Средняя скорость упорядоченного движения электронов в проводнике. Скорость упорядоченного движения электронов в проводнике

Средняя скорость упорядоченного движения электронов в проводнике. Скорость упорядоченного движения электронов в проводнике

Тема. Решение задач по теме "Постоянный электрический ток".

Рассмотреть методы решения задач на использование закона Ома в цепях постоянного тока;

Показать на примерах применение правил Кирхгофа для расчета сложных разветвленных цепей постоянного тока.


Ход занятия

В ходе проведения занятия необходимо рассмотреть ряд качественных задач и далее решить несколько расчетных задач по мере возрастания их сложности.

При решении задач на законы постоянного тока нужно начертить электрическую цепь и проанализировать, как соединены резисторы, источники тока, конденсаторы. Если точки цепи имеют одинаковые потенциалы, их можно соединять между собой.

Далее рассчитывают сопротивление отдельных участков цепи или полное сопротивление цепи и используют закон Ома для участков цепи или замкнутой цепи. Если в цепи постоянного тока включен конденсатор, то ток через него не идет. Если параллельно конденсатору подключен резистор, то напряжение на резисторе и конденсаторе одинаково.

Расчет сложных разветвленных цепей проводят с помощью правил Кирхгофа. Для этого произвольно выбирают направление тока на всех участках цепи. Разбивают сложную цепь на простые замкнутые контуры, произвольно выбирают направления обхода контуров.

Составляют систему уравнений в соответствии с правилами Кирхгофа, учитывая правила выбора знаков "плюс" и "минус".

Для решения задач на превращение электрической энергии в тепловую и механическую используют закон сохранения и превращения энергии.


Качественные задачи

1. Моток голой проволоки, состоящий из семи с половиной витков, растянут между двумя вбитыми в доску гвоздями, к которым прикреплены концы проволоки. Подключив к гвоздям приборы, измерили сопротивление цепи между гвоздями. Определите, во сколько раз изменится это сопротивление, если моток размотать, оставив концы присоединенными к гвоздям.

2. Пять одинаковых сопротивлений включены по схеме, приведенной на рис. 1. Как изменится накал правой верхней спирали, если замкнуть ключ К?

3. Могут ли существовать токи, текущие от более низкого потенциала к более высокому?

4. Трамвайный провод оборвался и лежит на земле. Человек в токопроводящей обуви может подойти к нему лишь маленькими шагами. Делать же большие шаги опасно. Почему?

5. Для того, чтобы включить лампу в сеть, напряжение которой больше напряжения, на которое рассчитана лампа, можно воспользоваться одной из схем, приведенных на рис. 2. У какой из этих схем коэффициент полезного действия выше, если в каждом случае лампа горит в нормальном режиме?

6. На рис. 3 представлены две схемы для измерения сопротивления. Какую из них следует предпочесть, когда измеряемое сопротивление: а) велико; б) мало?

7. Две лампы с сопротивлениями при полном накале r и R , причем R > r , подключают к источнику электродвижущей силы. В обеих лампах вольфрамовые нити. Которая из ламп горит ярче при последовательном соединении? При параллельном соединении?

8. Гирлянда елочных фонариков сделана из 40 лампочек, соединенных последовательно и питаемых от городской сети. После того как одна лампочка перегорела, оставшиеся 39 лампочек снова соединили последовательно и включили в сеть городского тока. В каком случае в комнате будет светлее: когда горело 40 лампочек или 39?

9. Показание какого вольтметра больше (рис. 4)? Почему?

10. Ток проходит по стальной проволоке, которая при этом слегка накаляется. Если одну часть проволоки охладить, погрузив ее в воду, то другая часть накаляется сильнее. Почему? (Разность потенциалов на концах проволоки поддерживается постоянной).

11. Две стальные проволоки одной и той же длины, но разного сечения соединены параллельно между собой и включены в сеть электрического поля. В какой из них будет выделяться большее количество теплоты?


Примеры решения расчетных задач

Задача 1. По медному проводу сечением S = 1 мм 2 течет ток силой I = 10 мА. Найдите среднюю скорость упорядоченного движения электронов вдоль проводника, если считать, что на каждый атом меди приходится один электрон проводимости. Молярная масса меди А = 63,6 г/моль, плотность меди = 8,9 г/см 3 .

Решение:

Сила тока в проводнике равна заряду, протекающему за единицу времени через поперечное сечение проводника

где n - концентрация электронов, q - заряд одного электрона, v - средняя скорость упорядоченного движения, S - площадь поперечного сечения проводника. Из (1) получим следующее выражение для средней скорости упорядоченного движения электронов:

Поскольку на каждый атом меди приходится один электрон проводимости, то концентрация электронов проводимости будет равна концентрации атомов меди. Следовательно, концентрация электронов проводимости будет связана с плотностью меди соотношением

где m - масса одного атома.

здесь N A - число Авогадро. Подставляя (4) в (3), получим:

Тогда скорость упорядоченного движения электронов будет иметь вид:

Ответ:


Задача 2. В схеме, изображенной на рис. 5, определите силу тока, протекающего через батарею в первый момент времени после замыкания ключа К ; спустя большой промежуток времени. Параметры элементов схемы и внутреннее сопротивление источника r считать заданными.

Решение:

В первый момент времени конденсаторы не заряжены, и ток в цепи, согласно закону Ома, будет равен

В установившемся режиме ток течет через сопротивления R 1 и R 3 , и сила тока будет равна

Ответ:


Задача 3. Что покажет амперметр в схеме, изображенной на рис. 6?

Решение:

Найдем силу тока, текущего через источник. Будем считать, что сопротивление амперметра очень мало. Тогда электрическую схему можно будет перерисовать так, как показано на рис. 7. После этого легко найти сопротивление всей цепи. Сопротивления R 1 и R 3 соединены параллельно, поэтому сопротивление участка ВС будет равно

Общее сопротивление участка цепи, содержащего сопротивления R 1 , R 2 и R 3 , будет равно

Тогда общее сопротивление всей цепи определится следующим образом:

Сила тока, текущего через источник, согласно закону Ома для полной цепи, будет равна

где - электродвижущая сила источника тока.

Как видно из рис. 6, ток, идущий через источник, равен сумме токов, текущих через сопротивление R 1 и амперметр I A:

Обратимся снова к рис. 7. Так как R 123 = R 4 , то в точке А ток I 0 делится на две равные части. Через резистор R 2 будет идти ток силой I 2 = 2A. В точке В ток I 2 снова делится поровну между резисторами R 1 и R 3 , и через резистор R 1 пойдет ток силой I 1 = 1A.

В точке С можно записать I 0 = I 1 + I A . Отсюда

Ответ:


Задача 4. Собрана электрическая цепь, приведенная на рис. 8. Вольтметр, включенный параллельно резистору с сопротивлением R 1 = 0,4 Ом, показывает U 1 = 34,8 В. Напряжение на зажимах источника тока поддерживается постоянным и равным U = 100 В. Найдите отношение силы тока, идущего через вольтметр, к силе тока, идущего через резистор с сопротивлением R 2 = 0,6 Ом.

Решение:

Напряжение на резисторе с сопротивлением R 2 будет равно U - U 1 , а сила тока, идущего через этот резистор, согласно закону Ома для однородного участка цепи,

где I 1 - сила тока, идущего через резистор с сопротивлением R 1 , а I V - сила тока, идущего через вольтметр. Отсюда

Ответ:


Задача 5. Несколько источников тока соединены так, как показано на рис. 9. Каковы показания идеального амперметра и вольтметра, включенных в цепь? Сопротивлением соединительных проводов пренебречь.

Решение:

Случай 1. Считаем, что все источники одинаковы, то есть имеют одинаковую электродвижущую силу и внутреннее сопротивление r . Пусть количество источников равно n . Тогда, используя закон Ома для замкнутой цепи, получим:

Таким будет показание амперметра. Из закона Ома для неоднородного участка цепи следует, что показание вольтметра будет

Случай 2. Все источники различны. Тогда амперметр покажет силу тока

Очевидно, что показание вольтметра в этом случае

Ответ: если все источники тока одинаковы, то если электродвижущие силы источников тока различны, то


Задача 6. Найдите напряжение на конденсаторах емкостями С 1 и С 2 в цепи, показанной на рис. 10, если известно, что при коротком замыкании сила тока, проходящего через источник, возрастает в n раз. С 1 , С 2 , известны.

Решение:

Напряжение на резисторе, подключенном параллельно к конденсаторам,

где U 1 и U 2 - напряжение на первом и втором конденсаторах соответственно. Конденсаторы соединены последовательно, следовательно, заряды на них будут одинаковыми.

Решая совместно уравнение (5) и (6), получим:

(7)

Через конденсаторы ток не идет, поэтому закон Ома для рассматриваемой цепи запишется в виде:

где r - внутреннее сопротивление источника, I - сила тока, текущего через источник и резистор. Падение напряжения на резисторе, согласно закону Ома для однородного участка цепи,

Ток короткого замыкания соответствует R = 0 , то есть

Согласно условию задачи

Подставляя значение I и I 0 в последнее соотношение, получим:

Отсюда R = r (n -1). Подставляя значение R в (8), получим

После подстановки I в (9) получим:

Подставляя найденное значение U в (7), получим:

Ответ:


Задача 7. Между пластинами плоского конденсатора помещен жидкий диэлектрик (рис. 11) Уровень жидкости каждую секунду равномерно поднимается на h . К пластинам подсоединен последовательно источник постоянного тока, электродвижущая сила которого , и сопротивление R . Определите ток в цепи. Ширина пластин l , расстояние между ними d , диэлектрическая проницаемость диэлектрика .

Решение:

В каждый момент времени конденсатор, частично заполненный жидкостью, можно рассматривать как совокупность двух конденсаторов, воздушного и заполненного жидкостью, соединенных параллельно. Емкость параллельно соединенных конденсаторов равна сумме их емкостей. За каждую секунду часть пластин высотой h освобождается от диэлектрика. Это приводит к изменению емкости конденсатора на

(10)

Заряд при этом стекает с пластин конденсатора и в цепи течет ток, сила которого

Поскольку напряжение между пластинами конденсатора не меняется, то изменение заряда на пластинах конденсатора за единицу времени будет равно

(12)

Тогда после подстановки в (12) получим:

то есть сила тока в цепи будет равна

(13)

Напряжение на пластинах конденсатора можно найти из закона Ома для полной цепи.

Подставив значение U в (13), получим для силы тока следующее выражение:

Ответ:


Задача 8. В схеме на рис. 12 1 = 2 В, 2 = 4 В, 3 = 6 В, R 1 = 4 Ом, R 2 = 6 Ом, R 3 = 8 Ом. Найдите силу тока во всех участках.

Решение:

Воспользуемся правилами Кирхгофа. Зададим направления токов I 1 , I 2 , I 3 . В качестве независимых контуров выберем большой контур, содержащий источники тока 1 и 3 , и малый контур, содержащий источники тока 1 и 2 . Обход контуров будем совершать по часовой стрелке (рис. 13). Тогда можно составить следующую систему уравнений:

Решая систему уравнений относительно токов, получим следующие значения:

Знак минус означает, что ток I 1 течет в направлении, противоположном выбранному.

Ответ:


Задача 9. Электродвижущая сила батареи = 16 В, внутреннее сопротивление r = 3 Ом. Найдите сопротивление внешней части цепи, если известно, что в ней выделяется мощность Р = 16 Вт. Определите к.п.д. батареи.

Решение:

Если внешнее сопротивление равно R , то на нем выделяется полезная мощность P = I 2 R . Силу тока в цепи можно найти из закона Ома для полной цепи:

Последнее выражение можно переписать в виде квадратного уравнения с неизвестным R :

Решение этого уравнения имеет вид:

Подставляя в полученное решение числа, получим R 1 = 1 Ом; R 2 = 9 Ом. Этим двум значениям сопротивления соответствуют к.п.д.:

Ответ:


Задача 10. Через два последовательно соединенных проводника с одинаковыми сечениями S , но разными удельными сопротивлениями 1 и 2 ( 2 > 1), течет ток силой I (рис. 14). Определите знак и величину поверхностной плотности заряда, возникающего на границе раздела проводников.

Решение:

Воспользуемся теоремой Гаусса для электрических полей. В качестве произвольной замкнутой поверхности, через которую будем рассчитывать поток вектора напряженности электрического поля, выберем цилиндрическую поверхность, боковая поверхность которой совпадает с поверхностью проводника (рис. 15). Векторы напряженности электрического поля в проводнике параллельны боковой поверхности цилиндра, поэтому вклад в поток вектора напряженности дают только потоки через основания цилиндрической поверхности. Поскольку каждый проводник электронейтрален, то внутри этой поверхности нескомпенсированным оказывается только заряд q на границе раздела проводников. Поэтому теорема Гаусса запишется следующим образом:

2. Батарея, состоящая из двух одинаковых параллельно соединенных элементов с электродвижущими силами = 2 В, замкнута резистором, сопротивление которого R = 1,4 Ом (рис. 16). Внутреннее сопротивление элементов r 1 = 1 Ом и r 2 = 1,5 Ом. Найдите токи I 1 , I 2 , I , текущие в цепи.

Ответ:


3. Два потребителя, сопротивления которых R 1 и R 2 , подключаются к сети постоянного тока первый раз параллельно, а второй - последовательно. В каком случае мощность, потребляемая от сети, будет больше?

Ответ:


4. Резистор и конденсатор соединены последовательно с источником электродвижущей силы, при этом заряд на обкладках конденсатора q 1 = 610 -4 Кл. Если резистор и конденсатор подключены к источнику электродвижущей силы параллельно, то заряд на обкладках конденсатора q . Какое количество теплоты выделится на резисторе с сопротивлением R после замыкания ключа К ? Внутренним сопротивлением источника пренебречь.

Ответ:


8. Найдите суммарный импульс электронов в проводе длины l = 1000 м, по которому течет ток силой I = 70 А.

Ответ:


9. Во сколько раз добавочное сопротивление (шунт) должно быть больше сопротивления вольтметра, чтобы этот вольтметр позволил измерить напряжение в n = 10 раз большее, чем то, на которое он рассчитан?

Ответ: в (n - 1) раз.


10. Пучок электронов проходит ускоряющую разности потенциалов U = 1000 В и, попадая на металлическую пластину, полностью поглощается. При этом микроамперметр, включенный между пластинкой и "землей", показывает ток I = 10 -3 А (рис. 20). Определите температуру металлической пластинки после поглощения ею электронного пучка, если начальная температура пластинки была Т 0 = 300 К. Теплоемкость металлической пластинки С = 10 Дж/К, время действия пучка t = 100 c. Считать, что все тепло, выделившееся в пластинке, идет на ее нагревание.

Ответ:


1. Бутиков Е.И., Кондратьев А.С. Физика. Т. 2. Электродинамика. - М.: Физматлит: Лаборатория базовых знаний; СПб.: Невский диалект, 2001. - С. 11-82.

2. Белолипецкий С.Н., Еркович О.С., Казаковцева В.А. и др. Задачник по физике. - М.: Физматлит, 2005. - С. 123-142.

3. Готовцев В.В. Лучшие задачи по электричеству. - М.; Ростов н/Д: Издательский центр "Март", 2004. - С. 59-116.

>>Физика: Электронная проводимость металлов

Начнем с металлических проводников. Вольт-амперная характеристика этих проводников нам известна, но пока ничего не говорилось о ее объяснении с точки зрения молекулярно-кинетической теории.
Носителями свободных зарядов в металлах являются электроны. Их концентрация велика - порядка 10 28 1/м 3 . Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью порядка 10 -4 м/с.
Экспериментальное доказательство существования свободных электронов в металлах. Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Л.И.Мандельштама и Н. Д. Папалекси (1913), Б. Стюарта и Р. Толмена (1916). Схема этих опытов такова.
На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис.16.1 ). К концам дисков при помощи скользящих контактов подключают гальванометр.

Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.
Направление тока в этом опыте говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т. е. |q|/m . Поэтому, измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным 1,8 10 11 Кл/кг. Эта величина совпадала с отношением заряда электрона к его массе е/m , найденным ранее из других опытов.
Движение электронов в металле. Электроны под влиянием силы, действующей на них со стороны электрического поля, приобретают определенную скорость упорядоченного движения . Эта скорость не увеличивается в дальнейшем со временем, так как, сталкиваясь с ионами кристаллической решетки, электроны теряют направленное движение, а затем опять под действием электрического поля начинают двигаться направленно. В результате средняя скорость упорядоченного движения электронов оказывается пропорциональной напряженности электрического поля в проводнике v ~ E и, следовательно, разности потенциалов на концах проводника, так как , где l - длина проводника.
Сила тока в проводнике пропорциональна скорости упорядоченного движения частиц (см. формулу (15.2)). Поэтому можем сказать, что сила тока пропорциональна разности потенциалов на концах проводника: I ~U . В этом состоит качественное объяснение закона Ома на основе электронной теории проводимости металлов.
Построить удовлетворительную количественную теорию движения электронов в металле на основе законов классической механики невозможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания этого движения.
Наиболее наглядно это видно из следующего примера. Если экспериментально определить среднюю кинетическую энергию теплового движения электронов в металле при комнатной температуре и найти соответствующую этой энергии температуру, то получим температуру порядка 10 5 -10 6 К. Такая температура существует внутри звезд. Движение электронов в металле подчиняется законам квантовой механики.
Экспериментально доказано, что носителями свободных зарядов в металлах являются электроны. Под действием электрического поля электроны движутся с постоянной средней скоростью, испытывая тормозящее влияние со стороны кристаллической решетки. Скорость упорядоченного движения электронов прямо пропорциональна напряженности поля в проводнике.

???
1. Катушка (см. рис. 16.1) вращалась по часовой стрелке, а затем была резко заторможена. Каково направление электрического тока в катушке в момент торможения?
2. Как скорость упорядоченного движения электронов в металлическом проводнике зависит от напряжения на концах проводника?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

3 Термоэлектрические явления. Термоэлектродвижущая сила. Термопары, термоэлементы, термобатареи и их применение. 1) Явление Зеебека (1821). Немецкий физик Т. Зеебек (1770-1831) обнаружил, что в замкнутой цепи, состоящей из последовательно соединенных разнородных провод­ников, контакты между которыми имеют различную температуру, возникает элект­рический ток. Рассмотрим замкнутую цепь, состоящую из двух металлических проводников 1 и 2 с температурами спаев Т 1 (контакт А ) и Т 2 (контакт В ), причем Т 1 >T 2 (рис. 331). Не вдаваясь в подробности, отметим, что в замкнутой цепи для многих пар металлов (например, Сu-Bi, Ag-Сu, Аu-Сu) электродвижущая сила прямо пропор­циональна разности температур в контактах: Ɛ т = α (Т 1 – Т 2) Эта э.д.с. называется термоэлектродвижущей силой. Направление тока при Т 1 2 на рис. 331 показано стрелкой. Термоэлектродвижущая сила, например для пары метал­лов медь - константан, для разности температур 100 К составляет всего 4,25 мВ. Явление Зеебека используется для измерения температуры. Для этого применяются термоэлементы, или термопары - датчики температур, состоящие из двух соединенных между собой разнородных металлических проводников. Если контакты (обычно спаи) проводников (проволок), образующих термопару, находятся при разных температурах, то в цепи возникает термоэлектродвижущая сила, которая зависит от разности температур контактов и природы применяемых материалов. Чувствительность термопар выше, если их соединять последовательно. Эти соединения называются термобатареями (или термостолбиками). Термопары применяются как для измерения ничтожно малых разностей температур, так и для измерения очень высоких и очень низких температур (например, внутри доменных печей или жидких газов). Точность определения тем­пературы с помощью термопар составляет, как правило, несколько кельвин, а у некоторых термопар достигает »0,01 К. Термопары обладают рядом преимуществ перед обычными термометрами: имеют большую чувствительность и малую инерционность, позволяют проводить измерения в широком интервале температур и допускают дистанционные измерения. Явление Зеебека в принципе может быть использовано для генерации электрического тока. Так, уже сейчас к.п.д. полупроводниковых термобатарей достигает »18%. Следовательно, совершенствуя полупроводниковые термоэлектрогенераторы, можно добиться эффективного прямого преобразования солнечной энергии в электрическую. 2) Явление Пельтье (1834). Французский физик Ж. Пельтье (1785-1845) обнару­жил, что при прохождении через контакт двух различных проводников электрического тока в зависимости от его направления помимо джоулевой теплоты выделяется или поглощается дополнительная теплота. Таким образом, явление Пельтье является обратным по отношению к явлению Зеебека. В отличие от джоулевой теплоты, которая пропорциональна квадрату силы тока, теплота Пельтье пропорциональна первой степени силы тока и меняет знак при изменении направления тока. Рассмотрим замкнутую цепь, состоящую из двух разнородных металлических проводников 1 и 2 (рис. 332), по которым пропускается ток I " (его направление в данном случае выбрано совпадающим с направлением термотока (на рис. 331 при условии T 1 >T 2)). Согласно наблюдениям Пельтье, спайА, который при явлении Зеебека поддерживался бы при более высокой температуре, будет теперь охлаждаться, а спай В - нагреваться. При изменении направления тока I " спайА будет нагреваться, спай В - охлаждаться. Объяснить явление Пельтье можно следующим образом. Электроны по разную сторону спая обладают различной средней энергией (полной-кинетической плюс потенциальной). Если электроны (направление их движения задано на рис. 332 пунктир­ными стрелками) пройдут через спайВ и попадут в область с меньшей энергией, то избыток своей энергии они отдадут кристаллической решетке и спай будет нагреваться. В спаеА электроны переходят в область с большей энергией, забирая теперь недостающую энергию у кристаллической решетки, и спай будет охлаждаться. Явление Пельтье используется в термоэлектрических полупроводниковых холодильниках, созданных впервые в 1954 г. под руководством А. Ф. Иоффе, и в некото­рых электронных приборах. 4 Вопросы на закрепление изученной темы. - Какие частицы являются носителями тока в металлах? - Опишите опыт Мандельштама и Папалекси. - Что такое электронный газ? - Что такое потенциальный барьер? - Какие 2 скорости присутствуют в движении электронов? - Какая из этих скоростей больше? - От каких величин зависит дрейфовая скорость электронов? - В чём заключаются явления Зеебека и Пельтье? - Где применяются эти явления? .