. Такой столб будеть состоять из 10 пар, и тогда самая нижняя пластинка его будет медная, а самая верхняя - цинковая и направление движения электричества, или направление гальванического тока, в нем останется прежнее: от нижнего конца столба (теперь от цинка) к верхнему (к меди). Медный конец столба был назван положительным полюсом, цинковый - отрицательным. Впоследствии по терминологии Фарадея положительный полюс назван анодом, отрицательный - катодом. Вольтов столб может быть уложен горизонтально в корытце, покрытое внутри изолирующим слоем воска, сплавленного с гарпиусом. Ныне вольтов столб не употребляется по причине большого труда и времени, нужных на его составление и разборку; но в прежнее время пользовались столбами, составленными из сотен и тысяч пар; в Петербург профессор В. Петров пользовался в 1801-2 гг. при своих опытах столбом, состоявшим иногда из 4200 пар (см. Гальванизм), Вольта строил свой аппарат и в другой форме, которая и есть форма позднейших батарей. Батарея Вольта (corona di tazze) состояла из чашек, расположенных по окружности круга, в которые наливалась теплая вода или раствор соли; в каждой чашке находились две металлические разнородные пластинки, одна против другой. Каждая пластинка соединена проволокой с разнородной пластинкой соседней чашки, так что от одной чашки к другой по всей окружности пластинки постоянно чередуются: цинк, медь, потом опять цинк и медь и т. д. В том месте, где окружность замыкается, в одной чашке имеется цинковая пластинка, в другой - медная; по проволоке, соединяющей эти крайние пластинки, будет идти ток от медной пластинки (положительного полюса) к цинковой (отрицательному полюсу). Эту батарею Вольта считал менее удобной, чем столб, но на самом деле именно форма батареи получила всеобщее распространение. В самом деле устройство вольтова столба вскоре было изменено (Крюйкшанк): продолговатый деревянный ящик, разделенный поперек пластинками меди и цинка, спаянными между собой, на маленькие отделения, в которые наливалась жидкость, был удобнее обычного вольтова столба. Еще лучше был ящик, разделенный на отделения деревянными поперечными стенками; медная и цинковая пластинки ставились по обе стороны каждой перегородки, будучи спаяны между собой сверху, где оставлялось, кроме того, ушко. Деревянная палка, проходившая через все ушки, служила для поднятия всех пластинок из жидкости или для погружения их.

Элементы с одной жидкостью. Вскоре после того стали делать отдельные пары или элементы, которые могли быть соединены в батареи различными способами, польза которых особенно ясно обнаружилась после того, как Ом выразил формулой силу тока в зависимости от электровозбудительной (или электродвижущей) силы элементов и от сопротивлений, встречаемых током как во внешних проводниках, так и внутри элементов (см. Гальванический ток). Электровозбудительная сила элементов зависит от металлов и жидкостей, их составляющих, а внутреннее сопротивление - от жидкостей и от размеров элементов. Для уменьшения сопротивления и увеличения тем силы тока надо толщину слоя жидкости между разнородными пластинками уменьшать, а размеры погружаемой поверхности металлов увеличивать. Это выполнено в элементе Волластона (Wollaston - по более правильному выговору Вульстен). Цинк помещен внутри согнутой медной пластинки, в которой вставлены кусочки дерева или пробки, не допускающие соприкосновения пластинок; к каждой из пластинок припаяна проволока, обычно медная; концы этих проволок приводятся в соприкосновение с предметом, через который хотят пропустить ток, идущий по направлению от меди к цинку по внешним проводникам и от цинка к меди по внутренним частям элемента. Вообще, ток идет внутри жидкости от металла, на который жидкость действует химически сильнее, к другому, на который она действует слабее. В этом элементе обе поверхности цинковой пластинки служат для истечения электричества; такой способ удвоения поверхности одной из пластинок потом вошел в употребление при устройстве всех элементов с одной жидкостью. В элементе Волластона употребляется разведенная серная кислота, разлагающаяся во время действия тока (см. Гальванопроводность); результатом разложения будет окисление цинка и образование цинкового купороса, растворяющегося в воде, и выделение водорода на медной пластинке, приходящей от этого в поляризованное состояние (см. Поляризация гальваническая и Гальванопроводность), уменьшающее силу тока. Изменчивость этого поляризованного состояния сопровождается изменчивостью силы тока.

Из многих элементов с одной жидкостью называем элементы Сми (Smee) и Грене, в первом - платина или платинированное серебро среди двух цинковых пластинок, все - погруженное в разбавленную серную кислоту. Химическое действие такое же, как и в элементе Волластона, и поляризуется водородом платина; но ток менее переменчив. Электровозбудительная сила больше, чем в медно-цинковом.

Элемент Грене состоит из цинковой пластинки, помещающейся между двух плиток, выпиленных из кокса; жидкость для этого элемента приготавливается по разным рецептам, но всегда из двухромокалиевой соли, серной кислоты и воды. По одному рецепту на 2500 грамм воды надо взять 340 грамм названной соли и 925 грамм серной кислоты. Электровозбудительная сила больше, чем в элементе Волластона.

Во время действия элемента Грене образуется, как и в предыдущих случаях, цинковый купорос; но водород, соединяясь с кислородом хромовой кислоты, образует воду; в жидкости образуются хромовые квасцы; поляризация уменьшена, но не уничтожена. Для элемента Грене употребляется стеклянный сосуд с расширенной нижней частью, как то изображено на фиг. 7 таблицы "Гальванические элементы и батареи". Жидкости наливается столько, чтобы цинковую пластинку Z, которая короче коксовых С, можно было, потянув прикрепленный к ней стержень Т, вынуть из жидкости на то время, когда элемент должен оставаться без действия. Зажимы В, В, соединенные - один с оправой стержня Т, а следовательно, с цинком, а другой с оправой углей, назначены для концов проволок-проводников. Ни пластинки, ни их оправы не имеют металлического соприкосновения между собой; ток идет по соединительным проволокам через внешние предметы по направлению от кокса к цинку. Угольно-цинковый элемент может быть употребляем с раствором поваренной соли (в Швейцарии, для телеграфов, звонков) и тогда действует 9-12 мес. без ухода.

Элемент Лаланда и Шаперона, усовершенствованный Эдисоном, состоит из плитки цинка и другой, спрессованной из окиси меди. Жидкость - раствор едкого кали. Химическое действие - окисление цинка, образующего потом соединение с кали; отделяющийся водород, окисляясь кислородом окиси цинка, входит в состав образующейся воды, а медь восстанавливается. Внутреннее сопротивление малое. Возбудительная сила не определена с точностью, но меньше, чем у элемента Даниэля.

Элементы с двумя жидкостями. Так как выделение водорода на одном из твердых тел Г. элементов есть причина, уменьшающая силу тока (собственно электровозбудительную) и сообщающая ему непостоянство, то помещение пластинки, на которой водород выделяется, в жидкости, способной отдать кислород на соединение его с водородом, должно сделать ток постоянным. Беккерель первый устроил (1829) медно-цинковый элемент с двумя жидкостями для названной цели, когда еще не были известны элементы Грене и Лаланда. Позднее Даниэль (1836) устроил подобный же элемент, но более удобный в употреблении. Для разделения жидкостей нужны два сосуда: один стеклянный или глазурованный глиняный, содержит в себе цилиндрический, глиняный, слабообожженный, а потому пористый, сосуд, в который наливается одна из жидкостей и помещается один из металлов; в кольцеобразном промежутке между двумя сосудами налита другая жидкость, в которую погружена пластинка другого металла. В элементе Даниэля цинк погружен в слабую серную кислоту, а медь в водный раствор медного (синего) купороса. Фиг. 1 таблицы изображает 3 элемента Даниэля, соединенные в батарею;

цилиндры, гнутые из цинка, помещены во внешние стеклянные стаканы, медные пластинки тоже в форме цилиндра или согнутые наподобие буквы S - помещены во внутренние глиняные цилиндры. Можно расположить и обратно, т. е. медь во внешних сосудах. Ток идет от меди к цинку по внешним проводникам и от цинка к меди через жидкость в самом элементе или батарее, причем разлагаются одновременно обе жидкости: в сосуде с серной кислотой образуется цинковый купорос, а водород идет к медной пластинке, в то же время медный купорос (CuSO 4) разлагается на медь (Cu), осаждающуюся на медную пластинку, и отдельно не существующее соединение (SO 4), которое химическим процессом образует с водородом воду прежде, чем он успеет выделиться в виде пузырьков на меди. Пористая глина, легко смачиваемая обеими жидкостями, дает возможность передаваться химическим процессам от частицы к частицам через обе жидкости от одного металла к другому. После действия тока, продолжительность которого зависит от его силы (а эта последняя отчасти от внешних сопротивлений), а также от количества жидкостей, содержащихся в сосудах, весь медный купорос издерживается, на что указывает обесцвечивание его раствора; тогда начинается отделение пузырьков водорода на меди, а вместе с тем поляризация этого металла. Этот элемент называется постоянным, что однако надо понимать относительно: во-первых и при насыщенном купоросе есть слабая поляризация, но главное - внутреннее сопротивление элемента сначала уменьшается, а потом растет. По этой второй и главной причине замечается в начале действия элемента постепенное усиление тока, тем значительнейшее, чем менее ослаблена сила тока внешними или внутренними сопротивлениями. Через полчаса, час и более (продолжительность растет с количеством жидкости при цинке) ток начинает ослабевать медленнее, чем возрастал, и еще через несколько часов доходит до первоначальной силы, постепенно ослабевая далее. Если в сосуде с раствором медного купороса помещен запас этой соли в нерастворенном виде, то это продолжает существование тока, равно как и замена образовавшегося раствора цинкового купороса свежей разбавленной серной кислотой. Однако при замкнутом элементе уровень жидкости при цинке мало-помалу понижается, а при меди повышается - обстоятельство само по себе ослабляющее ток (от увеличения сопротивления по этой причине) и притом указывающее на переход жидкости из одного сосуда в другой (перенос ионов см. Гальванопроводность, осмос гальванический). В сосуд с цинком просачивается медный купорос, из которого цинк чисто химическим путем выделяет медь, заставляя ее осаждаться частью на цинк, частью на стенки глиняного сосуда. По этим причинам происходит большая бесполезная для тока трата цинка и медного купороса. Однако все же элемент Даниэля принадлежит к числу самых постоянных. Глиняный стакан, хотя и смачиваемый жидкостью, представляет большое сопротивление току; употребляя пергамент вместо глины, можно значительно усилить ток путем уменьшения сопротивления (элемент Карре); пергамент может быть заменен животным пузырем. Вместо разбавленой серной кислоты можно при цинке употреблять раствор поваренной или морской соли; возбудительная сила остается почти та же. Химические действия не исследованы.

Элемент Мейдингера. Для частого и продолжительного и притом довольно постоянного, но слабого тока может служить элемент Мейдингера (фиг. 2 таблицы), составляющий видоизменение элемента Даниэля. Внешний стакан имеет расширение наверху, где на внутреннюю закраину ставится цинковый цилиндр; на дне стакана помещен другой маленький, в который поставлен цилиндрик, свернутый из листовой меди, или же кладется медный кружок на дно внутреннего сосуда, наполняемого потом раствором медного купороса. После этого осторожно наливают сверху раствор сернокислой магнезии, который заполняет все свободное пространство внешнего сосуда и не смещает раствора купороса, как имеющего больший удельный вес. Тем не менее по диффузии жидкостей купорос медленно достигает цинка, где и отдает свою медь. Для поддержания насыщенности этого раствора внутрь элемента ставится еще опрокинутая стеклянная колба с кусками медного купороса и водой. От металлов идут наружу проводники; части их, находящиеся в жидкости, имеют гуттаперчевую оболочку. Отсутствие глиняной банки в элементе позволяет пользоваться им долгое время без перемены его частей; но внутреннее сопротивление его велико, переносить его с места на место надо очень осторожно и в нем бесполезно для тока издерживается много медного купороса; в колбе даже маленького элемента помещается около 1 / 2 килограмма купороса. Он весьма пригоден для телеграфов, электрических звонков и в других подобных случаях и выстаивает месяцы. Элементы Калло и Труве-Калло похожи на элементы Мейдингера, но проще последних. Крестен в Петербурге также устроил полезное видоизменение элемента Мейдингера. Элемент Томсона в форме блюда или подноса есть измененный даниэлевский; пористые плоские перепонки из пергаментной бумаги отделяют одну жидкость от другой, но можно обходиться и без перепонок. Элемент Сименса и Гальске также относится к разряду даниэлевских. Элемент Минотто. Медный кружок на дне стеклянной банки, на который насыпаются кристаллы медного купороса, а сверху толстый слой кремнистого песку, на который накладывается цинковый кружок. Все заливается водой. Служит от 1 1 / 2 до 2 лет на телеграфных линиях. Вместо песка можно взять порошок животного угля (Дарсонваль). Элемент Труве. Медный кружок, на котором столбик кружков из пропускной бумаги, снизу пропитанный медным купоросом, сверху - цинковым купоросом. Небольшое количество воды, смачивающей бумагу, приводит элемент в действие. Сопротивление довольно большое, Действие продолжительно и постоянно.

Элемент Грове, платиново-цинковый; платина погружается в крепкую азотную кислоту, цинк в слабую серную кислоту. Выделяющийся действием тока водород окисляется за счет кислорода азотной кислоты (NHO 2), переходящей в азотный ангидрид (N 2 O 4), выделяющиеся красно-оранжевые пары которой вредны для дыхания и портят все медные части аппарата, которые потому лучше делать из свинца. Эти элементы могут быть употребляемы лишь в лабораториях, где имеются вытяжные шкафы, а в обычной комнате должны быть поставлены в печь или камин; они имеют большую возбудительную силу и малое внутреннее сопротивление - все условия для большой силы тока, которая тем постояннее, чем больший объем жидкостей содержится в элементе. Фиг. 6 таблицы изображает такой элемент плоской формы; вне его справа изображена соединенная с платиновым листком элемента согнутая цинковая пластинка Z второго элемента, в сгибе которой стоит плоский глиняный сосуд V для платины. Слева изображен платиновый листок, соединенный зажимом с цинком элемента и принадлежащий третьему элементу. При этой форме элементов внутреннее сопротивление его очень мало, но сильное действие тока не продолжительно по причине малого количества жидкостей. Ток идет от платины по внешним проводникам к цинку, согласно высказанному выше общему правилу.

Элемент Бунзена (1843), угольно-цинковый, вполне заменяет предыдущий и дешевле его, так как дорогая платина заменена коксовой плиткой. Жидкости те же, что в элементе Грове, электровозбудительная сила и сопротивление приблизительно такие же; направление тока такое же. Подобный элемент изображен на фиг. 3 таблицы; угольная плитка, обозначенная буквой С, с металлическим зажимом, при котором поставлен знак +; это положительный полюс, или анод, элемента. От цинкового цилиндра Z с зажимом (отрицательный полюс, или катод) идет пластинка с другим зажимом, накладываемым на угольную плитку второго элемента в случае составления батареи. Грове первый заменил платину в своем элементе углем, но его опыты были забыты. Элемент Дарсонваля, угольно-цинковый; при угле смесь азотной и соляной кислоты по 1 объему с 2 объемами воды, содержащей 1 / 20 серной кислоты. Элемент Фора. - Вместо коксовой плитки употребляется бутылка из графита и глины; туда наливается азотная кислота. Это, по-видимому, внешнее изменение элемента Бунзена делает употребление азотной кислоты более полным.

Элемент Сосновского. - Цинк в растворе едкого натра или едкого кали; уголь в жидкости, состоящей из 1 объема азотной кислоты, 1 объема серной, 1 объема соляной, 1 объема воды. Замечателен очень высокой электровозбудительной силой.

Элемент Каллана. - Уголь бунзеновских элементов заменяется железом; возбудительная сила остается та же, что при употреблении угля. Железо не подвергается действию азотной кислоты, находясь в пассивном состоянии. Вместо железа можно с пользой употреблять чугун с некоторым содержанием кремния.

Элемент Поггендорфа отличается от элемента Бунзена заменой азотной кислоты жидкостью, подобной той, которая употребляется в элементе Грене. На 12 весовых частей двухромовокислого кали, растворенных в 100 частях воды, прибавляется 25 частей крепкой серной кислоты. Возбудительная сила такая же, как в элементе Бунзена; но внутреннее сопротивление больше. Кислорода в названной жидкости, отдаваемого на окисление водорода, меньше, чем в азотной кислоте при том же объеме. Отсутствие запаха при пользовании этими элементами в соединении с другими достоинствами сделало его самым удобным к употреблению. Однако поляризация не вполне устранена. Элемент Имшенецкого, угольно-цинковый. Графитовая (углерод) пластинка в растворе хромовой кислоты, цинк - в растворе серноватистонатриевой соли. Большая возбудительная сила, малое внутреннее сопротивление, почти полная утилизация цинка и весьма хорошее пользование хромовой кислотой.

Элемент Лекланше, угольно-цинковый; вместо окисляющей жидкости содержит при угольной плитке порошок (крупный) перекиси марганца, смешанный с порошком кокса (фиг. 5 табл.) во внутренней, проницаемой для жидкости, глиняной банке; снаружи в одном из углов склянки особенной формы помещается цинковая палочка. Жидкость - водный раствор нашатыря - наливается снаружи и проникает внутрь глиняной банки до угля (кокса), смачивая перекись марганца; верх банки обычно заливается смолой; оставлены отверстия для выхода газов. Возбудительная сила - средняя между даниэлевским и бунзеновским элементами, сопротивление большое. Элемент этот, оставленный замкнутым, дает ток быстро убывающей силы, но для телеграфов и домашнего употребления выстаивает один-два года при подливании жидкости. При разложении нашатыря (NH 4 Cl) хлор выделяется на цинк, образуя хлористый цинк и аммиак при угле. Перекись марганца, богатая кислородом, переходит мало-помалу в соединение низшей степени окисления, но не во всех частях массы, наполняющей глиняный сосуд. Для более полного пользования перекисью марганца и уменьшения внутреннего сопротивления устраивают эти элементы без глиняной банки, а из перекиси марганца и угля спрессовывают плитки, между которыми помещают коксовую, как показано на фиг. 4 таблицы. Этого рода элементы могут быть сделаны закрытыми и удобными к переноске; стекло заменяется роговым каучуком. Видоизменил этот элемент также Гефф, заменяя раствор нашатыря раствором хлористого цинка.

Элемент Марие-Деви, угольно-цинковый, содержит при угле тестообразную массу из сернокислой закиси ртути (Hg 2 SO 4), смоченной водой, помещенную в пористую глиняную банку. К цинку наливается слабая серная кислота или даже вода, так как первая и без того выделится из соли ртути действием тока, при чем водород окисляется, а при угле выделяется металлическая ртуть, так что по истечении некоторого времени элемент становится цинково-ртутным. Электровозбудительная сила не изменяется от употребления чистой ртути вместо угля; она несколько больше, чем в элементе Лекланше, внутреннее сопротивление большое. Пригоден для телеграфов и вообще для прерывистого действия тока. Эти элементы употребляются и для медицинских целей, причем предпочитают заряжать их сернокислой окисью ртути (HgSO 4). Удобная для медицинских и других целей форма этого элемента представляет высокий цилиндр из рогового каучука, верхняя половина которого заключает в себе цинк и уголь, а нижняя - воду и сернокислую ртуть. Если элемент перевернуть верхом вниз, он действует, а в первом положении - не образует тока.

Элемент Варрена Деларю - цинково-серебряный. Узкая серебряная полоска выступает из цилиндрика плавленного хлористого серебра (AgCl), помещенного в трубочке из пергаментной бумаги; цинк имеет форму тонкого стерженька. Оба металла помещаются в стекляной трубке, закупоренной парафиновой пробкой. Жидкость - раствор нашатыря (23 части соли на 1 литр воды). Электровозбудительная сила почти такая же (немного больше), как в элементе Даниэля. Из хлористого серебра осаждается металлическое серебро на серебряную полоску элемента, и поляризация не происходит. Батареи, составленные из них, служили для опытов над прохождением света в разреженных газах (V, Варрен Деларю). Гефф дал этим элементам устройство, делающее их удобными для переноски; употребляются для медицинских индукционных катушек и для постоянных токов.

Элементы Дюшомена, Парца, Фигье. Первый - цинково-угольный; цинк в слабом растворе поваренной соли, уголь - в растворе хлорного железа. Непостоянен и мало исследован. Парц заменил цинк железом; раствор поваренной соли имеет плотность 1,15, раствор хлорного железа плотности 1,26. Лучше предыдущего, хотя электровозбудительная сила меньше. Фигье употребляет в железно-угольном элеменге одну жидкость, получаемую пропусканием струи хлора через насыщенный раствор железного купороса. Элемент Ниоде, угольно-цинковый. Цинк имеет форму цилиндра, окружающего пористый глиняный цилиндр, содержащий в себе коксовую плитку, засыпанную хлорной известью. Элемент закупорен пробкой, залитой воском; через отверстие в ней наливается раствор поваренной соли (24 части на 100 частей воды). Электровозбудительная сила большая; при постоянном, несколько продолжительном действии на внешнее малое сопротивление скоро ослабевает, но через час или два бездействия элемента она достигает прежней величины.

Сухие элементы. Это название можно дать элементам, в которых присутствие жидкости неявно, когда она всасывается в пористые тела элемента; скорее следовало бы их назвать влажными. К таким можно отнести вышеописанный медно-цинковый элемент Труве и элемент Лекланше, измененный Жерменом. В этом последнем употребляется клетчатка, извлекаемая из кокосовых орехов; из неё приготавливается масса, сильно поглощающая жидкость и газы, на вид сухая и только при давлении принимающая влажный вид. Легко переносимы и пригодны для походных телеграфных и телефонных станций. Элементы Гаснера (угольно-цинковые), в состав которых входит гипс, пропитанный, вероятно, хлористым цинком или нашатырем (держится в секрете). Возбудительная сила приблизительно такая, как в элементе Лекланше, спустя некоторое время после начала действия последнего; внутреннее сопротивление меньше, чем у Лекланше. В сухом элементе Лекланше-Барбье промежуток между внешним цинковым цилиндром и внутренним полым цилиндром из аггломерата, в состав которого входит перекись марганца, наполнен гипсом, насыщенным раствором неизвестного состава. Первые, довольно продолжительные испытания этих элементов были благоприятны для них. Желатиново-глицериновый элемент Кузнецова есть медно-цинковый; состоит из картонного, пропитанного парафином ящичка с дном, выклеенным оловом внутри и снаружи. На олово насыпают слой толченого медного купороса, на который наливают желатино-глицериновую массу, содержащую серную кислоту. Когда эта масса застынет - насыпают слой измельченного амальгамированного цинка, опять заливаемый тою же массой. Из таких элементов составляют батарею наподобие вольтова столба. Предназначается для звонков, телеграфов и телефонов. Вообще же число различных сухих элементов очень значительно; но в болышинстве по причине секретного состава жидкостей и аггломератов суждение о них возможно только практическое, но не научное.

Элементы большой поверхности и малого сопротивления. В тех случаях, когда нужно накаливать короткие, довольно толстые проволоки или пластинки, как, например, при некоторых хирургических операциях (см. Гальванокаустика), употребляют элементы с большими металлическими поверхностями, погруженными в жидкости, что уменьшает внутреннее сопротивление и тем усиливает ток. Волластонов способ удвоения поверхности применяется к составлению поверхностей из большого числа пластинок, как показано на черт. 2, где y, y, y - пластинки из одного металла помещены в промежутках между пластинками ц, ц, ц, ц другого металла.

Все пластинки параллельны между собой и не соприкасаются, но все одного наименования соединены внешними проволоками в одно целое. Вся эта система равномерна элементу из двух пластинок, каждая шестикратной поверхности сравнительно с изображенными, при толщине слоя жидкости между пластинками, равной расстоянию между каждыми двумя пластинками, изображенному на чертеже. Уже в начале нынешнего столетия (1822) устраивались приборы с большой металлической поверхностью. К числу их относится большой элемент Гаре, названный дефлагратором. Цинковый и медный листы большой длины, отделенные фланелью или деревянными палочками, свертываются в каток, в котором листы не соприкасаются между собой металлически. Этот каток погружается в кадку с жидкостью и дает ток весьма большой силы при действии на очень малые внешние сопротивления. Поверхность каждого листа - около 50 кв. футов (4 кв. метра). В наше время вообще стараются уменьшить внутреннее сопротивление элементов, но дают им особенно большую поверхность для некоторых частных применений, например в хирургии для срезания болезненных наростов раскаленной проволокой или пластинкой, для прижиганий (см. Гальванокаустика). Так как накаливаются проводники малого сопротивления, то можно получить ток именно уменьшением внутреннего сопротивления. Поэтому в гальванокаустических элементах помещают большое число пластинок, расположенных подобно тому, как изображено на черт. 2 текста. Устройство не представляет особенностей, но приспособлено к удобному употреблению; таковы, например, угольно-цинковые элементы или батареи Шардена с хромовой жидкостью, применяемые в Париже, Лионе, Монпелье и Брюсселе. Следует обратить внимание операторов на необходимость употребления измерителя силы тока с весьма малым сопротивлением (амперметра, или амметра), чтобы иметь уверенность в исправности батареи перед операцией.

Нормальные элементы должны сохранять свою электровозбудительную силу или иметь разность потенциалов постоянной в продолжение возможно долгого времени, когда они хранятся разомкнутыми для того, чтобы служить нормальной единицей меры при сравнении электровозбудительных сил между собой. Ренье предложил для этой цели медно-цинковую пару, в которой поверхность меди очень велика сравнительно с цинковой. Жидкость есть раствор 200 частей сухой поваренной соли в 1000 частях воды. При этом условии поляризация меди очень слаба, если этот элемент вводится в цепь с большим сопротивлением и на короткое время. Нормальный элемент Латимера Кларка состоит из цинка в растворе цинкового купороса, ртути и сернортутной соли (Hg 2 SO 4). Нормальный элемент Флеминга, медно-цинковый, с растворами медного купороса и цинкового купороса определенной, всегда постоянной плотности. Нормальный элемент лондонского почтово-телеграфного ведомства, медно-цинковый, с раствором цинкового купороса и кристаллами медного купороса при меди весьма пригоден. Электровозбудительную силу элемента Флеминга см. табличку в конце статьи.

Вторичные элементы, или аккумуляторы, ведут происхождение от вторичных столбов Риттера (см. Гальванизм), в продолжение 50 лет остававшихся без особенного внимания. Столб Риттера, состоявший из медных пластинок, погруженных в некоторую жидкость, после действия на него вольтова столба становился поляризованным, и после этого сам мог образовать ток, направление которого было противоположно первичному току. В 1859 г. Планте устроил элемент, состоявший из двух свинцовых листов, свернутых спирально наподобие дефлагратора Гаре, без взаимного металлического соприкосновения и погруженных в слабую серную кислоту. Соединив один свинцовый лист с анодом (положительным полюсом), а другой с катодом батареи по меньшей мере из 2 элементов Бунзена или Поггендорфа, соединенных последовательно, и пропуская таким образом ток, идущий в жидкости от свинца к свинцу, вызывают тем отделение кислорода на свинцовой пластинке, соединенной с анодом, и водорода на листе, соединенном с катодом. На анодной пластинке образуется слой свинцовой перекиси, тогда как катодная совершенно очищается от окислов. Вследствие разнородности пластинок они образуют пары с большой электровозбудительной силой, дающей ток, по направлению противоположный прежнему. Большая возбудительная сила, развивающаяся во вторичном элементе и направленная противоположно возбудительной силе первичной батареи, и есть причина требования, чтобы последняя превосходила первую. Два элемента Поггендорфа, соединенные последовательно, имеют возбудительную силу около 4 вольт, а элемент Планте лишь около 2 1 / 2 . Для заряжания 3 или 4 элементов Планте, соединенных параллельно (см. Гальванические батареи), собственно, было бы достаточно прежних 2 элементов Поггендорфа, но действие их было бы очень медленно для окисления такой большой поверхности свинца; поэтому для одновременного заряжения, например, 12 элементов Планте, соединенных параллельно, нужно действие 3-4 элементов Бунзена с возбудительной силой 6-8 вольт в продолжение нескольких часов. Заряженные элементы Планте, соединенные последовательно, развивают электровозбудительную силу в 24 вольта и производят большее, например, накаливание, чем заряжающая батарея, но зато действие вторичной батареи будет кратковременнее. Количество электричества, приведенного в движение вторичной батареей, не более количества прошедшего через нее электричества от первичной батареи, но, будучи пропущено через внешние проводники при большей напряженности или разности потенциалов, издерживается в более короткое время.

Элементы Планте после различных практических улучшений получили название аккумуляторов. В 1880 г. Фор придумал покрывать свинцовые пластинки слоем сурика, т. е. готового свинцового окисла, который от действия первичного тока еще более окислялся на одной пластинке и раскислялся на другой. Но способ прикрепления сурика потребовал технических улучшений, существенно заключавшихся в употреблении свинцовой решетки, в которой пустые клетки наполняются тестом из сурика и глета на слабой серной кислоте. В аккумуляторе Фиц-Джеральда употребляются плитки из окислов свинца без всякой меллической основы; вообще систем аккумуляторов имеется очень много и здесь дается изображение лишь одной из лучших (фиг. 8 таблицы). Свинцовая решетка Гагена сложена из двух обращенных друг к другу выступами, что препятствует кускам свинцового окисла выпадать из рамы; особо изображенные разрезы по линиям ab и cd главного чертежа объясняют устройство этой рамы. Одна рама заполняется суриком, другая глетом (низшая степень окисления свинца). Нечетное число, обычно пять или семь, пластинок соединяется наподобие того, как объяснено на черт. 2; в первом случае 3, во втором 4 покрыты глетом. Из русских техников принесли пользу устройству аккумуляторов Яблочков и Хотинский. Эти вторичные элементы, представляющие одно техническое неудобство - очень большой вес, получили разнообразные технические применения, между прочим, к домашнему электрическому освещению в тех случаях, когда нельзя пользоваться прямо током динамо-машин для этой цели. Аккумуляторы, заряженные в одном месте, могут быть перевезены в другое. Их заряжают теперь не первичными элементами, а динамо-машинами, с соблюдением некоторых специальных правил (см. Динамо-машины, Электрическое освещение).

Составление гальванических батарей. Батарея составляется из элементов тремя способами: 1) последовательным соединением, 2) параллельным соединением, 3) сложенным из обоих предыдущих. На фиг. 1 таблицы изображено последовательное соединение 3 элементов Даниэля: цинк первой пары, считая справа, соединен медной лентой с медью второй пары, цинк второй пары - с медью третьей. Свободный конец меди первой пары есть анод, или положительный полюс батареи; свободный конец третьей пары есть катод, или отрицательный полюс батареи. Для параллельного соединения этих же элементов надо все цинки соединить между собой металлическими лентами и все медные листы соединить лентами или проволоками в одно отдельное от цинков целое; сложная цинковая поверхность будет катодом, сложная медная - анодом. Действие такой батареи одинаково с действием одного элемента, который имел бы поверхность втрое большую, чем единичный элемент батареи. Наконец, третий способ соединения может быть приложен не менее как к 4 элементам. Соединяя их по двое параллельно, получим два сложных анода и таких же два катода; соединяя первый сложный анод со вторым сложным катодом, получим батарею из двух элементов удвоенной поверхности. На черт. 3 текста изображены два различных сложных соединения из 8 элементов, представленных каждый двумя концентрическими кольцами, разделенными черными промежутками. Не входя в подробности, заметим, что по внешнему виду способ составления этих батарей отличается от только что описанных.

В (I) по 4 элемента соединены последовательно, но с одного конца два крайних цинка соединены металлической полоской КК, а с противоположного две крайние медные пластинки соединены пластинкой АА, которая и есть анод, тогда как КК - катод сложной батареи, равносильной последовательно соединенным 4 элементам удвоенной поверхности. На чертеже 3 (II) изображена батарея, равносильная последовательно соединенным двум элементам учетверенной поверхности. Случаи, когда нужны батареи, определенным образом составленные, совершенно выясняются формулой Ома (гальванический ток) при соблюдении проистекающего из нее правила, что для получения наилучшего действия на какой-нибудь проводник данным числом гальванических элементов надо из них составить батарею таким образом, чтобы внутренее ее сопротивление было равно сопротивлению внешнего проводника или по крайней мере по возможности к нему приближалось. К этому надо еще прибавить, что при последовательном соединении внутреннее сопротивление возрастает пропорционально числу соединенных пар, а при параллельном сопротивление, напротив, уменьшается пропорционально этому числу. Поэтому на телеграфных линиях, представляющих большое сопротивление гальваническому току, батареи состоят из последовательно соединенных элементов; в хирургических операциях (гальванокаустика) нужна батарея из параллельно соединенных элементов. Изображенная на черт. 3 (I) батарея представляет наилучшее соединение из 8 элементов для действия на внешнее сопротивление, которое вдвое больше внутреннего сопротивления единичного элемента. Если бы внешнее сопротивление было вчетверо меньше, чем в первом случае, то батарее надо дать вид черт. 3 (II). Это следует из расчетов по формуле Ома. [Об элементах и батареях см. сочинение Niodet (в русском переводе Д. Голова - "Электрические элементы" 1891); менее подробно: "Die galvanischen Batterien", Hauck, 1883. Статьи в журнале "Электричество", 1891 и 1892 гг.]

Сравнение гальванических элементов между собой. Замечания, сюда относящиеся, были отчасти приведены при описании элементов. Достоинство гальванического элемента измеряется силой тока, им развиваемого, и продолжительностью его действия, а именно произведением первой величины на другую. Если принять за единицу силы тока ампер (см. Гальванический ток), а за единицу времени - час, то можно измерять работоспособность гальванического элемента ампер-часами. Например, аккумуляторы, смотря по размерам, могут дать от 40 до 90 ампер-часов. О способах измерения работы, доставляемой электрическим током, эквивалентной работе так называемой паровой лошади в продолжение одного часа - см. Работа, Энергия электрического тока.

Гальванический элемент — это химический источник электрического тока, в котором происходит непосредственное преобразование химической энергии в электрическую. Поэтому он является . Внешний вид наиболее распространенных элементов питания приведен на рисунке 1.


Рисунок 1. Внешний вид пальчиковых гальванических элементов

Существуют солевые (сухие), щелочные и литиевые элементы. Гальванические элементы часто называют батарейками, однако это название неверно, т.к. батареей является соединение нескольких одинаковых устройств. Например, при последовательном соединении трех гальванических элементов образуется широко используемая 4,5 вольтовая батарейка.

Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока. Напряжение зависит от использованных металлов. Некоторые из этих химических источников тока приведены в таблице 1.

Тип источников тока Катод Электролит Анод Напряжение,
В
Марганцево-цинковый MnO 2 KOH Zn 1,56
Марганцево-оловянный MnO 2 KOH Sn 1,65
Марганцево-магниевый MnO 2 MgBr 2 Mg 2,00
Свинцово-цинковый PbO 2 H 2 SO 4 Zn 2,55
Свинцово-кадмиевый PbO 2 H 2 SO 4 Cd 2,42
Свинцово-хлорный PbO 2 HClO 4 Pb 1,92
Ртутно-цинковый HgO KOH Zn 1,36
Ртутно-кадмиевый HgO 2 KOH Cd 1,92
Окисно-ртутно-оловянный HgO 2 KOH Sn 1,30
Хром-цинковый K 2 Cr 2 O 7 H 2 SO 4 Zn 1,8-1,9

В продаже в основном представлены Марганцево-цинковые элементы, которые называют солевыми. Производители батареек обычно не указывают их химический состав. Это самые дешевые гальванические элементы, которые можно применять только в устройствах с низким потреблением, таких как часы, электронные термометры или пульты дистанционного управления. На рисунке 2 приведены внешний вид и внутреннее устройство солевого элемента питания.



Рисунок 2. Внешний вид и устройство "сухого" гальванического элемента

Не менее распространенным элементом питания являются щелочные марганцевые батарейки. В продаже их называют алкалиновыми, не утруждая себя переводом названия на русский язык. Внутреннее устройство алкалинового гальванического элемента показано на рисунке 2.



Рисунок 3. Внутреннее и устройство щелочного гальванического элемента

Эти химические источники тока обладают большей емкостью (2...3 A/ч) и они могут обеспечивать больший ток в течение длительного времени.Больший ток стал возможным, т.к. цинк используется не в виде стакана, а в виде порошка, обладающего большей площадью соприкосновения с электролитом. В качестве электролита применяется гидрооксид калия. Именно благодаря способности данного вида гальванических элементов в течение длительного времени отдавать значительный ток (до 1 A), наиболее распространен в настоящее время.

Еще одним достаточно распространенным видом гальванических элементов являются литиевые барарейки. Благодаря использованию щелочного металла они обладают высокой разностью потенциалов. Напряжение литиевых элементов равно 3 В. Однако на рынке представлены и 1,5 В литиевые батарейки. Эти элементы питания обладают наивысшей емкостью на единицу массы и длительным временем хранения. Применяются в основном для питания часов на материнских платах компьютеров и фототехнике. В качестве недостатка можно назвать высокую стоимость. Внешний вид литиевых батареек приведен на рисунке 4.



Рисунок 4. Внешний вид литиевых элементов питания

Следует отметить, что практически все гальванические элементы способны подзаряжаться от сетевых источников питания. Исключение составляют литиевые батарейки, которые при попытке подзаряда могут взорваться .

Для применения в различных устройствах батарейки были стандартизированы. Наиболее распространенные виды корпусов гальванических элементов приведены в таблице 2.

Для крепления батареек внутри корпуса радиоэлектронных устройств в настоящее время предлагаются готовые батарейные отсеки. Применение их позволяет значительно упростить разработку корпуса радиоэлектронного устройства и удешевить его производство. Внешний вид некоторых из них приведен на рисунке 5.



Рисунок 5. Внешний вид отсеков для крепления гальванических элементов питания

Первый вопрос, который волнует покупателей батареек — это время их работы. Оно зависит от технологии производства гальванического элемента. График типовой зависимости выходного напряжения от технологии производства элемента питания приведен на рисунке 5.



Рисунок 6. График времени работы элемента питания в зависимости от технологии производства при токе разряда 1 А

Результаты тестов батареек различных фирм, проведенные на сайте http://www.batteryshowdown.com/ приведены на рисунке 7.



Рисунок 7. График времени работы батареек различных фирм при токе разряда 1 А

И, наконец, давайте сделаем выводы где какой тип батареек имеет смыст применять, так как при приобретении батареек мы всегда стараемся получить максимум полезного эффекта при минимуме затрат.

  1. Не стоит покупать батарейки в киосках или на рынке. Обычно они там достаточно долго лежат и поэтому за счет саморазряда практически теряют свою емкость. Это может быть даже опасно для аппаратуры, т.к. при использовании дешевых гальванических элементов (батареек) из них может протечь электролит. Это приведет к выходу аппаратуры из строя! Покупать лучше в магазинах с хорошим оборотом товара.
  2. щелочные (алкалиновые) батарейки следует применять в устройствах, потребляющих достаточно большой ток, таких как фонарики, плееры или фотоаппараты. В малопотребляющих устройствах их срок работы не отличается от солевых батареек.
  3. Солевые («обычные», угольно-цинковые гальванические элементы), будут отлично работать в часах, ИК пультах и прочих устройствах, рассчитанных на работу от одного комплекта батарей в течении года и более. При этом они не могут работать на морозе.
  4. Самые экономически выгодные батарейки на сегодня — пальчиковые АА. Как мизинчиковые (АAА), так и большие (R20), при одной и той же емкости стоят дороже. Ёмкость современных батареек R20 почти такая же как и пальчиковых батареек АА, и это при в три раза больших размерах!
  5. Не стоит обращать внимание на раскрученные бренды. Гальванические элементы фирм Duracell и Energizer стоят в полтора-два раза дороже батареек остальных фирм и при этом работают примерно столько-же

Министерство образования и науки Российской Федерации

Национальный исследовательский ядерный университет «МИФИ»

Балаковский инженерно-технологический институт

ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ

Методические указания

по курсу « Химия»

всех форм обучения

Балаково 2014

Цель работы: изучить принцип работы гальванических элементов.

ОСНОВНЫЕ ПОНЯТИЯ

ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ НА ГРАНИЦЕ РАЗДЕЛА ФАЗ

В узлах кристаллических решеток металлов расположены ионы атомов. При погружении металла в раствор начинается сложное взаимодействие поверхностных ионов металла с полярными молекулами растворителя. В результате происходит окисление металла, и его гидратированные (сольватированные) ионы переходят в раствор, оставляя в металле электроны:

Ме + m H 2 O Me(H 2 O)+ ne -

Металл заряжается отрицательно, а раствор - положительно. Возникает электростатическое притяжение между перешедшими в жидкость гидратированными катионами и поверхностью металла и на границе металл-раствор образуется двойной электрический слой, характеризующийся определенной разностью потенциалов -электродным потенциалом.

Рис. 1 Двойной электрический слой на границе раздела металл - раствор

Наряду с этой реакцией протекает обратная реакция - восстановление ионов металла до атомов.

Me(H 2 O)+ ne
Ме + m H 2 O -

При некотором значении электродного потенциала устанавливается равновесие:

Ме + m H 2 O
Me(H 2 O)+ ne -

Для упрощения воду в уравнение реакции не включают:

Ме
Me 2+ +ne -

Потенциал, устанавливающийся в условиях равновесия электродной реакции, называется равновесным электродным потенциалом.

ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ

Гальванические элементы – химические источники электрической энергии. Они представляют собой системы, состоящие из двух электродов (проводниковIрода), погруженных в растворы электролитов (проводниковIIрода).

Электрическая энергия в гальванических элементах получается за счет окислительно-восстановительного процесса при условии раздельного проведения реакции окисления на одном электроде и реакции восстановления на другом. Например, при погружении цинка в раствор сульфата меди цинк окисляется, а медь восстанавливается

Zn + CuSO 4 = Cu + ZnSO 4

Zn 0 +Cu 2+ =Cu 0 +Zn 2+

Можно провести эту реакцию так, чтобы процессы окисления и восстановления были пространственно разделены; тогда переход электронов от восстановителя к окислителю будет происходить не непосредственно, а через электрическую цепь. На рис. 2 представлена схема гальванического элемента Даниэля-Якоби, электроды погружены в растворы солей и находятся в состоянии электрического равновесия с растворами. Цинк, как более активный металл, посылает в раствор больше ионов, чем медь, в результате чего цинковый электрод за счет остающихся на нем электронов заряжается более отрицательно, чем медный. Растворы разделены перегородкой, проницаемой только для ионов, находящихся в электрическом поле. Если электроды соединить между собой проводником (медной проволокой), то электроны с цинкового электрода, где их больше, будут по внешней цепи перетекать на медный. Возникает непрерывный поток электронов - электрический ток. В результате ухода электронов с цинкового электрода Znцинк начинает переходить в раствор в виде ионов, восполняя убыль электронов и стремясь тем самым восстановить равновесие.

Электрод, на котором протекает окисление, называется анодом. Электрод, на котором протекает восстановление, называется катодом.

Анод (-) Катод (+)

Рис. 2. Схема гальванического элемента

При работе медно-цинкового элемента протекают следующие процессы:

1) анодный – процесс окисления цинка Zn 0 – 2e→Zn 2+ ;

2) катодный – процесс восстановления ионов меди Cu 2+ + 2e→Cu 0 ;

3) движение электронов по внешней цепи;

4) движение ионов в растворе.

В левом стакане - недостаток анионов SO 4 2- , а в правом – избыток. Поэтому во внутренней цепи работающего гальванического элемента наблюдается перемещение ионов SO 4 2- из правого стакана в левый через мембрану.

Суммируя электродные реакции, получаем:

Zn + Cu 2+ = Cu + Zn 2+

На электродах протекают реакции:

Zn+SO 4 2- →Zn 2+ +SO 4 2- + 2e(анод)

Cu 2+ + 2e + SO 4 2- → Cu + SO 4 2- (катод)

Zn + CuSO 4 → Cu + ZnSO 4 (суммарная реакция)

Схема гальванического элемента: (-) Zn/ZnSO 4 | |CuSO 4 /Cu(+)

или в ионном виде: (-) Zn/Zn 2+ | |Cu 2+ /Cu(+), где вертикальная черта обозначает поверхность раздела между металлом и раствором, а две черты - границу раздела двух жидких фаз - пористую перегородку (или соединительную трубку, заполненную раствором электролита).

Максимальная электрическая работа (W) при превращении одного моля вещества:

W=nF E, (1)

где ∆E- ЭДС гальванического элемента;

F- число Фарадея, равное 96500 Кл;

n- заряд иона металла.

Электродвижущая сила гальванического элемента, может быть рассчитана как разность потенциалов электродов, составляющих гальванический элемент:

ЭДС= Е окис. – Е восст = Е к – Е а,

где ЭДС- электродвижущая сила;

Е окисл. – электродный потенциал менее активного металла;

Е восст - электродный потенциал более активного металла.

СТАНДАРТНЫЕ ЭЛЕКТРОДНЫЕ ПОТЕНЦИАЛЫ МЕТАЛЛОВ

Абсолютные значения электродных потенциалов металлов непосредственно определить невозможно, но можно определить разность электродных потенциалов. Для этого находят разность потенциалов измеряемого электрода и электрода, потенциал которого известен. Наиболее часто в качестве электрода сравнения принято использовать водородный электрод. Поэтому измеряют ЭДС гальванического элемента, составленного из исследуемого и стандартного водородного электрода, электродный потенциал которого принимают равным нулю. Схемы гальванических элементов для измерения потенциала металла таковы:

Н 2, Pt|H + || Мe n + |Me

Т. к. потенциал водородного электрода, условно равен нулю, то ЭДС измеряемого элемента будет равна электродному потенциалу металла.

Стандартным электродным потенциалом металла называют его электродный потенциал, возникающий при погружении металла в раствор собственного иона с концентрацией (или активностью) , равной 1 моль/л, при стандартных условиях, измеренный по сравнению со стандартным водородным электродом, потенциал которого при 25 0 С условно принимается равным нулю. Располагая металлы в ряд по мере возрастания их стандартных электродных потенциалов (Е°), получаем так называемый ряд напряжений.

Чем более отрицательное значение имеет потенциал системы Ме/Ме n+ , тем активнее металл.

Электродный потенциал металла, опущенного в раствор собственной соли при комнатной температуре, зависит от концентрации одноименных ионов и определяется по формуле Нернста:

, (2)

где E 0 – нормальный (стандартный) потенциал, В;

R – универсальная газовая постоянная, равная 8,31Дж(моль.К);

F– число Фарадея;

Т - абсолютная температура, К;

С - концентрация ионов металла в растворе, моль/л.

Подставляя значения R, F, стандартное температуры Т=298 0 К и множитель перехода от натуральных логарифмов (2,303)к десятичным, получают удобную для применения формулу:

(3)

КОНЦЕНТРАЦИОННЫЕ ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ

Гальванические элементы могут быть составлены из двух совершенно одинаковых по природе электродов, погруженных в растворы одного и того же электролита, но различной концентрации. Такие элементы называются концентрационными, например:

(-) Ag | AgNO 3 || AgNO 3 | Ag (+)

В концентрационных цепях для обоих электродов величины n и E 0 одинаковы, поэтому для расчета ЭДС такого элемента можно использовать

, (4)

где С 1 – концентрация электролита в более разбавленном растворе;

С 2 - концентрация электролита в более концентрированном растворе

ПОЛЯРИЗАЦИЯ ЭЛЕКТРОДОВ

Равновесные потенциалы электродов могут быть определены в условиях отсутствия в цепи тока. Поляризация - изменение потенциала электрода при прохождении электрического тока.

Е = Е i - Е p , (5)

где Е - поляризация;

Е i - потенциал электрода при прохождении электрического тока;

Е p - равновесный потенциал. Поляризация может быть катодной Е К (на катоде) и анодной Е A (на аноде).

Поляризация может быть:1) электрохимическая; 2) химическая.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ТРУДА

1. Опыты с неприятно пахнущими и ядовитыми веществами проводятся обязательно в вытяжном шкафу.

2. При распознавании выделяющегося газа по запаху следует направлять струю движениями руки от сосуда к себе.

3. Выполняя опыт, необходимо следить за тем, чтобы реактивы не попали на лицо, одежду и рядом стоящего товарища.

4. При нагревании жидкости, особенно кислот и щелочей, держать пробирку отверстием в сторону от себя.

5. При разбавлении серной кислоты нельзя приливать воду к кислоте, следует вливать кислоту осторожно, небольшими порциями в холодную воду, перемешивая раствор.

6. По окончании работы следует тщательно вымыть руки.

7. Отработанные растворы кислот и щелочей рекомендуется сливать в специально приготовленную посуду.

8. Все склянки с реактивами необходимо закрывать соответствующими пробками.

9. Оставшиеся после работы реактивы не следует выливать или высыпать в реактивные склянки (во избежание загрязнения).

Порядок выполнения работы

Задание 1

ИССЛЕДОВАНИЕ АКТИВНОСТИ МЕТАЛЛОВ

Приборы и реактивы: цинк, гранулированный; сульфат меди CuSO 4 , 0,1 н раствор; пробирки.

Кусочек гранулированного цинка опустите в 0,1 н раствор сульфата меди. Оставьте стоять спокойно в штативе и наблюдайте происходящее. Составьте уравнение реакции. Сделайте вывод, какой металл можно взять в качестве анода и какой - в качестве катода для следующего опыта.

Задание 2

ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ

Приборы и реактивы: Zn, Cu –металлы; сульфат цинка,ZnSO 4 , 1 М раствор; сульфат меди CuSO 4 , 1 М раствор; хлорид калия КCl, концентрированный раствор; гальванометр; стаканы; U- образная трубка, вата.

В один стакан налейте до ¾ объема 1М раствора соли металла, являющегося анодом, а в другой - такой же объем 1 М раствора соли металла, являющегося катодом. Заполните U- образную трубку концентрированным раствором КCl. Концы трубки закройте плотными кусочками ваты и опустите в оба стакана так, чтобы они погрузились в приготовленные растворы. В один стакан опустите пластинку металл- анод, в другую- пластинку металл- катод; смонтируйте гальванический элемент с гальванометром. Замкните цепь и отметьте по гальванометру направление тока.

Составьте схему гальванического элемента.

Напишите электронные уравнения реакций, протекающих на аноде и катоде данного гальванического элемента. Вычислите ЭДС.

Задание 3

ОПРЕДЕЛЕНИЕ АНОДА ИЗ УКАЗАННОГО НАБОРА ПЛАСТИНОК

Приборы и реактивы: Zn, Cu, Fe, Al –металлы; сульфат цинка,ZnSO 4 , 1 М раствор; сульфат меди CuSO 4 , 1 М раствор; сульфат алюминияAl 2 (SO 4) 3 1 М раствор; сульфат железаFeSO 4 , 1 М раствор; хлорид калия КCl, концентрированный раствор; стаканы; U- образная трубка, вата.

Составьте гальванические пары:

Zn/ZnSO 4 ||FeSO 4 /Fe

Zn / ZnSO 4 || CuSO 4 / Cu

Al/Al 2 (SO 4) 3 || ZnSO 4 /Zn

Из указанного набора пластинок и растворов солей этих металлов соберите гальванический элемент, в котором цинк являлся бы катодом (задание 2).

Составьте электронные уравнения реакций, протекающих на аноде и катоде собранного гальванического элемента.

Напишите окислительно-восстановительную реакцию, которая лежит в основе работы данного гальванического элемента. Вычислите ЭДС.

ОФОРМЛЕНИЕ ОТЧЕТА

Лабораторный журнал заполняется в ходе лабораторных занятий по мере выполнения работы и содержит:

дату выполнения работы;

название лабораторной работы и ее номер;

название опыта и цель его проведения;

наблюдения, уравнения реакций, схему прибора;

контрольные вопросы и задачи по теме.

КОНТРОЛЬНЫЕ ЗАДАНИЯ

1.Какие из указанных ниже реакций возможны? Написать уравнения реакций в молекулярном виде, составить для них электронные уравнения:

Zn(NO 3) 2 + Cu →

Zn(NO 3) 2 + Mg →

2. Составьте схемы гальванических элементов для определения нормальных электродных потенциалов Al/Al 3+ ,Cu/Cu 2+ в паре с нормальным водородным электродом.

3. Вычислите ЭДС гальванического элемента

Zn/ZnSO 4 (1M)| |CuSO 4 (2M)

Какие химические процессы протекают при работе этого элемента?

4. Химически чистый цинк почти не реагирует с соляной кислотой. При добавлении к кислоте нитрата свинца происходит частичное выделение водорода. Объясните эти явления. Составьте уравнения происходящих реакций.

5. Медь находится в контакте с никелем и опущена в разбавленный раствор серной кислоты, какой процесс происходит на аноде?

6. Составьте схему гальванического элемента, в основе которого лежит реакция, протекающая по уравнению: Ni+Pb(NO 3) 2 =Ni(NO 3) 2 +Pb

7. Марганцевый электрод в растворе его соли имеет потенциал 1,2313 В. Вычислите концентрацию ионов Mn 2+ в моль/л.

Время, отведенное на лабораторную работу

Литература

Основная

1. Глинка. Н.А. Общая химия: учеб. пособие для вузов. – М.:Интеграл – Пресс, 2005. – 728 с.

2. Коржуков Н. Г. Общая и неорганическая химия. – М.: МИСИС;

ИНФРА–М, 2004. – 512 с.

Дополнительная

3.Фролов В.В. Химия: учеб. пособие для втузов. – М.: Высш. шк., 2002. –

4. Коровин Н.В.. Общая химия: учебник для техн. направл. и спец. вузов. – М.: Высш. шк., 2002.–559с.: ил..

4. Ахматов Н.С. Общая и неорганическая химия: учебник для вузов. – 4-е изд., исправл.- М.: Высш. шк., 2002. –743 с.

5. Глинка Н.А. Задания и упражнения по общей химии. – М.: Интеграл –Пресс, 2001. – 240 с.

6. Метельский А. В. Химия в вопросах и ответах: справочник. – Мн.: Бел.Эн., 2003. – 544 с

гальванические элементы

Методические указания

к выполнению лабораторной работы

по курсу « Химия»

для студентов технических направлений и специальностей,

«Общая и неорганическая химия»

для студентов направления «Химическая технология»

всех форм обучения

Составили: Синицына Ирина Николаевна

Тимошина Нина Михайловна

Гальванический элемент - это химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, названный в честь итальянского учёного Луиджи Гальвани.

Позднее учёный собрал батарею из медно-цинковых элементов, которая впоследствии была названа Вольтовым столбом (см. рисунок). Он представлял собой несколько десяткой цинковых и медных кружков, сложенных попарно и разделённых сукном, пропитанным кислотой. Это изобретение впоследствии использовали другие учёные в своих исследованиях. Так, например, в 1802 году русский академик В. В. Петров сконструировал гигантскую батарею из 2100 элементов, которая создавала напряжение около 2500 вольт и использовалась для получения мощной электрической дуги, которая создавала столь высокую температуру, что могла плавить металлы.

Существуют гальванические элементы и других конструкций. Рассмотрим ещё один медно-цинковый гальванический элемент, но работающий за счет энергии химической реакции между цинком и раствором сульфата меди (элемент Якоби-Даниэля). Этот элемент состоит из медной пластины, погруженной в раствор сульфата меди, и цинковой пластины, погруженной в раствор сульфата цинка (см. рисунок). Оба раствора соприкасаются друг с другом, но для предупреждения смешивания они разделены перегородкой-мембраной, изготовленной из пористого материала.

Ещё одна разновидность гальванических элементов - так называемые «сухие» марганец-цинковые элементы Лекланше (см. рисунок). Вместо жидкого электролита в таком элементе используется гелеобразная паста из нашатыря и крахмала. Чтобы влага испарялась как можно меньше, верх такого элемента заливается воском или смолой с небольшим отверстием для выхода газов. Обычно элементы Лекланше изготавливаются в цилиндрических стаканчиках, которые одновременно служат и отрицательным электродом и сосудом.
Все химические источники тока (гальванические элементы и батареи из них) делятся на две группы - первичные (одноразовые) и вторичные (многоразовые или обратимые). В первичных источниках тока (в просторечии - батарейках) химические процессы протекают необратимо, поэтому их заряд нельзя восстановить. К вторичным химическим источникам тока относят аккумуляторы, их заряд можно восстановить. Для широко распространённых аккумуляторов цикл заряд-разряд можно повторять около 1000 раз.

Батарейки имеют различное напряжение и ёмкость. К примеру, традиционные щелочные батарейки имеют номинальное напряжение около 1,5 В, а более современные литиевые - около 3 В. Электрическая ёмкость зависит от множества факторов: количества элементов в батарее, уровня зарядки, температуры окружающей среды, тока отсечки (при котором устройство не работает даже при имеющемся заряде). Например, батарейка, которая уже не работает в фотоаппарате, зачастую продолжает работать в часах или пультах управления.
Количество электричества (заряд) в батарейках измеряется в ампер-часах. Например, если заряд батарейки равен 1 ампер-часу, а электрический прибор, который она питает, требует тока 200 мА, то срок действия батарейки вычислится так: 1 А·ч / 0,2 А = 5 часов.
Благодаря техническому прогрессу увеличилось разнообразие миниатюрных устройств, работающих от батареек. Для многих из них потребовались более мощные элементы питания, при этом достаточно компактные. Литиевые батарейки стали ответом на такую потребность: долгий срок хранения, высокая надёжность и отличная работоспособность в широком диапазоне температур. На сегодняшний день самыми передовыми являются литий-ионные источники тока. Потенциал данной технологии ещё не раскрыт полностью, но ближайшие перспективы связаны с ними.

Особую ценность в технике представляют никель-кадмиевые аккумуляторы, изобретённые еще в 1899 году шведским учёным В.Юнгнером. Но только к середине XX века инженеры пришли к почти современной схеме таких герметичных аккумуляторов. Благодаря компактности и автономности, аккумуляторные батареи используются в автомобилях, поездах, компьютерах, телефонах, фотоаппаратах, видеокамерах, калькуляторах и др.
Основными характеристиками аккумулятора являются ёмкость и предельная сила тока. Ёмкость батареи в ампер-часах равна произведению предельного тока на продолжительность разрядки. Например, если батарея может давать ток силой 80 мА в течение 10 часов, то ёмкость: 80 мА · 10 ч = 800 мА·ч (или, в международных обозначениях 800 mAh, см. рисунок).

Кузнецова Алла Викторовна (г. Самара)